1
|
Robinson KS, Sennhenn P, Yuan DS, Liu H, Taddei D, Qian Y, Luo W. TMBIM6/BI-1 is an intracellular environmental regulator that induces paraptosis in cancer via ROS and Calcium-activated ERAD II pathways. Oncogene 2024:10.1038/s41388-024-03222-x. [PMID: 39609612 DOI: 10.1038/s41388-024-03222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Transmembrane B cell lymphoma 2-associated X protein inhibitor motif-containing (TMBIM) 6, also known as Bax Inhibitor-1 (BI-1), has been heavily researched for its cytoprotective functions. TMBIM6 functional diversity includes modulating cell survival, stress, metabolism, cytoskeletal dynamics, organelle function, regulating cytosolic acidification, calcium, and reactive oxygen species (ROS). Clinical research shows TMBIM6 plays a key role in many of the world's top diseases/injuries (i.e., Alzheimer's, Parkinson's, diabetes, obesity, brain injury, liver disease, heart disease, aging, etc.), including cancer, where TMBIM6 expression impacts patient survival, chemoresistance, cancer progression, and metastasis. We show TMBIM6 is activated by, and undergoes, different conformational changes that dictate its function following a significant change in the cell's IntraCellular Environment (ICE). TMBIM6 agonism, following ICE change, can help the cell overcome multiple stresses including toxin exposure, viral infection, wound healing, and excitotoxicity. However, in cancer cells TMBIM6 agonism results in rapid paraptotic induction irrespective of the cancer type, sub-type, genotype or phenotype. Furthermore, the level of TMBIM6 expression in cancer did not dictate the level of paraptotic induction; however, it did dictate the rate at which paraptosis occurred. TMBIM6 agonism did not induce paraptosis in cancer via canonical routes involving p38 MAPK, JNK, ERK, UPR, autophagy, proteasomes, or Caspase-9. Instead, TMBIM6 agonism in cancer upregulates cytosolic Ca2+ and ROS, activates lysosome biogenesis, and induces paraptosis via ERAD II mechanisms. In xenograft models, we show TMBIM6 agonism induces rapid cancer cell death with no toxicity, even at high doses of TMBIM6 agonist (>450 mg/kg). In summary, this study shows TMBIM6's functional diversity is only activated by severe ICE change in diseased/injured cells, highlighting its transformative potential as a therapeutic target across various diseases and injuries, including cancer.
Collapse
Affiliation(s)
| | | | | | - Hai Liu
- Viva Biotech, Shanghai, China
| | | | | | - Wei Luo
- MicroQuin, Cambridge, MA, USA
| |
Collapse
|
2
|
Ali SA, Datusalia AK. Berberine attenuates ECM accumulation and the progression of acute liver failure through inhibition of NLRP3 inflammasome signalling. Toxicol Appl Pharmacol 2024; 492:117129. [PMID: 39428072 DOI: 10.1016/j.taap.2024.117129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Acute liver failure (ALF) is a life-threatening disease, characterized by upregulated extracellular matrix deposition and inflammatory signalling, with no effective treatment options and targets. The present study was designed to investigate the preventive and therapeutic effects of berberine (BBR) and its underlying mechanism in thioacetamide (TAA)-induced ALF. Male SD rats were administered with TAA 300 mg/kg, i.p., thrice to induce ALF and pre- or post-treated with BBR. To decipher the effects of BBR LFT markers, histopathological analysis of key fibrotic and inflammatory proteins was performed. In addition, the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α were assessed by ELISA. Our work showed TAA-induced ALF animals were associated with increased ALT, AST, bilirubin (LFT markers) and histopathological alterations with profuse infiltration of inflammatory cells in the liver tissue. Treatment with BBR has significantly inhibited LFT markers and histological alterations triggered by TAA. In addition, TAA animals demonstrated increased collagen accumulation and upregulated expression of TGF-β1, vimentin, and α-SMA compared to control. The excessive accumulation of collagen, TGF-β1, vimentin, and α-SMA were significantly modulated with BBR treatment. Further, the fluorescence intensity of ROS an activator of NLRP3 including the NLRP3 inflammasome, and its downstream signalling ASC, cleaved IL-1β, and other pro-inflammatory cytokines like TNF-α and IL-6 stimulated by TAA were attenuated by BBR treatment. The current work indicated that BBR significantly ameliorated TAA-induced ALF by inhibiting the extracellular matrix accumulation associated with the NLRP3/IL-1β signalling pathway and could be a viable therapeutic option to treat ALF and other fibroinflammatory diseases.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India
| | - Ashok Kumar Datusalia
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India.
