1
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
2
|
Nastiti CT, Syakdiyah NH, Hawari RF, Ophinni Y, Megasari NLA. The role of heat shock proteins in HIV-1 pathogenesis: a systematic review investigating HSPs-HIV-1 correlations and interactions. PeerJ 2024; 12:e18002. [PMID: 39308823 PMCID: PMC11416755 DOI: 10.7717/peerj.18002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/07/2024] [Indexed: 09/25/2024] Open
Abstract
Background The human immunodeficiency virus (HIV) pandemic is a global health emergency. Studies suggest a connection between heat shock proteins (HSPs) and HIV-1 infection pathogenesis. This systematic review aims to summarize HSPs' role in HIV-1 infection pathogenesis. Materials and Methods A systematic literature search was undertaken across the National Library of Medicine (MEDLINE-PubMed), Science Direct, Web of Science, Scopus, SpringerLink, Sage, ProQuest, and Google Scholar databases, using related keywords to synthesize the HSPs' role in HIV-1 infection pathogenesis. This literature review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the protocol was registered in the Open Science Framework (OSF) database under DOI 10.17605/OSF.IO/VK3DJ. Results A database search revealed 3,332 articles, with 14 in vitro studies analysing the interaction between HSPs and HIV-1 across different cell types. HSPs are involved in HIV-1 infection through direct interactions and indirect responses to cellular stress, including HSP40, HSP70, HSPBP1, and HSP90. The study explores HSP interactions at various stages of the viral life cycle, including entry, uncoating, replication, transmission, and latency reactivation. Conclusion HSPs are crucial for the HIV lifecycle and immune response, offering the potential for new therapeutic strategies. Further research is needed to understand the clinical significance and target potential.
Collapse
Affiliation(s)
| | | | - R.M. Firzha Hawari
- Postgraduate School, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Youdiil Ophinni
- Division of Clinical Virology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Department of Environmental Coexistence, Center for Southeast Asian Studies, Kyoto University, Kyoto, Japan
| | - Ni Luh Ayu Megasari
- Immunology Program, Postgraduate School, Universitas Airlangga, Surabaya, East Java, Indonesia
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| |
Collapse
|
3
|
Gao L, Sun W, Zhang L, Liang C, Zhang D. Caffeine upregulates SIRT3 expression to ameliorate astrocytes-mediated HIV-1 Tat neurotoxicity via suppression of EGR1 signaling pathway. J Neurovirol 2024; 30:286-302. [PMID: 38926255 DOI: 10.1007/s13365-024-01222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Caffeine is one of the most popular consumed psychostimulants that mitigates several neurodegenerative diseases. Nevertheless, the roles and molecular mechanisms of caffeine in HIV-associated neurocognitive disorders (HAND) remain largely unclear. Transactivator of transcription (Tat) is a major contributor to the neuropathogenesis of HAND in the central nervous system. In the present study, we determined that caffeine (100 µM) treatment significantly ameliorated Tat-induced decreased astrocytic viability, oxidative stress, inflammatory response and excessive glutamate and ATP release, thereby protecting neurons from apoptosis. Subsequently, SIRT3 was demonstrated to display neuroprotective effects against Tat during caffeine treatment. In addition, Tat downregulated SIRT3 expression via activation of EGR1 signaling, which was reversed by caffeine treatment in astrocytes. Overexpression of EGR1 entirely abolished the neuroprotective effects of caffeine against Tat. Furthermore, counteracting Tat or caffeine-induced differential expression of SIRT3 abrogated the neuroprotection of caffeine against Tat-triggered astrocytic dysfunction and neuronal apoptosis. Taken together, our study establishes that caffeine ameliorates astrocytes-mediated Tat neurotoxicity by targeting EGR1/SIRT3 signaling pathway. Our findings highlight the beneficial effects of caffeine on Tat-induced astrocytic dysfunction and neuronal death and propose that caffeine might be a novel therapeutic drug for relief of HAND.
Collapse
Affiliation(s)
- Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu, People's Republic of China.
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
| | - Weixi Sun
- Disease Prevention and Control Center of Chongchuan District, Nantong, 226000, People's Republic of China
- Health Commission of Chongchuan District, Nantong, 226000, People's Republic of China
| | - Lei Zhang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Caixia Liang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu, People's Republic of China.
