1
|
Yao X, Kong L, Qiao Y, Brand D, Li J, Yan Z, Zheng SG, Qian Y, Fan C. Schwann cell-secreted frizzled-related protein 1 dictates neuroinflammation and peripheral nerve degeneration after neurotrauma. Cell Rep Med 2024:101791. [PMID: 39426375 DOI: 10.1016/j.xcrm.2024.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/12/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Neurotrauma in limbs can induce sustained neuroinflammation, resulting in persistent disruption of nerve tissue architecture and retardation of axon regrowth. Despite macrophage-mediated inflammation promoting the removal of necrotic neural components and stimulating neo-vessel ingrowth, detrimental shifts in macrophage phenotype exacerbate nerve degeneration. Herein, we find that peripheral nerve injuries (PNIs) result in abundant secreted frizzled-related protein 1 (sFRP1) expression, particularly by Schwann cells (SCs). Heat shock protein 90 (HSP90) in macrophages recognizes sFRP1 and triggers a dysregulated secretion of inflammatory mediators. Single-cell atlas of human injured peripheral nerves reveals the appearance of sFRP1-expressing SCs with mesenchymal traits and macrophages with a proinflammatory genetic profile. Deletion of either SC-specific sFRP1 or macrophage-specific HSP90 alleviates neuroinflammation and prevents the progression of nerve degeneration. Together, our findings implicate the response of macrophages to SC-derived sFRP1 in exacerbating nerve damage following PNIs.
Collapse
Affiliation(s)
- Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, China
| | - Lingchi Kong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, China
| | - Yi Qiao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - David Brand
- The Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38163, USA
| | - Juehong Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, China
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201699, China.
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, China.
| |
Collapse
|
2
|
Zhang Q, Zhang X, He Q, Tian Y, Liu Z. Cimifugin Alleviates Chronic Constriction Injury of the Sciatic Nerve by Suppressing Inflammatory Response and Schwann Cell Apoptosis. Cell Biochem Biophys 2024:10.1007/s12013-024-01513-4. [PMID: 39392551 DOI: 10.1007/s12013-024-01513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/12/2024]
Abstract
Inflammation and Schwann cell apoptosis play critical roles in neuropathic pain after sciatic nerve injury. This study aimed to explore the function and mechanism of cimifugin in lipopolysaccharide (LPS)-stimulated rat Schwann cells and sciatic nerves of rats treated with chronic constriction injury (CCI). Thermal, mechanical and cold hyperalgesia of rats in response to cimifugin or mecobalamin (the positive drug control) treatment were evaluated through behavioral tests. H&E staining of sciatic nerves was performed for pathological observation. ELISA was conducted to assess concentrations of inflammatory cytokines in rat serum and sciatic nerves. The intensity of S100β in sciatic nerves was determined using immunohistochemistry. Flow cytometry analysis was conducted for detection of Schwann cell apoptosis. RT-qPCR was performed to measure mRNA levels of inflammatory factors in Schwann cells. Immunofluorescence staining was performed to detect cellular p65/NF-κB activity. Western blotting was performed to quantify protein levels of apoptotic markers and factors associated with the NF-κB and MAPK pathways in rat nerves and Schwann cells. As shown by experimental data, cimifugin mitigated thermal, mechanical and cold hyperalgesia of CCI rats. Cimifugin repressed inflammatory cell infiltration, reduced proinflammatory cytokine levels while increasing anti-inflammatory factor (IL-10) level in serum or sciatic nerves of CCI rats. Cimifugin enhanced S100β expression and downregulated apoptotic markers in vivo. The anti-inflammatory and anti-apoptotic properties of cimifugin were verified in the LPS-stimulated Schwann cells. Moreover, cimifugin suppressed nuclear translocation of p65 NF-κB in vitro and repressed the phosphorylation of IκB, p65 NF-κB, p38 MAPK, ERK1/2, as well as JNK in CCI rats. In conclusion, cimifugin alleviates neuropathic pain after sciatica by suppressing inflammatory response and Schwann cell apoptosis via inactivation of NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Qijuan Zhang
- Department of rehabilitation medicine, Wuhan Orthopaedic Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Wuhan Sports University), Wuhan, 430070, China.