| |
Collapse
|
3
|
Chen X, He X, Xu F, Xu N, Sharifi NH, Zhang P, Flores JJ, Wu L, He Q, Kanamaru H, Zhu S, Dong S, Han M, Yuan Y, Huang L, Miao L, Zhang JH, Zhou Y, Tang J. Fractalkine Enhances Hematoma Resolution and Improves Neurological Function via CX3CR1/AMPK/PPARγ Pathway After GMH. Stroke 2023; 54:2420-2433. [PMID: 37465997 PMCID: PMC10453335 DOI: 10.1161/strokeaha.123.043005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Hematoma clearance has been a proposed therapeutic strategy for hemorrhagic stroke. This study investigated the impact of CX3CR1 (CX3C chemokine receptor 1) activation mediated by r-FKN (recombinant fractalkine) on hematoma resolution, neuroinflammation, and the underlying mechanisms involving AMPK (AMP-activated protein kinase)/PPARγ (peroxisome proliferator-activated receptor gamma) pathway after experimental germinal matrix hemorrhage (GMH). METHODS A total of 313 postnatal day 7 Sprague Dawley rat pups were used. GMH was induced using bacterial collagenase by a stereotactically guided infusion. r-FKN was administered intranasally at 1, 25, and 49 hours after GMH for short-term neurological evaluation. Long-term neurobehavioral tests (water maze, rotarod, and foot-fault test) were performed 24 to 28 days after GMH with the treatment of r-FKN once daily for 7 days. To elucidate the underlying mechanism, CX3CR1 CRISPR, or selective CX3CR1 inhibitor AZD8797, was administered intracerebroventricularly 24 hours preinduction of GMH. Selective inhibition of AMPK/PPARγ signaling in microglia via intracerebroventricularly delivery of liposome-encapsulated specific AMPK (Lipo-Dorsomorphin), PPARγ (Lipo-GW9662) inhibitor. Western blot, Immunofluorescence staining, Nissl staining, Hemoglobin assay, and ELISA assay were performed. RESULTS The brain expression of FKN and CX3CR1 were elevated after GMH. FKN was expressed on both neurons and microglia, whereas CX3CR1 was mainly expressed on microglia after GMH. Intranasal administration of r-FKN improved the short- and long-term neurobehavioral deficits and promoted M2 microglia polarization, thereby attenuating neuroinflammation and enhancing hematoma clearance, which was accompanied by an increased ratio of p-AMPK (phosphorylation of AMPK)/AMPK, Nrf2 (nuclear factor erythroid 2-related factor 2), PPARγ, CD36 (cluster of differentiation 36), CD163 (hemoglobin scavenger receptor), CD206 (the mannose receptor), and IL (interleukin)-10 expression, and decreased CD68 (cluster of differentiation 68), IL-1β, and TNF (tumor necrosis factor) α expression. The administration of CX3CR1 CRISPR or CX3CR1 inhibitor (AZD8797) abolished the protective effect of FKN. Furthermore, selective inhibition of microglial AMPK/PPARγ signaling abrogated the anti-inflammation effects of r-FKN after GMH. CONCLUSIONS CX3CR1 activation by r-FKN promoted hematoma resolution, attenuated neuroinflammation, and neurological deficits partially through the AMPK/PPARγ signaling pathway, which promoted M1/M2 microglial polarization. Activating CX3CR1 by r-FKN may provide a promising therapeutic approach for treating patients with GMH.
