1
|
Yang Z, Li H, Wang J, Gao W, Zhao Q, Meng Q, Huang J, Xi Q, Wei J, Yang X. CCL2/CCR2 axis promotes perineural invasion of salivary adenoid cystic carcinoma via ITGβ5-mediated nerve-tumor interaction. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167484. [PMID: 39222826 DOI: 10.1016/j.bbadis.2024.167484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Perineural invasion (PNI) is a notorious feature of salivary adenoid cystic carcinoma (SACC) and other neurotropic tumors. The pathogenesis of PNI that involves the molecular communication between the tumor and the suffered nerve is elusive. The in vitro co-culture assays of SACC cells with dorsal root ganglia (DRG) or neural cells showed that nerve-derived CCL2 activated CCR2 expression in SACC cells, promoting the proliferation, adhesion, migration, and invasion of SACC cells via the ERK1/2/ITGβ5 pathway. Meanwhile, SACC-derived exosomes delivered ITGβ5 to promote the neurite outgrowth of neural cells or DRG. Blocking of CCL2/CCR2 axis or ITGβ5 inhibited the PNI of SACC cells in models in vitro by 3D co-culture of DRG with SACC cells and in vivo by xenografting SACC cells onto the murine sciatic nerve. High levels of ITGβ5 in tissues or plasma exosomes were significantly correlated with CCL2 and CCR2 expression in the tissues and associated with PNI and poor prognosis of SACC cases. Our findings revealed a novel reciprocal loop between neural and tumor cells driven by the CCL2/CCR2 axis and exosomal ITGβ5 during PNI of SACC. The present study may provide a prospective diagnostic and anti-PNI treatment strategy for SACC patients via targeting the nerve-tumor interactions.
Collapse
Affiliation(s)
- Zihui Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Huan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Jun Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Wanpeng Gao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Qi Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Qingzhe Meng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Junhong Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Qi Xi
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Jianhua Wei
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.
| | - Xinjie Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Mikhalitskaya EV, Vyalova NM, Bokhan NA, Ivanova SA. Alcohol-Induced Activation of Chemokine System and Neuroinflammation Development. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1889-1903. [PMID: 39647818 DOI: 10.1134/s0006297924110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 12/10/2024]
Abstract
Chemokines are immunoregulatory proteins with pleiotropic functions involved in neuromodulation, neurogenesis, and neurotransmission. The way chemokines affect the CNS plays an important role in modulating various conditions that could have negative impact on CNS functions, including development of alcohol use disorders. In this review, we analyzed the literature data available on the problem of chemokine participation in pathogenesis, clinical presentation, and remission of alcohol use disorders both in animal models and in the study of patients with alcoholism. The presented information confirms the hypothesis that the alcohol-induced chemokine production could modulate chronic neuroinflammation. Thus, the data summarized and shown in this review are focused on the relevant direction of research in the field of psychiatry, which is in demand by both scientists and clinical specialists.
Collapse
Affiliation(s)
- Ekaterina V Mikhalitskaya
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634014, Russia.
| | - Natalya M Vyalova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634014, Russia
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634014, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634014, Russia
| |
Collapse
|
3
|
Karatayev O, Collier AD, Targoff SR, Leibowitz SF. Neurological Disorders Induced by Drug Use: Effects of Adolescent and Embryonic Drug Exposure on Behavioral Neurodevelopment. Int J Mol Sci 2024; 25:8341. [PMID: 39125913 PMCID: PMC11313660 DOI: 10.3390/ijms25158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Clinical studies demonstrate that the risk of developing neurological disorders is increased by overconsumption of the commonly used drugs, alcohol, nicotine and cannabis. These drug-induced neurological disorders, which include substance use disorder (SUD) and its co-occurring emotional conditions such as anxiety and depression, are observed not only in adults but also with drug use during adolescence and after prenatal exposure to these drugs, and they are accompanied by long-lasting disturbances in brain development. This report provides overviews of clinical and preclinical studies, which confirm these adverse effects in adolescents and the offspring prenatally exposed to the drugs and include a more in-depth description of specific neuronal systems, their neurocircuitry and molecular mechanisms, affected by drug exposure and of specific techniques used to determine if these effects in the brain are causally related to the behavioral disturbances. With analysis of further studies, this review then addresses four specific questions that are important for fully understanding the impact that drug use in young individuals can have on future pregnancies and their offspring. Evidence demonstrates that the adverse effects on their brain and behavior can occur: (1) at low doses with short periods of drug exposure during pregnancy; (2) after pre-conception drug use by both females and males; (3) in subsequent generations following the initial drug exposure; and (4) in a sex-dependent manner, with drug use producing a greater risk in females than males of developing SUDs with emotional conditions and female offspring after prenatal drug exposure responding more adversely than male offspring. With the recent rise in drug use by adolescents and pregnant women that has occurred in association with the legalization of cannabis and increased availability of vaping tools, these conclusions from the clinical and preclinical literature are particularly alarming and underscore the urgent need to educate young women and men about the possible harmful effects of early drug use and to seek novel therapeutic strategies that might help to limit drug use in young individuals.
