1
|
Abdel-Haq H. Feasibility of Using a Type I IFN-Based Non-Animal Approach to Predict Vaccine Efficacy and Safety Profiles. Vaccines (Basel) 2024; 12:583. [PMID: 38932312 PMCID: PMC11209158 DOI: 10.3390/vaccines12060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Animal-based tests are used for the control of vaccine quality. However, because highly purified and safe vaccines are now available, alternative approaches that can replace or reduce animal use for the assessment of vaccine outcomes must be established. In vitro tests for vaccine quality control exist and have already been implemented. However, these tests are specifically designed for some next-generation vaccines, and this makes them not readily available for testing other vaccines. Therefore, universal non-animal tests are still needed. Specific signatures of the innate immune response could represent a promising approach to predict the outcome of vaccines by non-animal methods. Type I interferons (IFNs) have multiple immunomodulatory activities, which are exerted through effectors called interferon stimulated genes (ISGs), and are one of the most important immune signatures that might provide potential candidate molecular biomarkers for this purpose. This paper will mainly examine if this idea might be feasible by analyzing all relevant published studies that have provided type I IFN-related biomarkers for evaluating the safety and efficacy profiles of vaccines using an advanced transcriptomic approach as an alternative to the animal methods. Results revealed that such an approach could potentially provide biomarkers predictive of vaccine outcomes after addressing some limitations.
Collapse
Affiliation(s)
- Hanin Abdel-Haq
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
2
|
Guo S, Feng J, Li Z, Yang S, Qiu X, Xu Y, Shen Z. Improved cancer immunotherapy strategies by nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1873. [PMID: 36576112 DOI: 10.1002/wnan.1873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/29/2022]
Abstract
Cancer immunotherapy agents fight cancer via immune system stimulation and have made significant advances in minimizing side effects and prolonging the survival of patients with solid tumors. However, major limitations still exist in cancer immunotherapy, including the inefficiency of immune response stimulation in specific cancer types, therapy resistance caused by the tumor microenvironment (TME), toxicities by the immune imbalance, and short lifetime of stimulator of interferon genes (STING) agonist. Recent advances in nanomedicine have shown significant potential in overcoming the obstacles of cancer immunotherapy. Several nanoscale agents have been reported for cancer immunotherapy, including nanoscale cancer vaccines impacting the STING pathway, nanomaterials reprogramming TME, nano-agents triggering immune response with immune checkpoint inhibitor synergy, ferroptosis-mediated and indoleamine-2,3-dioxygenase immunosuppression-mediated cancer immunotherapy, and nanomedicine-meditated chimeric antigen receptor-T-cell therapy. Herein, we summarize the major advances and innovations in nanomedicine-based cancer immunotherapy, and outline the opportunities and challenges to integrate more advanced nanomaterials into cancer immunotherapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Shuai Guo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Sugeun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, South Korea
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Rivas-Arancibia S, Hernández-Orozco E, Rodríguez-Martínez E, Valdés-Fuentes M, Cornejo-Trejo V, Pérez-Pacheco N, Dorado-Martínez C, Zequeida-Carmona D, Espinosa-Caleti I. Ozone Pollution, Oxidative Stress, Regulatory T Cells and Antioxidants. Antioxidants (Basel) 2022; 11:antiox11081553. [PMID: 36009272 PMCID: PMC9405302 DOI: 10.3390/antiox11081553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 12/06/2022] Open
Abstract
Ozone pollution, is a serious health problem worldwide. Repeated exposure to low ozone doses causes a loss of regulation of the oxidation–reduction systems, and also induces a chronic state of oxidative stress. This fact is of special importance for the regulation of different systems including the immune system and the inflammatory response. In addition, the oxidation–reduction balance modulates the homeostasis of these and other complex systems such as metabolism, survival capacity, cell renewal, and brain repair, etc. Likewise, it has been widely demonstrated that in chronic degenerative diseases, an alteration in the oxide-reduction balance is present, and this alteration causes a chronic loss in the regulation of the immune response and the inflammatory process. This is because reactive oxygen species disrupt different signaling pathways. Such pathways are related to the role of regulatory T cells (Treg) in inflammation. This causes an increase in chronic deterioration in the degenerative disease over time. The objective of this review was to study the relationship between environmental ozone pollution, the chronic state of oxidative stress and its effect on Treg cells, which causes the loss of regulation in the inflammatory response as well as the role played by antioxidant systems in various pathologies.