Collapse
Affiliation(s)
- Xionghui Chen
- Department of Emergency Surgery (X.C., F.X.), First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Xuying He
- Department of Interventional Therapy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China (X.H., N.X.)
| | - Feng Xu
- Department of Emergency Surgery (X.C., F.X.), First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Ningbo Xu
- Department of Interventional Therapy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China (X.H., N.X.)
| | - Nona Hashem Sharifi
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Pengjie Zhang
- Institute for Fetology (P.Z.), First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Jerry J. Flores
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Lei Wu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Qiuguang He
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Hideki Kanamaru
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Shiyi Zhu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Siyuan Dong
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Mingyang Han
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Ye Yuan
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Lei Huang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| | - Liyan Miao
- Department of Pharmacy (L.M), First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - John H. Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
- Department of Neurosurgery, Loma Linda University School of Medicine, CA (J.H.Z.)
| | - Youxin Zhou
- Department of Neurosurgery and Brain and Nerve Research Laboratory (Y.Z.), First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, CA (X.C., N.H.S., J.J.F., L.W., Q.H., H.K., S.Z., S.D., M.H., Y.Y., L.H., J.H.Z., J.T.)
| |
Collapse
|
4
|
Yi SJ, Jang YJ, Lee S, Cho SJ, Kang K, Park JI, Chae HJ, Kim HR, Kim K. TMBIM6 deficiency leads to bone loss by accelerating osteoclastogenesis. Redox Biol 2023; 64:102804. [PMID: 37399733 PMCID: PMC10336580 DOI: 10.1016/j.redox.2023.102804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
TMBIM6 is an endoplasmic reticulum (ER) protein that modulates various physiological and pathological processes, including metabolism and cancer. However, its involvement in bone remodeling has not been investigated. In this study, we demonstrate that TMBIM6 serves as a crucial negative regulator of osteoclast differentiation, a process essential for bone remodeling. Our investigation of Tmbim6-knockout mice revealed an osteoporotic phenotype, and knockdown of Tmbim6 inhibited the formation of multinucleated tartrate-resistant acid phosphatase-positive cells, which are characteristic of osteoclasts. Transcriptome and immunoblot analyses uncovered that TMBIM6 exerts its inhibitory effect on osteoclastogenesis by scavenging reactive oxygen species and preventing p65 nuclear localization. Additionally, TMBIM6 depletion was found to promote p65 localization to osteoclast-related gene promoters. Notably, treatment with N-acetyl cysteine, an antioxidant, impeded the osteoclastogenesis induced by TMBIM6-depleted cells, supporting the role of TMBIM6 in redox regulation. Furthermore, we discovered that TMBIM6 controls redox regulation via NRF2 signaling pathways. Our findings establish TMBIM6 as a critical regulator of osteoclastogenesis and suggest its potential as a therapeutic target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - You-Jee Jang
- Department of Biomedical Laboratory Science, Honam University, Gwangju, Republic of Korea
| | - Seokchan Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - Han-Jung Chae
- School of Pharmacy and New Drug Development Research Institute, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
5
|
Activation of LRP6 with HLY78 Attenuates Oxidative Stress and Neuronal Apoptosis via GSK3β/Sirt1/PGC-1α Pathway after ICH. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7542468. [PMID: 35419167 PMCID: PMC9001077 DOI: 10.1155/2022/7542468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/14/2022]
Abstract
Background Oxidative stress and neuronal apoptosis have important roles in the pathogenesis after intracerebral hemorrhage (ICH). Previous studies have reported that low-density lipoprotein receptor-related protein 6 (LRP6) exerts neuroprotection in several neurological diseases. Herein, we investigate the role of LRP6 receptor activation with HLY78 to attenuate oxidative stress and neuronal apoptosis after ICH, as well as the underlying mechanism. Methods A total of 199 CD1 mice were used. ICH was induced via injection of autologous blood into the right basal ganglia. HLY78 was administered via intranasal injection at 1 h after ICH. To explore the underlying mechanism, LRP6 siRNA and selisistat, a Sirt1 selective antagonist, were injected intracerebroventricularly at 48 h before ICH induction. Neurobehavioral tests, Western blot, and immunofluorescence staining were performed. Results The expression of endogenous p-LRP6 was gradually increased and expressed on neurons after ICH. HLY78 significantly improved the short- and long-term neurobehavioral deficits after ICH, which was accompanied with decreased oxidative stress and neuronal apoptosis, as well as increased expression of p-GSK3β, Sirt1, and PGC-1α, as well as downregulation of Romo-1 and C-Caspase-3. LRP6 knockdown or Sirt1 inhibition abolished these effects of HLY78 after ICH. Conclusion Our results suggest that administration of HLY78 attenuated oxidative stress, neuronal apoptosis, and neurobehavioral impairments through the LRP6/GSK3β/Sirt1/PGC-1α signaling pathway after ICH.
