1
|
Zhan L, Qiu M, Zheng J, Lai M, Lin K, Dai J, Sun W, Xu E. Fractalkine/CX3CR1 axis is critical for neuroprotection induced by hypoxic postconditioning against cerebral ischemic injury. Cell Commun Signal 2024; 22:457. [PMID: 39327578 PMCID: PMC11426015 DOI: 10.1186/s12964-024-01830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Microglial activation-mediated neuroinflammation is a major contributor to neuronal damage after cerebral ischemia. The Fractalkine (FKN)/CX3C chemokine receptor 1 (CX3CR1) axis plays a critical role in regulating microglial activation and neuroinflammation. The aim of this study is to ascertain the role and mechanism of FKN/CX3CR1 axis in hypoxic postconditioning (HPC)-induced anti-inflammatory and neuroprotective effects on transient global cerebral ischemia (tGCI). We found that HPC suppressed microglial activation and alleviated neuroinflammation in hippocampal CA1 after tGCI. Meanwhile, HPC upregulated the expression of FKN and CX3CR1 in neurons, but it downregulated the expression of CX3CR1 in glial cells after tGCI. In addition, the overexpression of FKN induced by the administration of FKN-carried lentivirus reduced microglial activation and inhibited neuroinflammation in CA1 after tGCI. Furthermore, silencing CX3CR1 with CX3CRi-carried lentivirus in CA1 after tGCI suppressed microglial activation and neuroinflammation and exerted neuroprotective effects. Finally, the overexpression of FKN caused a marked increase of neuronal CX3CR1 receptors, upregulated the phosphorylation of Akt, and reduced neuronal loss of rats in CA1 after tGCI. These findings demonstrated that HPC protected against neuronal damage in CA1 of tGCI rats through inhibiting microglial activation and activating Akt signaling pathway via FKN/CX3CR1 axis.
Collapse
Affiliation(s)
- Lixuan Zhan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China
| | - Meiqian Qiu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China
| | - Jianhua Zheng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China
| | - Meijing Lai
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China
| | - Kunqin Lin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China
| | - Jiahua Dai
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China
| | - Weiwen Sun
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China
| | - En Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong RD, Guangzhou, 510260, P. R. China.
| |
Collapse
|
2
|
Wang Q, Yang F, Duo K, Liu Y, Yu J, Wu Q, Cai Z. The Role of Necroptosis in Cerebral Ischemic Stroke. Mol Neurobiol 2024; 61:3882-3898. [PMID: 38038880 DOI: 10.1007/s12035-023-03728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Cerebral ischemia, also known as ischemic stroke, accounts for nearly 85% of all strokes and is the leading cause of disability worldwide. Due to disrupted blood supply to the brain, cerebral ischemic injury is trigged by a series of complex pathophysiological events including excitotoxicity, oxidative stress, inflammation, and cell death. Currently, there are few treatments for cerebral ischemia owing to an incomplete understanding of the molecular and cellular mechanisms. Accumulated evidence indicates that various types of programmed cell death contribute to cerebral ischemic injury, including apoptosis, ferroptosis, pyroptosis and necroptosis. Among these, necroptosis is morphologically similar to necrosis and is mediated by receptor-interacting serine/threonine protein kinase-1 and -3 and mixed lineage kinase domain-like protein. Necroptosis inhibitors have been shown to exert inhibitory effects on cerebral ischemic injury and neuroinflammation. In this review, we will discuss the current research progress regarding necroptosis in cerebral ischemia as well as the application of necroptosis inhibitors for potential therapeutic intervention in ischemic stroke.
Collapse
Affiliation(s)
- Qingsong Wang
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Fan Yang
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Kun Duo
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Qihui Wu
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenyu Cai
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China.