Collapse
Affiliation(s)
| | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA; (O.K.); (S.R.T.)
| |
Collapse
|
4
|
Collier AD, Abdulai AR, Leibowitz SF. Utility of the Zebrafish Model for Studying Neuronal and Behavioral Disturbances Induced by Embryonic Exposure to Alcohol, Nicotine, and Cannabis. Cells 2023; 12:2505. [PMID: 37887349 PMCID: PMC10605371 DOI: 10.3390/cells12202505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
It is estimated that 5% of pregnant women consume drugs of abuse during pregnancy. Clinical research suggests that intake of drugs during pregnancy, such as alcohol, nicotine and cannabis, disturbs the development of neuronal systems in the offspring, in association with behavioral disturbances early in life and an increased risk of developing drug use disorders. After briefly summarizing evidence in rodents, this review focuses on the zebrafish model and its inherent advantages for studying the effects of embryonic exposure to drugs of abuse on behavioral and neuronal development, with an emphasis on neuropeptides known to promote drug-related behaviors. In addition to stimulating the expression and density of peptide neurons, as in rodents, zebrafish studies demonstrate that embryonic drug exposure has marked effects on the migration, morphology, projections, anatomical location, and peptide co-expression of these neurons. We also describe studies using advanced methodologies that can be applied in vivo in zebrafish: first, to demonstrate a causal relationship between the drug-induced neuronal and behavioral disturbances and second, to discover underlying molecular mechanisms that mediate these effects. The zebrafish model has great potential for providing important information regarding the development of novel and efficacious therapies for ameliorating the effects of early drug exposure.
Collapse
Affiliation(s)
| | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
5
|
Chang GQ, Yasmin N, Collier AD, Karatayev O, Khalizova N, Onoichenco A, Fam M, Albeg AS, Campbell S, Leibowitz SF. Fibroblast growth factor 2: Role in prenatal alcohol-induced stimulation of hypothalamic peptide neurons. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110536. [PMID: 35176416 PMCID: PMC8920779 DOI: 10.1016/j.pnpbp.2022.110536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure (PAE) increases alcohol consumption and risk for alcohol use disorder. This phenomenon in rodents is suggested to involve a stimulatory effect of PAE, in female more than male offspring, on neurogenesis and density of neurons expressing neuropeptides in lateral hypothalamus (LH), including melanin-concentrating hormone (MCH), known to promote alcohol intake. With evidence suggesting a role for fibroblast growth factor 2 (FGF2) and its receptor FGFR1 in stimulating neurogenesis and alcohol drinking, we investigated here whether the FGF2-FGFR1 system is involved in the PAE-induced increase in MCH neurons, in postnatal offspring of pregnant rats given ethanol orally (embryonic day 10-15) at a low-moderate (2 g/kg/day) or high (5 g/kg/day) dose. Our results demonstrate that PAE at the low-moderate but not high dose stimulates FGF2 and FGFR1 gene expression and increases the density of MCH neurons co-expressing FGF2, only in females, but FGFR1 in both sexes. PAE induces this effect in the dorsal but not ventral area of the LH. Further analysis of FGF2 and FGFR1 transcripts within individual MCH neurons reveals an intracellular, sex-dependent effect, with PAE increasing FGF2 transcripts positively related to FGFR1 in the nucleus as well as cytoplasm of females but transcripts only in the cytoplasm of males. Peripheral injection of FGF2 itself (80 μg/kg, s.c.) in pregnant rats mimics these effects of PAE. Together, these results support the involvement of the FGF2-FGFR1 system in mediating the PAE-induced, sex dependent increase in density of MCH neurons, possibly contributing to increased alcohol consumption in the offspring.
Collapse
Affiliation(s)
- Guo-Qing Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Nailya Khalizova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Amanda Onoichenco
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Avi S Albeg
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Samantha Campbell
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, United States of America.