Collapse
|
6
|
Sheng Y, Yang H, Wu T, Zhu L, Liu L, Liu X. Alterations of Cytochrome P450s and UDP-Glucuronosyltransferases in Brain Under Diseases and Their Clinical Significances. Front Pharmacol 2021; 12:650027. [PMID: 33967789 PMCID: PMC8097730 DOI: 10.3389/fphar.2021.650027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs) are both greatly important metabolic enzymes in various tissues, including brain. Although expressions of brain CYPs and UGTs and their contributions to drug disposition are much less than liver, both CYPs and UGTs also mediate metabolism of endogenous substances including dopamine and serotonin as well as some drugs such as morphine in brain, demonstrating their important roles in maintenance of brain homeostasis or pharmacological activity of drugs. Some diseases such as epilepsy, Parkinson's disease and Alzheimer's disease are often associated with the alterations of CYPs and UGTs in brain, which may be involved in processes of these diseases via disturbing metabolism of endogenous substances or resisting drugs. This article reviewed the alterations of CYPs and UGTs in brain, the effects on endogenous substances and drugs and their clinical significances. Understanding the roles of CYPs and UGTs in brain provides some new strategies for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Yun Sheng
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanyu Yang
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tong Wu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Zhu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Fu C, Zheng Y, Lin K, Wang H, Chen T, Li L, Huang J, Lin W, Zhu J, Li P, Fu X, Lin Z. Neuroprotective effect of apigenin against hypoxic-ischemic brain injury in neonatal rats via activation of the PI3K/Akt/Nrf2 signaling pathway. Food Funct 2021; 12:2270-2281. [PMID: 33599218 DOI: 10.1039/d0fo02555k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neonatal hypoxic-ischemic (HI) brain injury can lead to mortality and severe long-term disabilities including cerebral palsy and brain injury. However, the treatment options for neonatal hypoxic-ischemic (HI) brain injury are limited. Apigenin is abundantly present in vegetables, celery, and chamomile tea with diverse biological functions, such as anti-inflammatory, anti-apoptotic, antioxidant, and anticancer effects. However, it has not yet been reported whether apigenin exerts a neuroprotective effect against neonatal hypoxic-ischemic (HI) brain injury. In this study, we investigated whether apigenin could ameliorate HI brain injury and explored the associated mechanism using in vivo experiments. We found that apigenin remarkably reduced the infarct volume and ameliorated cerebral edema, decreased inflammatory response, inhibited apoptosis, promoted the recovery of tissue structure, and improved prognosis following HI brain injury. Mechanistically, we found that apigenin exerted a neuroprotective effect against HI brain injury by activating the PI3K/Akt/Nrf2 pathway. In summary, all these results demonstrate that apigenin could be a potential therapeutic approach for neonatal hypoxic-ischemic (HI) brain injury.
Collapse
Affiliation(s)
- Changchang Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Yihui Zheng
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Kun Lin
- The University of Illinois at Chicago, College of Pharmacy, 60612, USA
| | - Hongzeng Wang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Tingting Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Luyao Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Jiali Huang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Wei Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China
| | - Xiaoqin Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
8
|
Li L, Chen J, Zhou Y, Zhang J, Chen L. Artesunate alleviates diabetic retinopathy by activating autophagy via the regulation of AMPK/SIRT1 pathway. Arch Physiol Biochem 2021:1-8. [PMID: 33661722 DOI: 10.1080/13813455.2021.1887266] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONTEXT Artesunate (ART), an antimalarial drug, possesses the ability to induce autophagy and exhibits a protective effect on diabetes. OBJECTIVE This study aimed to evaluate the effects of ART on diabetic retinopathy (DR) and to explore the underlying mechanisms. METHODS Rats with streptozotocin-induced DR were given intravitreal injection of ART. RESULTS ART administration inhibited the increase in retinal thickness and prevented blood-retinal barrier in diabetic rats. Further, vascular leukocyte adherence, microglial activation, inflammatory cytokine, and ROS production in the retinas of diabetic rats were also inhibited by ART. Additionally, ART enhanced autophagy in the retinas of diabetic rats as demonstrated by up-regulated Beclin-1 expression and LC3II/I ratio and down-regulated p62. ART also activated AMP-activated protein kinase (AMPK)/sensor class III histone deacetylase sirtuin 1 (SIRT1) pathway. CONCLUSIONS ART, as an autophagy activator, has therapeutic potential in DR treatment.