- Shanghai Tenth People's Hospital, School of MedicineTongji University Cancer Center, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Zhang L, Zhou X, Zhao J, Wang X. Research hotspots and frontiers of preconditioning in cerebral ischemia: A bibliometric analysis. Heliyon 2024; 10:e24757. [PMID: 38317957 PMCID: PMC10839892 DOI: 10.1016/j.heliyon.2024.e24757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Background Preconditioning is a promising strategy against ischemic brain injury, and numerous studies in vitro and in vivo have demonstrated its neuroprotective effects. However, at present there is no bibliometric analysis of preconditioning in cerebral ischemia. Therefore, a comprehensive overview of the current status, hot spots, and emerging trends in this research field is necessary. Materials and methods Studies on preconditioning in cerebral ischemia from January 1999-December 2022 were retrieved from the Web of Science Core Collection (WOSCC) database. CiteSpace was used for data mining and visual analysis. Results A total of 1738 papers on preconditioning in cerebral ischemia were included in the study. The annual publications showed an upwards and then downwards trend but currently remain high in terms of annual publications. The US was the leading country, followed by China, the most active country in recent years. Capital Medical University published the largest number of articles. Perez-Pinzon, Miguel A contributed the most publications, while KITAGAWA K was the most cited author. The focus of the study covered three areas: (1) relevant diseases and experimental models, (2) types of preconditioning and stimuli, and (3) mechanisms of ischemic tolerance. Remote ischemic preconditioning, preconditioning of mesenchymal stem cells (MSCs), and inflammation are the frontiers of research in this field. Conclusion Our study provides a visual and scientific overview of research on preconditioning in cerebral ischemia, providing valuable information and new directions for researchers.
Collapse
Affiliation(s)
- Long Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Traditional Chinese Medicine, Zibo TCM-Integrated Hospital, Zibo ,255026, China
| | - Xue Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xingchen Wang
- Division of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China
| |
Collapse
|
5
|
Lu X, Zhan L, Chai G, Chen M, Sun W, Xu E. Hypoxic Preconditioning Attenuates Neuroinflammation via Inhibiting NF-κB/NLRP3 Axis Mediated by p-MLKL after Transient Global Cerebral Ischemia. Mol Neurobiol 2024; 61:1080-1099. [PMID: 37682454 DOI: 10.1007/s12035-023-03628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Hypoxic preconditioning (HPC) has been reported to alleviate neuronal damage and microglial activation in hippocampal CA1 after transient global cerebral ischemia (tGCI). However, the molecular mechanism is unclear. Recent studies identified that nuclear factor-kappa-B (NF-κB)/oligomerization domain-like receptors protein (NLRP) 3 inflammasome pathway is mainly involved in the activation of microglia and that phosphorylated (p)-mixed lineage kinase domain-like (MLKL) is related to the regulation of NF-κB/NLRP3 axis. Hence, in this study, we set out to investigate whether HPC attenuates neuronal damage and microglial activation through inhibiting NF-κB/NLRP3 axis mediated by p-MLKL after tGCI in CA1 of male rats. We found that HPC decreased NLRP3 inflammasome in microglia and inhibited M1 polarization of microglia in CA1 after tGCI. Mechanistically, HPC inhibited the activation of NF-κB signaling pathway and reduced the mRNA and protein levels of NLRP3 inflammasome after tGCI. Additionally, the knockdown of p-MLKL by short hairpin RNA (shRNA) administration inhibited the activation of the NF-κB signaling pathway and reduced the formation of NLRP3 inflammasome, thus attenuating M1 polarization of microglia and decreasing the release of interleukin 1 beta (IL-1β) and necrosis factor alpha (TNF-α) in CA1 post ischemia. We consider that p-MLKL in microglia may be derived from necroptotic neurons after tGCI. In conclusion, the new finding in this study is that HPC-induced neuroprotection against tGCI through inhibiting NF-κB/NLRP3 pathway mediated by p-MLKL.