| |
Collapse
|
6
|
Collier AD, Yasmin N, Khalizova N, Campbell S, Onoichenco A, Fam M, Albeg AS, Leibowitz SF. Sexually dimorphic and asymmetric effects of embryonic ethanol exposure on hypocretin/orexin neurons as related to behavioral changes in zebrafish. Sci Rep 2021; 11:16078. [PMID: 34373563 PMCID: PMC8352948 DOI: 10.1038/s41598-021-95707-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neurons expressing the neuropeptide hypocretin/orexin (Hcrt) in the hypothalamus promote reward-related behaviors including alcohol consumption and are shown in rodents and zebrafish to be stimulated by embryonic exposure to ethanol (EtOH). We used here in zebrafish three-dimensional analyses of the entire population of Hcrt neurons to examine how embryonic EtOH exposure at low-moderate concentrations (0.1% or 0.5% v/v) alters these neurons in relation to behavior. We found that EtOH in the water for 2 h (22-24 h post fertilization) increases the number of Hcrt neurons on the left but not right side of the brain through a stimulation of cell proliferation, this is accompanied by a decrease in locomotor activity under novel conditions but not after habituation, and these effects are evident in both larvae and adults indicating they are long lasting. Our analyses in adults revealed sexually dimorphic effects, with females consuming more EtOH-gelatin and exhibiting more freezing behavior along with an asymmetric increase in Hcrt neurons and males exhibiting increased aggression with no change in Hcrt. These findings suggest that a long lasting, asymmetric increase in Hcrt neurons induced by EtOH results from an asymmetric increase in proliferation specific to Hcrt and contributes to behavioral changes in females.
Collapse
Affiliation(s)
- Adam D. Collier
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Nushrat Yasmin
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Nailya Khalizova
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Samantha Campbell
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Amanda Onoichenco
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Milisia Fam
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Avi S. Albeg
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Sarah F. Leibowitz
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
7
|
Commentary: …And a beer for the baby, please. Pediatr Res 2020; 88:832-833. [PMID: 32916684 DOI: 10.1038/s41390-020-01130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 11/08/2022]
|
8
|
Chang GQ, Karatayev O, Boorgu DSSK, Leibowitz SF. Third Ventricular Injection of CCL2 in Rat Embryo Stimulates CCL2/CCR2 Neuroimmune System in Neuroepithelial Radial Glia Progenitor Cells: Relation to Sexually Dimorphic, Stimulatory Effects on Peptide Neurons in Lateral Hypothalamus. Neuroscience 2020; 443:188-205. [PMID: 31982472 PMCID: PMC7681774 DOI: 10.1016/j.neuroscience.2020.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
Clinical and animal studies show maternal alcohol consumption during pregnancy causes in offspring persistent alterations in neuroimmune and neurochemical systems known to increase alcohol drinking and related behaviors. Studies in lateral hypothalamus (LH) demonstrate in adolescent offspring that maternal oral administration of ethanol stimulates the neuropeptide, melanin-concentrating hormone (MCH), together with the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 which are increased in most MCH neurons. These effects, consistently stronger in females than males, are detected in embryos, not only in LH but hypothalamic neuroepithelium (NEP) along the third ventricle where neurons are born and CCL2 is stimulated within radial glia progenitor cells and their laterally projecting processes that facilitate MCH neuronal migration toward LH. With ethanol's effects similarly produced by maternal peripheral CCL2 administration and blocked by CCR2 antagonist, we tested here using in utero intracerebroventricular (ICV) injections whether CCL2 acts locally within the embryonic NEP. After ICV injection of CCL2 (0.1 µg/µl) on embryonic day 14 (E14) when neurogenesis peaks, we observed in embryos just before birth (E19) a significant increase in endogenous CCL2 within radial glia cells and their processes in NEP. These auto-regulatory effects, evident only in female embryos, were accompanied by increased density of CCL2 and MCH neurons in LH, more strongly in females than males. These results support involvement of embryonic CCL2/CCR2 neuroimmune system in radial glia progenitor cells in mediating sexually dimorphic effects of maternal challenges such as ethanol on LH MCH neurons that colocalize CCL2 and CCR2.
Collapse
|
9
|
Poon K. Behavioral Feeding Circuit: Dietary Fat-Induced Effects of Inflammatory Mediators in the Hypothalamus. Front Endocrinol (Lausanne) 2020; 11:591559. [PMID: 33324346 PMCID: PMC7726204 DOI: 10.3389/fendo.2020.591559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive dietary fat intake has extensive impacts on several physiological systems and can lead to metabolic and nonmetabolic disease. In animal models of ingestion, exposure to a high fat diet during pregnancy predisposes offspring to increase intake of dietary fat and causes increase in weight gain that can lead to obesity, and without intervention, these physiological and behavioral consequences can persist for several generations. The hypothalamus is a region of the brain that responds to physiological hunger and fullness and contains orexigenic neuropeptide systems that have long been associated with dietary fat intake. The past fifteen years of research show that prenatal exposure to a high fat diet increases neurogenesis of these neuropeptide systems in offspring brain and are correlated to behavioral changes that induce a pro-consummatory and obesogenic phenotype. Current research has uncovered several potential molecular mechanisms by which excessive dietary fat alters the hypothalamus and involve dietary fatty acids, the immune system, gut microbiota, and transcriptional and epigenetic changes. This review will examine the current knowledge of dietary fat-associated changes in the hypothalamus and the potential pathways involved in modifying the development of orexigenic peptide neurons that lead to changes in ingestive behavior, with a special emphasis on inflammation by chemokines.
Collapse
|