Collapse
|
4
|
|
5
|
Koirala P, Bashiri S, Toth I, Skwarczynski M. Current Prospects in Peptide-Based Subunit Nanovaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:309-338. [PMID: 34918253 DOI: 10.1007/978-1-0716-1892-9_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vaccination renders protection against pathogens via stimulation of the body's natural immune responses. Classical vaccines that utilize whole organisms or proteins have several disadvantages, such as induction of undesired immune responses, poor stability, and manufacturing difficulties. The use of minimal immunogenic pathogen components as vaccine antigens, i.e., peptides, can greatly reduce these shortcomings. However, subunit antigens require a specific delivery system and immune adjuvant to increase their efficacy. Recently, nanotechnology has been extensively utilized to address this issue. Nanotechnology-based formulation of peptide vaccines can boost immunogenicity and efficiently induce cellular and humoral immune responses. This chapter outlines the recent developments and advances of nano-sized delivery platforms for peptide antigens, including nanoparticles composed of polymers, peptides, lipids, and inorganic materials.
Collapse
Affiliation(s)
- Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia. .,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, St Lucia, QLD, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Du Y, Yang X, Li J, Sokolova V, Zou S, Han M, Yan H, Wey K, Lu M, Dittmer U, Yang D, Epple M, Wu J. Delivery of toll-like receptor 3 ligand poly(I:C) to the liver by calcium phosphate nanoparticles conjugated with an F4/80 antibody exerts an anti-hepatitis B virus effect in a mouse model. Acta Biomater 2021; 133:297-307. [PMID: 33540061 DOI: 10.1016/j.actbio.2021.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Hepatitis B virus (HBV) is a global health issue, but currently available anti-HBV drugs have limited success. Previously, introduction of the Toll-like receptor (TLR)-3 ligand poly(I:C) to the liver via hydrodynamic injection (HI) was shown to effectively suppress HBV replication in a chronic HBV replication mouse model. However, this method cannot be applied in human beings. To improve the liver targeting of poly(I:C) via intravenous injection, calcium phosphate nanoparticles (CPNs) carrying poly(I:C) with or without antibodies were constructed, and their anti-HBV effects were investigated. We found that significantly more anti-F4/80-conjugated and IgG2α-conjugated nanoparticles were taken up in liver cells both in vivo and in vitro. In addition, these nanoparticles produced pronounced immunostimulatory effects in vitro in primary liver cells. Importantly, treatment with nanoparticles carrying poly(I:C) increased the production of intrahepatic cytokines and chemokines and enhanced T cell responses, significantly reducing HBsAg, HBeAg and HBV DNA levels in the mice. Compared to nonconjugated and isotype-antibody-conjugated nanoparticles, the anti-F4/80-conjugated nanoparticles demonstrated the strongest anti-HBV effects. In summary, nanoparticles carrying poly(I:C) conjugated with an F4/80 antibody promoted liver targeting, and they may represent a suitable alternative to HI for future anti-HBV treatment. STATEMENT OF SIGNIFICANCE: HBV chronically infects approximately 250 million individuals worldwide but current anti-HBV drugs have limited success. Introduction of toll-like receptor 3 ligand poly(I:C) into liver by hydrodynamic injection has been proven to promote HBV clearance in mouse model. However, this technique is not clinically suitable for human patients. We have constructed calcium phosphate nanoparticles carrying poly(I:C) with specific antibody targeting liver nonparenchymal cells. The uptake into relevant liver cells and the anti-HBV effects were studied. After intravenous injection into mice, the uptake rate of anti-F4/80-conjugated nanoparticels was enhanced in liver, and these nanoparticles exert effective anti-HBV effects in vivo. This may provide important insight into future HBV immunotherapy based on nanoparticle-mediated drug delivery.
Collapse
Affiliation(s)
- Yanqin Du
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, P. R. China; Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Xiaoli Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, P. R. China
| | - Jia Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, P. R. China
| | - Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Shi Zou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, P. R. China
| | - Meihong Han
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, P. R. China
| | - Hu Yan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Karolin Wey
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, P. R. China
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, P. R. China.