Collapse
Affiliation(s)
- Xiaomei Lu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lixuan Zhan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guorong Chai
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Meiyan Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiwen Sun
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - En Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Tang Y, Chu Q, Xie G, Tan Y, Ye Z, Qin C. MLKL regulates Cx43 ubiquitinational degradation and mediates neuronal necroptosis in ipsilateral thalamus after focal cortical infarction. Mol Brain 2023; 16:74. [PMID: 37904209 PMCID: PMC10617209 DOI: 10.1186/s13041-023-01064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Necroptosis is known to play an important role in the pathophysiology of cerebral ischemia; however, its role in the occurrence of secondary thalamic injury after focal cerebral infarction and the mechanism about how mixed lineage kinase domain-like (MLKL) executes necroptosis in this pathophysiology are still unclear. In this study, Sprague-Dawley rats were subjected to distal branch of middle cerebral artery occlusion (dMCAO). The expression of MLKL, connexin 43 (Cx43) and Von Hippel-Lindau (VHL) in vitro and in vivo were assessed by Western blot. Bioinformatic methods were used to predict the potential binding sites where MLKL interacted with Cx43, and the ubiquitination degradation of Cx43 regulated by VHL. The interactions among MLKL, Cx43, VHL, and Ubiquitin were assessed by immunoprecipitation. Dye uptake assay were used to examine the Cx43 hemichannels. Intracellular Ca2+ concentration was measured using Fluo-4 AM. Overexpression and site-directed mutagenesis studies were used to study the mechanisms by which MLKL regulates Cx43 ubiquitinational degradation to mediate neuronal necroptosis. We found that MLKL and Cx43 were upregulated in the ventral posterolateral nucleus (VPN) of the ipsilateral thalamus after dMCAO. In the in vitro experiments MLKL and Cx43 were upregulated after TSZ-mediated necroptosis in SH-SY5Y cells. The interaction between MLKL and Cx43 inhibited the K48-linked ubiquitination of Cx43 in necroptotic SH-SY5Y cells. VHL is an E3 ubiquitin ligase for Cx43, and MLKL competes with VHL for binding to Cx43. Interaction of MLKL Ser454 with Cx43 can trigger the opening of Cx43 hemichannels, causing increased intracellular Ca2+, and cell necroptosis. This innovative study at animal models, cellular, and molecular levels is anticipated to clarify the roles of MLKL and Cx43 in thalamic damage after focal cortical infarction. Our findings may help identify novel targets for neurological recovery after cortical infarction.
Collapse
Affiliation(s)
- Yanyan Tang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Province, 530021, China
| | - Quanhong Chu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Province, 530021, China
| | - Guanfeng Xie
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Province, 530021, China
| | - Yafu Tan
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Province, 530021, China
| | - Ziming Ye
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Province, 530021, China
| | - Chao Qin
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Province, 530021, China.
| |
Collapse
|
7
|
Zhang YY, Peng JJ, Chen D, Liu HQ, Yao BF, Peng J, Luo XJ. Telaprevir Improves Memory and Cognition in Mice Suffering Ischemic Stroke via Targeting MALT1-Mediated Calcium Overload and Necroptosis. ACS Chem Neurosci 2023; 14:3113-3124. [PMID: 37559405 DOI: 10.1021/acschemneuro.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) has been confirmed to contribute to brain injury in ischemic stroke via promoting excitotoxicity and necroptosis. Telaprevir, a hepatitis C virus protease inhibitor, is predicted to be a potential MALT1 inhibitor. Here, we showed that telaprevir protected against cerebral ischemic injury via inhibiting MALT1, thereby preventing glutamate receptor ionotropic NMDA 2B (GluN2B) activation, limiting calcium overload, and suppressing necroptosis. In ischemic stroke mice, telaprevir reduced infarct volume, improved the long-term survival rate, and enhanced sensorimotor, memory, and cognitive functions. In hypoxia-treated nerve cells, telaprevir decreased the intracellular calcium concentrations and reduced LDH release. Mechanistically, telaprevir inhibited MALT1 protease activity, thus decreasing the membrane protein level of GluN2B and its phosphorylation through reducing the level of STEP61. Moreover, telaprevir was able to inhibit the levels of necroptosis-associated proteins. According to these results, it can be concluded that telaprevir alleviates neuronal brain injury in stroke mice via restraining GluN2B activation and suppresses the receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like pseudokinase (MLKL) pathway through inhibiting MALT1. Thus, telaprevir might have a novel indication for treating patients with ischemic stroke.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jing-Jie Peng