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
| |
Collapse
|
4
|
Proulx JM, Park IW, Borgmann K. HIV-1 and methamphetamine co-treatment in primary human astrocytes: TAARgeting ER/UPR dysfunction. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:139-154. [PMID: 39175523 PMCID: PMC11338011 DOI: 10.1515/nipt-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 08/24/2024]
Abstract
Objectives Human immunodeficiency virus 1 (HIV-1) can invade the central nervous system (CNS) early during infection and persist in the CNS for life despite effective antiretroviral treatment. Infection and activation of residential glial cells lead to low viral replication and chronic inflammation, which damage neurons contributing to a spectrum of HIV-associated neurocognitive disorders (HAND). Substance use, including methamphetamine (METH), can increase one's risk and severity of HAND. Here, we investigate HIV-1/METH co-treatment in a key neurosupportive glial cell, astrocytes. Specifically, mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) signaling pathways, such as calcium and the unfolded protein response (UPR), are key mechanisms underlying HAND pathology and arise as potential targets to combat astrocyte dysfunction. Methods Primary human astrocytes were transduced with a pseudotyped HIV-1 model and exposed to low-dose METH for seven days. We assessed changes in astrocyte HIV-1 infection, inflammation, mitochondrial antioxidant and dynamic protein expression, respiratory acitivity, mitochondrial calcium flux, and UPR/MAM mediator expression. We then tested a selective antagonist for METH-binding receptor, trace amine-associated receptor 1 (TAAR1) as a potetnial upstream regulator of METH-induced calcium flux and UPR/MAM mediator expression. Results Chronic METH exposure increased astrocyte HIV-1 infection. Moreover, HIV-1/METH co-treatment suppressed astrocyte antioxidant and metabolic capacity while increasing mitochondrial calcium load and protein expression of UPR messengers and MAM mediators. Notably, HIV-1 increases astrocyte TAAR1 expression, thus, could be a critical regulator of HIV-1/METH co-treatment in astrocytes. Indeed, selective antagonism of TAAR1 significantly inhibited cytosolic calcium flux and induction of UPR/MAM protein expression. Conclusion Altogether, our findings demonstrate HIV-1/METH-induced ER-mitochondrial dysfunction in astrocytes, whereas TAAR1 may be an upstream regulator for HIV-1/METH-mediated astrocyte dysfunction.
Collapse
Affiliation(s)
- Jessica M. Proulx
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- National Institute on Drug Abuse, North Bethesda, MD, 20852, USA
| |
Collapse
|
5
|
Qiu X, Wang J, Zhang W, Duan C, Chen T, Zhang D, Su J, Gao L. Disruption of the ADAM17/NF-κB feedback loop in astrocytes ameliorates HIV-1 Tat-induced inflammatory response and neuronal death. J Neurovirol 2023; 29:283-296. [PMID: 37185939 DOI: 10.1007/s13365-023-01131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
A disintegrin and metalloproteinases (ADAMs) are involved in multiple neurodegenerative diseases. However, the roles and mechanisms of ADAMs in HIV-associated neurocognitive disorder (HAND) remain unclear. Transactivator of transcription (Tat) induces inflammatory response in astrocytes, thereby leading to neuronal apoptosis in the central nervous system. In this study, we determined that ADAM17 expression was upregulated during soluble Tat stimulus in HEB astroglial cells. Inhibition of ADAM17 suppressed Tat-induced pro-inflammatory cytokines production and rescued the astrocytes-derived conditioned media (ACM)-mediated SH-SY5Y neural cells apoptosis. Moreover, ADAM17 mediated Tat-triggered inflammatory response in a NF-κB-dependent manner. Conversely, Tat induced ADAM17 expression via NF-κB signaling pathway. In addition, pharmacological inhibition of NF-κB signaling inhibited Tat-induced inflammatory response, which could be rescued by overexpression of ADAM17. Taken together, our study clarifies the potential role of the ADAM17/NF-κB feedback loop in Tat-induced inflammatory response in astrocytes and the ACM-mediated neuronal death, which could be a novel therapeutic target for relief of HAND.