| | - Xiaoli Zhang
- Wuhan Fiberhome technical service Co. Ltd, Wuhan, 430000, China
| | - Qing He
- Department of rehabilitation medicine, Wuhan Orthopaedic Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Wuhan Sports University), Wuhan, 430070, China
| | - Yu Tian
- Department of rehabilitation medicine, Wuhan Orthopaedic Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Wuhan Sports University), Wuhan, 430070, China
| | - Zhengmao Liu
- Department of rehabilitation medicine, Wuhan Orthopaedic Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Wuhan Sports University), Wuhan, 430070, China
| |
Collapse
|
3
|
Gao N, Li M, Wang W, Liu Z, Guo Y. The dual role of TRPV1 in peripheral neuropathic pain: pain switches caused by its sensitization or desensitization. Front Mol Neurosci 2024; 17:1400118. [PMID: 39315294 PMCID: PMC11417043 DOI: 10.3389/fnmol.2024.1400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel plays a dual role in peripheral neuropathic pain (NeuP) by acting as a "pain switch" through its sensitization and desensitization. Hyperalgesia, commonly resulting from tissue injury or inflammation, involves the sensitization of TRPV1 channels, which modulates sensory transmission from primary afferent nociceptors to spinal dorsal horn neurons. In chemotherapy-induced peripheral neuropathy (CIPN), TRPV1 is implicated in neuropathic pain mechanisms due to its interaction with ion channels, neurotransmitter signaling, and oxidative stress. Sensitization of TRPV1 in dorsal root ganglion neurons contributes to CIPN development, and inhibition of TRPV1 channels can reduce chemotherapy-induced mechanical hypersensitivity. In diabetic peripheral neuropathy (DPN), TRPV1 is involved in pain modulation through pathways including reactive oxygen species and cytokine production. TRPV1's interaction with TRPA1 channels further influences chronic pain onset and progression. Therapeutically, capsaicin, a TRPV1 agonist, can induce analgesia through receptor desensitization, while TRPV1 antagonists and siRNA targeting TRPV1 show promise in preclinical studies. Cannabinoid modulation of TRPV1 provides another potential pathway for alleviating neuropathic pain. This review summarizes recent preclinical research on TRPV1 in association with peripheral NeuP.
Collapse
Affiliation(s)
- Ning Gao
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Li
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiming Wang
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Liu
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufeng Guo
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Deng K, Hu DX, Zhang WJ. Application of cell transplantation in the treatment of neuropathic pain. Neuroscience 2024; 554:43-51. [PMID: 38986736 DOI: 10.1016/j.neuroscience.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/15/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Nerve injury can not only lead to sensory and motor dysfunction, but also be complicated with neuropathic pain (NPP), which brings great psychosomatic injury to patients. At present, there is no effective treatment for NPP. Based on the functional characteristics of cell transplantation in nerve regeneration and injury repair, cell therapy has been used in the exploratory treatment of NPP and has become a promising treatment of NPP. In this article, we discuss the current mainstream cell types for the treatment of NPP, including Schwann cells, olfactory ensheathing cells, neural stem cells and mesenchymal stem cells in the treatment of NPP. These bioactive cells transplanted into the host have pharmacological properties of decreasing pain threshold and relieving NPP by exerting nutritional support, neuroprotection, immune regulation, promoting axonal regeneration, and remyelination. Cell transplantation can also change the microenvironment around the nerve injury, which is conducive to the survival of neurons. It can effectively relieve pain by repairing the injured nerve and rebuilding the nerve function. At present, some preclinical and clinical studies have shown that some encouraging results have been achieved in NPP treatment based on cell transplantation. Therefore, we discussed the feasible strategy of cell transplantation as a treatment of NPP and the problems and challenges that need to be solved in the current application of cell transplantation in NPP therapy.
Collapse
Affiliation(s)
- Kan Deng
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China; Ji an College, Ji an City, Jiangxi Province, China
| | - Dong-Xia Hu
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Wen-Jun Zhang
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
5
|
Testa L, Dotta S, Vercelli A, Marvaldi L. Communicating pain: emerging axonal signaling in peripheral neuropathic pain. Front Neuroanat 2024; 18:1398400. [PMID: 39045347 PMCID: PMC11265228 DOI: 10.3389/fnana.2024.1398400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Peripheral nerve damage often leads to the onset of neuropathic pain (NeuP). This condition afflicts millions of people, significantly burdening healthcare systems and putting strain on families' financial well-being. Here, we will focus on the role of peripheral sensory neurons, specifically the Dorsal Root Ganglia neurons (DRG neurons) in the development of NeuP. After axotomy, DRG neurons activate regenerative signals of axons-soma communication to promote a gene program that activates an axonal branching and elongation processes. The results of a neuronal morphological cytoskeleton change are not always associated with functional recovery. Moreover, any axonal miss-targeting may contribute to NeuP development. In this review, we will explore the epidemiology of NeuP and its molecular causes at the level of the peripheral nervous system and the target organs, with major focus on the neuronal cross-talk between intrinsic and extrinsic factors. Specifically, we will describe how failures in the neuronal regenerative program can exacerbate NeuP.