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Di Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Hui-Qi Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Bi-Feng Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
8
|
Gong M, Shen F, Li Y, Ming L, Hong L. MLK4 as an immune marker and its correlation with immune infiltration in Cervical squamous cell carcinoma and endocervical adenocarcinoma(CESC). PLoS One 2023; 18:e0290462. [PMID: 37594950 PMCID: PMC10437903 DOI: 10.1371/journal.pone.0290462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Mixed pedigree kinase 4 (MLK4) is a member of the serine/threonine kinases mixed pedigree kinase (MLKs) family. Few reports on immune-related targets in Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), and the role of MLK4 in cervical cancer remains to be studied. The expression of MLK4 in CESC was analyzed by TCGA database containing 306 CESC tissues and 3 peritumoral tissue samples, and the effect of MLK4 on immune invasion was evaluated using the Deseq2 package(Benjamini-Hochberg corrected p-value < 0.05 and log2 fold change ≥|2|). Tissue microarray was used to verify the expression of MLK4 in CESC patients, and it was found that MLK4 was significantly overexpressed in CESC, and significantly correlated with WHO grade. Multiple analysis algorithms revealed that the high expression of MLK4 was negatively correlated with immune cell infiltration in CESC. Analysis showed that MLK4 expression was negatively correlated with the infiltration of various immune cells including CD8+T cells, and MLK4 mRNA expression was positively correlated with immune checkpoints PD-L1,CTLA4, LAG3, and negatively correlated with immune promotion genes CD86 and CD80. Furthermore, vitro assays were performed to investigate the biological characteristics of MLK4 in C33A cells. The EDU and transwell assays demonstrated that the decrease in MLK4 expression in C33A cells resulted in a decrease in cell proliferation and invasion. The silencing of MLK4 resulted in a significant increase in the expression of inflammatory cytokines IL-1β(p<0.05), TNF-α(p<0.01), and IL-6 (p<0.05). The results of cell assays indicate that knocking down MLK4 would inhibit the expression of established biochemical markers CEA, AFP and HCG. Hence, it is plausible that MLK4 could potentially exert a significant influence on the development and progression of Cervical cancer.
Collapse
Affiliation(s)
- Meng Gong
- Gynecology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fujin Shen
- Gynecology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Li
- Gynecology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Ming
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Gynecology Department, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Li K, Peng L, Xing Q, Zuo X, Huang W, Zhan L, Li H, Sun W, Zhong X, Zhu T, Pan G, Xu E. Transplantation of hESCs-Derived Neural Progenitor Cells Alleviates Secondary Damage of Thalamus After Focal Cerebral Infarction in Rats. Stem Cells Transl Med 2023; 12:553-568. [PMID: 37399126 PMCID: PMC10428088 DOI: 10.1093/stcltm/szad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/04/2023] [Indexed: 07/05/2023] Open
Abstract
Human embryonic stem cells-derived neural progenitor cells (hESCs-NPCs) transplantation holds great potential to treat stroke. We previously reported that delayed secondary degeneration occurs in the ventroposterior nucleus (VPN) of ipsilateral thalamus after distal branch of middle cerebral artery occlusion (dMCAO) in adult male Sprague-Dawley (SD) rats. In this study, we investigate whether hESCs-NPCs would benefit the neural recovery of the secondary damage in the VPN after focal cerebral infarction. Permanent dMCAO was performed with electrocoagulation. Rats were randomized into Sham, dMCAO groups with or without hESCs-NPCs treatment. HESCs-NPCs were engrafted into the peri-infarct regions of rats at 48 h after dMCAO. The transplanted hESCs-NPCs survive and partially differentiate into mature neurons after dMCAO. Notably, hESCs-NPCs transplantation attenuated secondary damage of ipsilateral VPN and improved neurological functions of rats after dMCAO. Moreover, hESCs-NPCs transplantation significantly enhanced the expression of BDNF and TrkB and their interaction in ipsilateral VPN after dMCAO, which was reversed by the knockdown of TrkB. Transplantated hESCs-NPCs reconstituted thalamocortical connection and promoted the formation of synapses in ipsilateral VPN post-dMCAO. These results suggest that hESCs-NPCs transplantation attenuates secondary damage of ipsilateral thalamus after cortical infarction, possibly through activating BDNF/TrkB pathway, enhancing thalamocortical projection, and promoting synaptic formation. It provides a promising therapeutic strategy for secondary degeneration in the ipsilateral thalamus post-dMCAO.