Collapse
Affiliation(s)
- Xiaoxia Qiu
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Jianjun Wang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Wei Zhang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tianpeng Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jianbin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Szelechowski M, Texier B, Prime M, Atamena D, Belenguer P. Mortalin/Hspa9 involvement and therapeutic perspective in Parkinson’s disease. Neural Regen Res 2023; 18:293-298. [PMID: 35900406 PMCID: PMC9396523 DOI: 10.4103/1673-5374.346487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
By controlling the proper folding of proteins imported into mitochondria and ensuring crosstalk between the reticulum and mitochondria to modulate intracellular calcium fluxes, Mortalin is a chaperone protein that plays crucial roles in neuronal homeostasis and activity. However, its expression and stability are strongly modified in response to cellular stresses, in particular upon altered oxidative conditions during neurodegeneration. Here, we report and discuss the abundant literature that has highlighted its contribution to the pathophysiology of Parkinson’s disease, as well as its therapeutic and prognostic potential in this still incurable pathology.
Collapse
|
7
|
Seth P. Insights Into the Role of Mortalin in Alzheimer’s Disease, Parkinson’s Disease, and HIV-1-Associated Neurocognitive Disorders. Front Cell Dev Biol 2022; 10:903031. [PMID: 35859895 PMCID: PMC9292388 DOI: 10.3389/fcell.2022.903031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mortalin is a chaperone protein that regulates physiological functions of cells. Its multifactorial role allows cells to survive pathological conditions. Pharmacological, chemical, and siRNA-mediated downregulation of mortalin increases oxidative stress, mitochondrial dysfunction leading to unregulated inflammation. In addition to its well-characterized function in controlling oxidative stress, mitochondrial health, and maintaining physiological balance, recent evidence from human brain autopsies and cell culture–based studies suggests a critical role of mortalin in attenuating the damage seen in several neurodegenerative diseases. Overexpression of mortalin provides an important line of defense against accumulated proteins, inflammation, and neuronal loss, a key characteristic feature observed in neurodegeneration. Neurodegenerative diseases are a group of progressive disorders, sharing pathological features in Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and HIV-associated neurocognitive disorder. Aggregation of insoluble amyloid beta-proteins and neurofibrillary tangles in Alzheimer’s disease are among the leading cause of neuropathology in the brain. Parkinson’s disease is characterized by the degeneration of dopamine neurons in substantia nigra pars compacta. A substantial synaptic loss leading to cognitive decline is the hallmark of HIV-associated neurocognitive disorder (HAND). Brain autopsies and cell culture studies showed reduced expression of mortalin in Alzheimer’s, Parkinson’s, and HAND cases and deciphered the important role of mortalin in brain cells. Here, we discuss mortalin and its regulation and describe how neurotoxic conditions alter the expression of mortalin and modulate its functions. In addition, we also review the neuroprotective role of mortalin under neuropathological conditions. This knowledge showcases the importance of mortalin in diverse brain functions and offers new opportunities for the development of therapeutic targets that can modulate the expression of mortalin using chemical compounds.
Collapse
Affiliation(s)
- Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
8
|
Proulx J, Stacy S, Park IW, Borgmann K. A Non-Canonical Role for IRE1α Links ER and Mitochondria as Key Regulators of Astrocyte Dysfunction: Implications in Methamphetamine use and HIV-Associated Neurocognitive Disorders. Front Neurosci 2022; 16:906651. [PMID: 35784841 PMCID: PMC9247407 DOI: 10.3389/fnins.2022.906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes are one of the most numerous glial cells in the central nervous system (CNS) and provide essential support to neurons to ensure CNS health and function. During a neuropathological challenge, such as during human immunodeficiency virus (HIV)-1 infection or (METH)amphetamine exposure, astrocytes shift their neuroprotective functions and can become neurotoxic. Identifying cellular and molecular mechanisms underlying astrocyte dysfunction are of heightened importance to optimize the coupling between astrocytes and neurons and ensure neuronal fitness against CNS pathology, including HIV-1-associated neurocognitive disorders (HAND) and METH use disorder. Mitochondria are essential organelles for regulating metabolic, antioxidant, and inflammatory profiles. Moreover, endoplasmic reticulum (ER)-associated signaling pathways, such as calcium and the unfolded protein response (UPR), are important messengers for cellular fate and function, including inflammation and mitochondrial homeostasis. Increasing evidence supports that the three arms of the UPR are involved in the direct contact and communication between ER and mitochondria through mitochondria-associated ER membranes (MAMs). The current study investigated the effects of HIV-1 infection and chronic METH exposure on astrocyte ER and mitochondrial homeostasis and then examined the three UPR messengers as potential regulators of astrocyte mitochondrial dysfunction. Using primary human astrocytes infected with pseudotyped HIV-1 or exposed to low doses of METH for 7 days, astrocytes had increased mitochondrial oxygen consumption rate (OCR), cytosolic calcium flux and protein expression of UPR mediators. Notably, inositol-requiring protein 1α (IRE1α) was most prominently upregulated following both HIV-1 infection and chronic METH exposure. Moreover, pharmacological inhibition of the three UPR arms highlighted IRE1α as a key regulator of astrocyte metabolic function. To further explore the regulatory role of astrocyte IRE1α, astrocytes were transfected with an IRE1α overexpression vector followed by activation with the proinflammatory cytokine interleukin 1β. Overall, our findings confirm IRE1α modulates astrocyte mitochondrial respiration, glycolytic function, morphological activation, inflammation, and glutamate uptake, highlighting a novel potential target for regulating astrocyte dysfunction. Finally, these findings suggest both canonical and non-canonical UPR mechanisms of astrocyte IRE1α. Thus, additional studies are needed to determine how to best balance astrocyte IRE1α functions to both promote astrocyte neuroprotective properties while preventing neurotoxic properties during CNS pathologies.