| |
Collapse
|
7
|
Abstract
Calcium phosphate nanoparticles have a high biocompatibility and biodegradability due to their chemical similarity to human hard tissue, for example, bone and teeth. They can be used as efficient carriers for different kinds of biomolecules such as nucleic acids, proteins, peptides, antibodies, or drugs, which alone are not able to enter cells where their biological effect is required. They can be loaded with cargo molecules by incorporating them, unlike solid nanoparticles, and also by surface functionalization. This offers protection, for example, against nucleases, and the possibility for cell targeting. If such nanoparticles are functionalized with fluorescing dyes, they can be applied for imaging in vitro and in vivo. Synthesis, functionalization and cell uptake mechanisms of calcium phosphate nanoparticles are discussed together with applications in transfection, gene silencing, imaging, immunization, and bone substitution. Biodistribution data of calcium phosphate nanoparticles in vivo are reviewed.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| | - Matthias Epple
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| |
Collapse
|
8
|
A Combination of Anti-PD-L1 Treatment and Therapeutic Vaccination Facilitates Improved Retroviral Clearance via Reactivation of Highly Exhausted T Cells. mBio 2021; 12:mBio.02121-20. [PMID: 33531395 PMCID: PMC7858051 DOI: 10.1128/mbio.02121-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite significant efforts, vaccines are not yet available for every infectious pathogen, and the search for a protective approach to prevent the establishment of chronic infections, i.e., with HIV, continues. Immune checkpoint therapies targeting inhibitory receptors, such as PD-1, have shown impressive results against solid tumors. PD-1-targeted therapies have shown modest antiviral effects in preclinical models of chronic viral infection. Thus, novel therapy protocols are necessary to enhance T cell immunity and viral control to overcome T cell dysfunction and immunosuppression. Here, we demonstrate that nanoparticle-based therapeutic vaccination improved PD-1-targeted therapy during chronic infection with Friend retrovirus (FV). Prevention of inhibitory signals by blocking PD-L1 in combination with therapeutic vaccination with nanoparticles containing the microbial compound CpG and a CD8+ T cell Gag epitope peptide synergistically enhanced functional virus-specific CD8+ T cell responses and improved viral clearance. We characterized the CD8+ T cell populations that were affected by this combination therapy, demonstrating that new effector cells were generated and that exhausted CD8+ T cells were reactivated at the same time. While CD8+ T cells with high PD-1 (PD-1hi) expression turned into a large population of granzyme B-expressing CD8+ T cells after combination therapy, CXCR5-expressing follicular cytotoxic CD8+ T cells also expanded to a high degree. Thus, our study describes a very efficient approach to enhance virus control and may help us to understand the mechanisms of combination immunotherapy reactivating CD8+ T cell immunity. A better understanding of CD8+ T cell immunity during combination therapy will be important for developing efficient checkpoint therapies against chronic viral infections and cancer.
Collapse
|
9
|
Rocamora-Reverte L, Melzer FL, Würzner R, Weinberger B. The Complex Role of Regulatory T Cells in Immunity and Aging. Front Immunol 2021; 11:616949. [PMID: 33584708 PMCID: PMC7873351 DOI: 10.3389/fimmu.2020.616949] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
The immune system is a tightly regulated network which allows the development of defense mechanisms against foreign antigens and tolerance toward self-antigens. Regulatory T cells (Treg) contribute to immune homeostasis by maintaining unresponsiveness to self-antigens and suppressing exaggerated immune responses. Dysregulation of any of these processes can lead to serious consequences. Classically, Treg cell functions have been described in CD4+ T cells, but other immune cells also harbour the capacity to modulate immune responses. Regulatory functions have been described for different CD8+ T cell subsets, as well as other T cells such as γδT cells or NKT cells. In this review we describe the diverse populations of Treg cells and their role in different scenarios. Special attention is paid to the aging process, which is characterized by an altered composition of immune cells. Treg cells can contribute to the development of various age-related diseases but they are poorly characterized in aged individuals. The huge diversity of cells that display immune modulatory functions and the lack of universal markers to identify Treg make the expanding field of Treg research complex and challenging. There are still many open questions that need to be answered to solve the enigma of regulatory T cells.
Collapse
Affiliation(s)
- Lourdes Rocamora-Reverte
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Franz Leonard Melzer
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University Innsbruck, Innsbruck, Austria
| | - Birgit Weinberger
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Moore TC, Hasenkrug KJ. B-Cell Control of Regulatory T Cells in Friend Virus Infection. J Mol Biol 2021; 433:166583. [PMID: 32598936 DOI: 10.1016/j.jmb.2020.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
B lymphocytes have well-established effector roles during viral infections, including production of antibodies and functioning as antigen-presenting cells for CD4+ and CD8+ T cells. B cells have also been shown to regulate immune responses and induce regulatory T cells (Tregs). In the Friend virus (FV) model, Tregs are known to inhibit effector CD8+ T-cell responses and contribute to virus persistence. Recent work has uncovered a role for B cells in the induction and activation of Tregs during FV infection. In addition to inducing Tregs, B cell antibody production and antigen-presenting cell activity is a target of Treg suppression. This review focuses on the dynamic interactions between B cells and Tregs during FV infection.