Collapse
Affiliation(s)
- Livia Testa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Sofia Dotta
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Letizia Marvaldi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| |
Collapse
|
6
|
Huang Y, Shi Y, Wang M, Liu B, Chang X, Xiao X, Yu H, Cui X, Bai Y. Pannexin1 Channel-Mediated Inflammation in Acute Ischemic Stroke. Aging Dis 2024; 15:1296-1307. [PMID: 37196132 PMCID: PMC11081155 DOI: 10.14336/ad.2023.0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 05/19/2023] Open
Abstract
Emerging evidence suggests that inflammation mediated by the pannexin1 channel contributes significantly to acute ischemic stroke. It is believed that the pannexin1 channel is key in initiating central system inflammation during the early stages of acute ischemic stroke. Moreover, the pannexin1 channel is involved in the inflammatory cascade to maintain the inflammation levels. Specifically, the interaction of pannexin1 channels with ATP-sensitive P2X7 purinoceptors or promotion of potassium efflux mediates the activation of the NLRP3 inflammasome, triggering the release of pro-inflammatory factors such as IL-1 and IL-18, exacerbating and sustaining inflammation of brain. Also, increased release of ATP induced by cerebrovascular injury activates pannexin1 in vascular endothelial cells. This signal directs peripheral leukocytes to migrate into ischemic brain tissue, leading to an expansion of the inflammatory zone. Intervention strategies targeting pannexin1 channels may greatly alleviate inflammation after acute ischemic stroke to improve this patient population's clinical outcomes. In this review, we sought to summarize relevant studies on inflammation mediated by the pannexin1 channel in acute ischemic stroke and discussed the possibility of using brain organoid-on-a-chip technology to screen miRNAs that exclusively target the pannexin1 channel to provide new therapeutic measures for targeted regulation of pannexin1 channel to reduce inflammation in acute ischemic stroke.
Collapse
Affiliation(s)
- Yubing Huang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Yutong Shi
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Mengmeng Wang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Bingyi Liu
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xueqin Chang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xia Xiao
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Huihui Yu
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xiaodie Cui
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Ying Bai
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| |
Collapse
|
7
|
Deng B, Zou H, Hu K, Liu Y, Han A. Octanol alleviates chronic constriction injury of sciatic nerve-induced peripheral neuropathy by regulating AKT/mTOR signaling. J Orthop Surg (Hong Kong) 2024; 32:10225536241273556. [PMID: 39208247 DOI: 10.1177/10225536241273556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Activation of gap junction channels can induce neuropathic pain. Octanol can limit the conductance of gap junctions containing connexin 43 proteins. Thus, this study focused on the roles of octanol in chronic constriction injury (CCI)-induced peripheral neuropathy in mice and its mechanisms of action. METHODS Male mice were assigned into control, sham, CCI, CCI + Octanol-20 mg/kg, CCI + Octanol-40 mg/kg and CCI + Octanol-80 mg/kg groups. CCI was performed by applying three loose ligations to mouse sciatic nerve, and the mice with CCI was administered with 20 mg/kg, 40 mg/kg, or 80 mg/kg octanol. The neuropathic pain development was examined by assessing thermal withdrawal latency, paw withdrawal mechanical threshold, and sciatic functional index. Histopathological changes were evaluated by hematoxylin and eosin staining. The phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) was examined by western blotting. The expression of Akt and mTOR was also evaluated by immunofluorescence staining. RESULTS Octanol alleviated the CCI-induced mechanical and thermal hyperalgesia and sciatic functional loss. Additionally, octanol relieved the CCI-induced abnormal histopathological changes. Mechanistically, octanol inactivated the Akt/mTOR pathway in the mice with CCI. CONCLUSION In conclusion, octanol can alleviate CCI-induced peripheral neuropathic by regulating the Akt/mTOR pathway and might be a novel pharmacological intervention for neuropathic pain.