Collapse
Affiliation(s)
- Lihua Li
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Jun Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Yun Zhou
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Jiahua Zhang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Lei Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Conniot J, Talebian S, Simões S, Ferreira L, Conde J. Revisiting gene delivery to the brain: silencing and editing. Biomater Sci 2020; 9:1065-1087. [PMID: 33315025 DOI: 10.1039/d0bm01278e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders, ischemic brain diseases, and brain tumors are debilitating diseases that severely impact a person's life and could possibly lead to their demise if left untreated. Many of these diseases do not respond to small molecule therapeutics and have no effective long-term therapy. Gene therapy offers the promise of treatment or even a cure for both genetic and acquired brain diseases, mediated by either silencing or editing disease-specific genes. Indeed, in the last 5 years, significant progress has been made in the delivery of non-coding RNAs as well as gene-editing formulations to the brain. Unfortunately, the delivery is a major limiting factor for the success of gene therapies. Both viral and non-viral vectors have been used to deliver genetic information into a target cell, but they have limitations. Viral vectors provide excellent transduction efficiency but are associated with toxic effects and have limited packaging capacity; however, non-viral vectors are less toxic and show a high packaging capacity at the price of low transfection efficiency. Herein, we review the progress made in the field of brain gene therapy, particularly in the design of non-toxic and trackable non-viral vectors, capable of controlled release of genes in response to internal/external triggers, and in the delivery of formulations for gene editing. The application of these systems in the context of various brain diseases in pre-clinical and clinical tests will be discussed. Such promising approaches could potentially pave the way for clinical realization of brain gene therapies.
Collapse
Affiliation(s)
- João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
10
|
Lebeaupin C, Blanc M, Vallée D, Keller H, Bailly-Maitre B. BAX inhibitor-1: between stress and survival. FEBS J 2020; 287:1722-1736. [PMID: 31841271 DOI: 10.1111/febs.15179] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Cellular gatekeepers are essential to maintain order within a cell and anticipate signals of stress to promote survival. BCL2 associated X, apoptosis regulator (BAX) inhibitor-1 (BI-1), also named transmembrane BAX inhibitor motif containing-6, is a highly conserved endoplasmic reticulum (ER) transmembrane protein. Originally identified as an inhibitor of BAX-induced apoptosis, its pro-survival properties have been expanded to include functions targeted against ER stress, calcium imbalance, reactive oxygen species accumulation, and metabolic dysregulation. Nevertheless, the structural biology and biochemical mechanism of action of BI-1 are still under debate. BI-1 has been implicated in several diseases, including chronic liver disease, diabetes, ischemia/reperfusion injury, neurodegeneration, and cancer. While most studies have demonstrated a beneficial role for BI-1 in the ubiquitous maintenance of cellular homeostasis, its expression in cancer cells seems most often to contribute to tumorigenesis and metastasis. Here, we summarize what is known about BI-1 and encourage future studies on BI-1's contribution to cellular life and death decisions to advocate its potential as a target for drug development and other therapeutic strategies.
Collapse
Affiliation(s)
- Cynthia Lebeaupin
- INSERM U1065, C3M, Université Côte d'Azur, Nice, France.,Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marina Blanc
- INSERM U1065, C3M, Université Côte d'Azur, Nice, France
| | | | - Harald Keller
- INRA1355-CNRS7254, Université Côte d'Azur, Sophia Antipolis, France
| | | |
Collapse
|