Collapse
Affiliation(s)
- Kongping Li
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Linhui Peng
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Qi Xing
- Department of Neurology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangdong, People’s Republic of China
| | - Xialin Zuo
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wenhao Huang
- Department of Neurology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangdong, People’s Republic of China
| | - Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Heying Li
- Department of Neurology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangdong, People’s Republic of China
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaofen Zhong
- Department of Neurology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangdong, People’s Republic of China
| | - Tieshi Zhu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Guangjin Pan
- Department of Neurology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangdong, People’s Republic of China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
10
|
Gupta R, Kumari S, Tripathi R, Ambasta RK, Kumar P. Unwinding the modalities of necrosome activation and necroptosis machinery in neurological diseases. Ageing Res Rev 2023; 86:101855. [PMID: 36681250 DOI: 10.1016/j.arr.2023.101855] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Necroptosis, a regulated form of cell death, is involved in the genesis and development of various life-threatening diseases, including cancer, neurological disorders, cardiac myopathy, and diabetes. Necroptosis initiates with the formation and activation of a necrosome complex, which consists of RIPK1, RIPK2, RIPK3, and MLKL. Emerging studies has demonstrated the regulation of the necroptosis cell death pathway through the implication of numerous post-translational modifications, namely ubiquitination, acetylation, methylation, SUMOylation, hydroxylation, and others. In addition, the negative regulation of the necroptosis pathway has been shown to interfere with brain homeostasis through the regulation of axonal degeneration, mitochondrial dynamics, lysosomal defects, and inflammatory response. Necroptosis is controlled by the activity and expression of signaling molecules, namely VEGF/VEGFR, PI3K/Akt/GSK-3β, c-Jun N-terminal kinases (JNK), ERK/MAPK, and Wnt/β-catenin. Herein, we briefly discussed the implication and potential of necrosome activation in the pathogenesis and progression of neurological manifestations, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, traumatic brain injury, and others. Further, we present a detailed picture of natural compounds, micro-RNAs, and chemical compounds as therapeutic agents for treating neurological manifestations.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
11
|
NLRP3 inflammasome inhibitor MCC950 reduces cerebral ischemia/reperfusion induced neuronal ferroptosis. Neurosci Lett 2023; 795:137032. [PMID: 36581063 DOI: 10.1016/j.neulet.2022.137032] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
The role of nucleotide-binding oligomerization domainlike receptor pyrin domain containing 3 (NLRP3) inflammasome in cerebral ischemia-reperfusion (I/R) induced neuroinflammation and neuronal pyroptosis has been widely recognized. Latest studies revealed that NLRP3 inflammasome engage in not only pyroptosis but also other types of cell death. Ferroptosis has been proved to be closely associated with cerebral I/R injury. In this study, our objectives were to verify the inhibitory effect of the NLRP3-specific inhibitor MCC950 on cerebral I/R-mediated neuronal pyroptosis, and to explore the regulation and possible mechanism of MCC950 on cerebral I/R-mediated neuronal ferroptosis. Our data showed that the NLRP3-specific inhibitor, MCC950, effectively reversed the I/R-mediated NLRP3 inflammasome activation and neuronal pyroptosis. Furthermore, we found that I/R increased iron concentrations and levels of malondialdehyde (MDA), downregulated glutathione peroxidase 4 (GPX4) expression, and upregulated long chain fatty acid-CoA ligase 4 (FACL4) and prostaglandin endoperoxide synthase 2 (PTGS2) expression. Interestingly, these changes were also reversed by the MCC950. Finally, in vitro, we found that MCC950 significantly reduced ROS levels in OGD/R treated HT22 cells. In conclusion, pharmaceutical inhibition of NLRP3 by MCC950 attenuates I/R-induced neuronal ferroptosis, possibly by reducing ROS accumulation.