Collapse
Affiliation(s)
- Tyler C Moore
- College of Science and Technology, Bellevue University, 1000 Galvin Road South, Bellevue, NE 68005, USA.
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, Hamilton, MT 59840, USA.
| |
Collapse
|
11
|
Genetic immunization against hepatitis B virus with calcium phosphate nanoparticles in vitro and in vivo. Acta Biomater 2020; 110:254-265. [PMID: 32344172 DOI: 10.1016/j.actbio.2020.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Calcium phosphate nanoparticles were loaded with plasmid DNA and toll-like receptor ligands (TLR), i.e. CpG or flagellin, to activate antigen-presenting cells (APCs) like dendritic cells (DCs). The functionalized nanoparticles were studied in vitro on HeLa, C2C12 and BHK-21 cell lines, focusing on the expression of two specific proteins. EGFP-DNA, encoding for enhanced green fluorescent protein (EGFP), was used as a model plasmid to optimize the transfection efficiency in vitro by fluorescence microscopy and flow cytometry. Calcium phosphate nanoparticles loaded with TLR ligands and plasmid DNA encoding for the hepatitis B virus surface antigen (pHBsAg) were evaluated by in vitro and in vivo immunization experiments to identify a possible candidate for a prophylactic hepatitis B virus (HBV) vaccine. The nanoparticles induced a strong expression of HBsAg in the three cell lines. In splenocytes, the expression of the co-stimulatory molecules CD80 and CD86 was enhanced. After intramuscular injection in mice, the nanoparticles induced the expression of HBsAg, the antigen-specific T cell response, and the antigen-specific antibody response (IgG1). STATEMENT OF SIGNIFICANCE: Hepatitis B is one of the most frequent viral infections worldwide. For preventive immunization, nanoparticles can be used which carry both an adjuvant (a stimulatory molecule) and DNA encoding for a viral antigen. After administration of such nanoparticles to cells, they are taken up by cells where the DNA is transcribed into the viral antigen (a protein). This viral antigen is inducing a virus-specific immune response. This was shown both by in vitro cell culture as well as by an extensive in vivo study in mice.
Collapse
|
12
|
Dittmer U, Sutter K, Kassiotis G, Zelinskyy G, Bánki Z, Stoiber H, Santiago ML, Hasenkrug KJ. Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiol Rev 2019; 43:435-456. [PMID: 31087035 PMCID: PMC6735856 DOI: 10.1093/femsre/fuz012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental principles about how the immune system controls both acute and chronic viral infections. They led to a more complete understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for HIV cure and vaccine development.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, St Mary's Hospital, Praed St, Paddington, London W2 1NY, UK
| | - Gennadiy Zelinskyy
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Mario L Santiago
- University of Colorado School of Medicine, 12700E 19th Ave, Aurora, CO 80045, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903S 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
13
|
Cabrera G, Marcipar I. Vaccines and the regulatory arm of the immune system. An overview from the Trypanosoma cruzi infection model. Vaccine 2019; 37:3628-3637. [PMID: 31155420 DOI: 10.1016/j.vaccine.2019.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 04/13/2019] [Accepted: 05/03/2019] [Indexed: 01/06/2023]
Abstract
The knowledge that the immune system is composed of a regulatory/suppressor arm added a new point of view to better understand the nature of several pathologies including cancer, transplants, infections and autoimmune diseases. The striking discoveries concerning molecules and cells involved in this kind of regulation were followed by the elucidation of equally notable mechanisms used by several pathogens to manipulate the host immune system. Vaccines against pathogens are an invaluable tool developed to help the immune system cope with a potential infection or prevent disease pathology. Nowadays, there is accumulated evidence indicating that the powerful stimulation capacity of vaccines influences not only the effector arm of the immune system but also cells with regulatory/suppressor capacity, such as myeloid derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs). Trypanosoma cruzi (T. cruzi) is a protozoan parasite with a complex life cycle that has evolved several strategies to influence the regulatory immune response. Although diverse vaccine formulations have been able to stimulate the effector response, achieving non-sterilizing protection against T. cruzi, the influence of the vaccine candidates on the regulatory machinery has scarcely been assessed. This fact may not only reveal important information concerning how vaccines may influence cells with regulatory/suppressor capacity but also open the possibility to analyze whether vaccines are able to disrupt the mechanisms used by some pathogens to manipulate the host regulatory circuits. The aim of this review is to summarize and discuss available data related to the role of cellular components, like MDSCs and Foxp3+ Tregs, during T. cruzi infection, and the potential utility of those populations as additional targets for the rational design of vaccines.