Collapse
Affiliation(s)
- Biquan Deng
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Zou
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keli Hu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlu Liu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Achao Han
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
McAllister BB, Stokes-Heck S, Harding EK, van den Hoogen NJ, Trang T. Targeting Pannexin-1 Channels: Addressing the 'Gap' in Chronic Pain. CNS Drugs 2024; 38:77-91. [PMID: 38353876 DOI: 10.1007/s40263-024-01061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/22/2024]
Abstract
Chronic pain complicates many diseases and is notoriously difficult to treat. In search of new therapeutic targets, pannexin-1 (Panx1) channels have sparked intense interest as a key mechanism involved in a variety of chronic pain conditions. Panx1 channels are transmembrane proteins that release ions and small molecules, such as adenosine triphosphate (ATP). They are expressed along important nodes of the pain pathway, modulating activity of diverse cell types implicated in the development and progression of chronic pain caused by injury or pathology. This review highlights advances that have unlocked the core structure and machinery controlling Panx1 function with a focus on understanding and treating chronic pain.
Collapse
Affiliation(s)
- Brendan B McAllister
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Erika K Harding
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Nynke J van den Hoogen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
9
|
Cai Y, He C, Dai Y, Zhang D, Lv G, Lu H, Chen G. Spinal interleukin-24 contributes to neuropathic pain after peripheral nerve injury through interleukin-20 receptor2 in mice. Exp Neurol 2024; 372:114643. [PMID: 38056582 DOI: 10.1016/j.expneurol.2023.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Neuroinflammation is critically involved in nerve injury-induced neuropathic pain, characterized by local and systemic increased levels of proinflammatory cytokines. Interleukin-24 (IL-24), a key member of the IL-10 family, has been extensively studied for its therapeutic potential in various diseases, including cancer, autoimmune disorders, and bacterial infections, but whether it is involved in the regulation of neuropathic pain caused by peripheral nerve injury (PNI) has not been well established. In this study, we reported that spared nerve injury (SNI) induced a significant upregulation of IL-24 in fibroblasts, neurons, and oligodendrocyte precursor cells (OPCs, also called NG2-glia) in the affected spinal dorsal horns (SDHs), as well as dorsal root ganglions (DRGs). We also found that tumor necrosis factor α (TNF-α) induced the transcriptional expression of IL-24 in cultured fibroblasts, neurons, and NG2-glia; in addition, astrocytes, microglia, and NG2-glia treated with TNF-α exhibited a prominent increase in interleukin-20 receptor 2 (IL-20R2) expression. Furthermore, we evaluated the ability of IL-24 and IL-20R2 to attenuate pain in preclinical models of neuropathic pain. Intrathecal (i.t.) injection of IL-24 neutralizing antibody or IL-20R2 neutralizing antibody could effectively alleviate mechanical allodynia and thermal hyperalgesia after PNI. Similarly, intrathecal injection of IL-24 siRNA or IL-20R2 siRNA also alleviated mechanical allodynia after SNI. The inhibition of IL-24 reduced SNI-induced proinflammatory cytokine (IL-1β and TNF-α) production and increased anti-inflammatory cytokine (IL-10) production. Meanwhile, the inhibition of IL-20R2 also decreased IL-1β mRNA expression after SNI. Collectively, our findings revealed that IL-24/IL-20R might contribute to neuropathic pain through inflammatory response. Therefore, targeting IL-24 could be a promising strategy for treating neuropathic pain induced by PNI.
Collapse
Affiliation(s)
- Yunyun Cai
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Cheng He
- Department of Human Anatomy, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yuan Dai
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Dongmei Zhang
- Department of Rehabilitation Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit of Immunology, Nantong First People's Hospital, Nantong 226001, Jiangsu Province, China
| | - Guangming Lv
- Department of Human Anatomy, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hongjian Lu
- Department of Rehabilitation Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit of Immunology, Nantong First People's Hospital, Nantong 226001, Jiangsu Province, China; Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China.