Collapse
|
12
|
Wan Y, Huang L, Liu Y, Ji W, Li C, Ge RL. Preconditioning With Intermittent Hypobaric Hypoxia Attenuates Stroke Damage and Modulates Endocytosis in Residual Neurons. Front Neurol 2022; 12:750908. [PMID: 34975719 PMCID: PMC8715922 DOI: 10.3389/fneur.2021.750908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/26/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Moderate hypobaric hypoxia induces cerebral ischemic tolerance. We investigated the optimal method for applying hypobaric hypoxia preconditioning at 5,000 m to ischemic brain tissue and combined it with proteomics to determine the mechanisms underlying this effect. Methods: Male SD rats were randomly grouped as S (sham, n = 20), M (middle cerebral artery occlusion [MCAO], n = 28), H2M (intermittent hypobaric hypoxia preconditioned MCAO group, 2 h/day, 10 days, n = 20), H6M (intermittent hypobaric hypoxia preconditioned MCAO group, 6 h/day, 10 days, n = 28), and HpM (persistent hypobaric hypoxia preconditioned MCAO group, 10 days, n = 28). The permanent MCAO model was established based on the Zea Longa method. Infarction was assessed with the modified neurological severity score (mNSS) and 2,3,5-triphenyl tetrazolium chloride staining. The total protein expression of the neuron-specific nuclear protein (NeuN), cysteinyl aspartate specific proteinase 3 (caspase-3), cleaved-caspase-3, and interleukin 6 (IL-6) was determined using western blotting. We assessed the peri-infarct cortex's ultrastructural changes. A label-free proteomic study and western blot verification were performed on the most effective preconditioned group. Results: The H6M group showed a lower infarct volume (p = 0.0005), lower mNSS score (p = 0.0009) than the M group. The H2M showed a lower level of IL-6 (p = 0.0213) than the M group. The caspase-3 level decreased in the H2M (p = 0.0002), H6M (p = 0.0025), and HpM groups (p = 0.0054) compared with that in the M group. Cleaved-caspase-3 expression decreased in the H2M (p = 0.0011), H6M (p < 0.0001), and HpM groups (p < 0.0001) compared with that in the M group. The neurons' ultrastructure and the blood-brain barrier in the peri-infarct tissue improved in the H2M and H6M groups. Immunofluorescence revealed increased NeuN-positive cells in the peri-infarct tissue in the H6M group (p = 0.0003, H6M vs. M). Protein expression of Chmp1a, Arpc5, and Hspa2 factors related to endocytosis were upregulated in the H6M compared with those of the M group (p < 0.05 for all) on western blot verification of label-free proteomics. Conclusions: Intermittent hypobaric hypoxia preconditioning exerts a neuroprotective effect in a rat stroke model. Persistent hypobaric hypoxia stimulation exhibited no significant neuroprotective effect. Intermittent hypoxic preconditioning for 6 h/day for 10 days upregulates key proteins in clathrin-dependent endocytosis of neurons in the cortex.
Collapse
Affiliation(s)
- Yaqi Wan
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Qinghai Provincial People's Hospital, Xining, China
| | - Lu Huang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanmin Liu
- Qinghai Provincial People's Hospital, Xining, China
| | - Weizhong Ji
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Qinghai Provincial People's Hospital, Xining, China
| | - Changxing Li
- Department of Basic Medicine, Qinghai University, Xining, China
| | - Ri-Li Ge
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Research Center for High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|