Collapse
|
9
|
Bahr T, Katuri J, Liang T, Bai Y. Mitochondrial chaperones in human health and disease. Free Radic Biol Med 2022; 179:363-374. [PMID: 34780988 PMCID: PMC8893670 DOI: 10.1016/j.freeradbiomed.2021.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023]
Abstract
Molecular chaperones are a family of proteins that maintain cellular protein homeostasis through non-covalent peptide folding and quality control mechanisms. The chaperone proteins found within mitochondria play significant protective roles in mitochondrial biogenesis, quality control, and stress response mechanisms. Defective mitochondrial chaperones have been implicated in aging, neurodegeneration, and cancer. In this review, we focus on the two most prominent mitochondrial chaperones: mtHsp60 and mtHsp70. These proteins demonstrate different cellular localization patterns, interact with different targets, and have different functional activities. We discuss the structure and function of these prominent mitochondrial chaperone proteins and give an update on newly discovered regulatory mechanisms and disease implications.
Collapse
Affiliation(s)
- Tyler Bahr
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Joshua Katuri
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Ting Liang
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Yidong Bai
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| |
Collapse
|
10
|
Proulx J, Park IW, Borgmann K. Cal'MAM'ity at the Endoplasmic Reticulum-Mitochondrial Interface: A Potential Therapeutic Target for Neurodegeneration and Human Immunodeficiency Virus-Associated Neurocognitive Disorders. Front Neurosci 2021; 15:715945. [PMID: 34744606 PMCID: PMC8566765 DOI: 10.3389/fnins.2021.715945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023] Open
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle and serves as the primary site for intracellular calcium storage, lipid biogenesis, protein synthesis, and quality control. Mitochondria are responsible for producing the majority of cellular energy required for cell survival and function and are integral for many metabolic and signaling processes. Mitochondria-associated ER membranes (MAMs) are direct contact sites between the ER and mitochondria that serve as platforms to coordinate fundamental cellular processes such as mitochondrial dynamics and bioenergetics, calcium and lipid homeostasis, autophagy, apoptosis, inflammation, and intracellular stress responses. Given the importance of MAM-mediated mechanisms in regulating cellular fate and function, MAMs are now known as key molecular and cellular hubs underlying disease pathology. Notably, neurons are uniquely susceptible to mitochondrial dysfunction and intracellular stress, which highlights the importance of MAMs as potential targets to manipulate MAM-associated mechanisms. However, whether altered MAM communication and connectivity are causative agents or compensatory mechanisms in disease development and progression remains elusive. Regardless, exploration is warranted to determine if MAMs are therapeutically targetable to combat neurodegeneration. Here, we review key MAM interactions and proteins both in vitro and in vivo models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We further discuss implications of MAMs in HIV-associated neurocognitive disorders (HAND), as MAMs have not yet been explored in this neuropathology. These perspectives specifically focus on mitochondrial dysfunction, calcium dysregulation and ER stress as notable MAM-mediated mechanisms underlying HAND pathology. Finally, we discuss potential targets to manipulate MAM function as a therapeutic intervention against neurodegeneration. Future investigations are warranted to better understand the interplay and therapeutic application of MAMs in glial dysfunction and neurotoxicity.
Collapse
Affiliation(s)
| | | | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center (HSC), Fort Worth, TX, United States
| |
Collapse
|