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
10
|
Asiedu K. Neurophysiology of corneal neuropathic pain and emerging pharmacotherapeutics. J Neurosci Res 2024; 102:e25285. [PMID: 38284865 DOI: 10.1002/jnr.25285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 01/30/2024]
Abstract
The altered activity generated by corneal neuronal injury can result in morphological and physiological changes in the architecture of synaptic connections in the nervous system. These changes can alter the sensitivity of neurons (both second-order and higher-order projection) projecting pain signals. A complex process involving different cell types, molecules, nerves, dendritic cells, neurokines, neuropeptides, and axon guidance molecules causes a high level of sensory rearrangement, which is germane to all the phases in the pathomechanism of corneal neuropathic pain. Immune cells migrating to the region of nerve injury assist in pain generation by secreting neurokines that ensure nerve depolarization. Furthermore, excitability in the central pain pathway is perpetuated by local activation of microglia in the trigeminal ganglion and alterations of the descending inhibitory modulation for corneal pain arriving from central nervous system. Corneal neuropathic pain may be facilitated by dysfunctional structures in the central somatosensory nervous system due to a lesion, altered synaptogenesis, or genetic abnormality. Understanding these important pathways will provide novel therapeutic insight.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Ling J, He C, Zhang S, Zhao Y, Zhu M, Tang X, Li Q, Xu L, Yang Y. Progress in methods for evaluating Schwann cell myelination and axonal growth in peripheral nerve regeneration via scaffolds. Front Bioeng Biotechnol 2023; 11:1308761. [PMID: 38162183 PMCID: PMC10755477 DOI: 10.3389/fbioe.2023.1308761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Peripheral nerve injury (PNI) is a neurological disorder caused by trauma that is frequently induced by accidents, war, and surgical complications, which is of global significance. The severity of the injury determines the potential for lifelong disability in patients. Artificial nerve scaffolds have been investigated as a powerful tool for promoting optimal regeneration of nerve defects. Over the past few decades, bionic scaffolds have been successfully developed to provide guidance and biological cues to facilitate Schwann cell myelination and orientated axonal growth. Numerous assessment techniques have been employed to investigate the therapeutic efficacy of nerve scaffolds in promoting the growth of Schwann cells and axons upon the bioactivities of distinct scaffolds, which have encouraged a greater understanding of the biological mechanisms involved in peripheral nerve development and regeneration. However, it is still difficult to compare the results from different labs due to the diversity of protocols and the availability of innovative technologies when evaluating the effectiveness of novel artificial scaffolds. Meanwhile, due to the complicated process of peripheral nerve regeneration, several evaluation methods are usually combined in studies on peripheral nerve repair. Herein, we have provided an overview of the evaluation methods used to study the outcomes of scaffold-based therapies for PNI in experimental animal models and especially focus on Schwann cell functions and axonal growth within the regenerated nerve.
Collapse
Affiliation(s)
- Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chang He
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Shuxuan Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Meifeng Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoxuan Tang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Qiaoyuan Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Liming Xu
- Institute of Medical Device Control, National Institutes for Food and Drug Control, Beijing, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
12
|
Landini L, Marini M, Souza Monteiro de Araujo D, Romitelli A, Montini M, Albanese V, Titiz M, Innocenti A, Bianchini F, Geppetti P, Nassini R, De Logu F. Schwann Cell Insulin-like Growth Factor Receptor Type-1 Mediates Metastatic Bone Cancer Pain in Mice. Brain Behav Immun 2023; 110:348-364. [PMID: 36940752 DOI: 10.1016/j.bbi.2023.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Insulin growth factor-1 (IGF-1), an osteoclast-dependent osteolysis biomarker, contributes to metastatic bone cancer pain (MBCP), but the underlying mechanism is poorly understood. In mice, the femur metastasis caused by intramammary inoculation of breast cancer cells resulted in IGF-1 increase in femur and sciatic nerve, and IGF-1-dependent stimulus/non-stimulus-evoked pain-like behaviors. Adeno-associated virus-based shRNA selective silencing of IGF-1 receptor (IGF-1R) in Schwann cells, but not in dorsal root ganglion (DRG) neurons, attenuated pain-like behaviors. Intraplantar IGF-1 evoked acute nociception and mechanical/cold allodynia, which were reduced by selective IGF-1R silencing in DRG neurons and Schwann cells, respectively. Schwann cell IGF-1R signaling promoted an endothelial nitric oxide synthase-mediated transient receptor potential ankyrin 1 (TRPA1) activation and release of reactive oxygen species that, via macrophage-colony stimulating factor-dependent endoneurial macrophage expansion, sustained pain-like behaviors. Osteoclast derived IGF-1 initiates a Schwann cell-dependent neuroinflammatory response that sustains a proalgesic pathway that provides new options for MBCP treatment.
Collapse
Affiliation(s)
- Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | | | - Antonia Romitelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Marco Montini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Genetics Unit, University of Florence, 50141, Florence, Italy
| | - Valentina Albanese
- Department of Environmental and Prevention Sciences - DEPS, University of Ferrara, Ferrara, 44121, Italy
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Alessandro Innocenti
- Plastic and Reconstructive Microsurgery - Careggi University Hospital, Florence, 50139, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, 50141, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy.
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| |
Collapse
|