Collapse
Affiliation(s)
- Gabriel Cabrera
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Iván Marcipar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
14
|
Heße C, Kollenda S, Rotan O, Pastille E, Adamczyk A, Wenzek C, Hansen W, Epple M, Buer J, Westendorf AM, Knuschke T. A Tumor-Peptide–Based Nanoparticle Vaccine Elicits Efficient Tumor Growth Control in Antitumor Immunotherapy. Mol Cancer Ther 2019; 18:1069-1080. [DOI: 10.1158/1535-7163.mct-18-0764] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/19/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022]
|
15
|
Sokolova V, Loza K, Knuschke T, Heinen-Weiler J, Jastrow H, Hasenberg M, Buer J, Westendorf A, Gunzer M, Epple M. A systematic electron microscopic study on the uptake of barium sulphate nano-, submicro-, microparticles by bone marrow-derived phagocytosing cells. Acta Biomater 2018; 80:352-363. [PMID: 30240952 DOI: 10.1016/j.actbio.2018.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 01/15/2023]
Abstract
Nanoparticles can act as transporters for synthetic molecules and biomolecules into cells, also in immunology. Antigen-presenting cells like dendritic cells are important targets for immunotherapy in nanomedicine. Therefore, we have used primary murine bone marrow-derived phagocytosing cells (bmPCs), i.e. dendritic cells and macrophages, to study their interaction with spherical barium sulphate particles of different size (40 nm, 420 nm, and 1 µm) and to follow their uptake pathway. Barium sulphate is chemically and biologically inert (no dissolution, no catalytic effects), i.e. we can separate the particle uptake effect from potential biological reactions. The colloidal stabilization of the nanoparticles was achieved by a layer of carboxymethylcellulose (CMC) which is biologically inert and gives the particles a negative zeta potential (i.e. charge). The particles were made fluorescent by conjugating 6-aminofluoresceine to CMC. Their uptake was visualized by flow cytometry, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and correlative light and electron microscopy (CLEM). Barium sulphate particles of all sizes were readily taken up by dendritic cells and even more by macrophages, with the uptake increasing with time and particle concentration. They were mainly localized inside phagosomes, heterophagosomes, and in the case of nanoparticles also in the nearby cytosol. No particles were found in the nucleus. In nanomedicine, inorganic nanoparticles from the nanometer to the micrometer size are therefore well suited as transporters of biomolecules, including antigens, into dendritic cells and macrophages. The presented model system may also serve to describe the aseptic loosening of endoprostheses caused by abrasive wear of inert particles and the subsequent cell reaction, a question which relates to the field of nanotoxicology. STATEMENT OF SIGNIFICANCE: The interaction of particles and cells is at the heart of nanomedicine and nanotoxicology, including abrasive wear from endoprostheses. It also comprises the immunological reaction to different kinds of nanomaterials, triggered by an immune response, e.g. by antigen-presenting cells. However, it is often difficult to separate the particle effect from a chemical or biochemical reaction to particles or their cargo. We show how chemically inert barium sulphate particles with three different sizes (nano, sub-micro, and micro) interact with relevant immune cells (primary dendritic cells and macrophages). Particles of all three sizes are readily taken up into both cell types by phagocytosis, but the uptake by macrophages is significantly more prominent than that by dendritic cells. The cells take up particles until they are virtually stuffed, but without direct adverse effect. The uptake increases with time and particle concentration. Thus, we have an ideal model system to follow particles into and inside cells without the side effect of a chemical particle effect, e.g. by degradation or ion release.
Collapse
|
16
|
Knuschke T, Rotan O, Bayer W, Kollenda S, Dickow J, Sutter K, Hansen W, Dittmer U, Lang KS, Epple M, Buer J, Westendorf AM. Induction of Type I Interferons by Therapeutic Nanoparticle-Based Vaccination Is Indispensable to Reinforce Cytotoxic CD8 + T Cell Responses During Chronic Retroviral Infection. Front Immunol 2018; 9:614. [PMID: 29740425 PMCID: PMC5924795 DOI: 10.3389/fimmu.2018.00614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/12/2018] [Indexed: 11/29/2022] Open
Abstract
T cell dysfunction and immunosuppression are characteristic for chronic viral infections and contribute to viral persistence. Overcoming these burdens is the goal of new therapeutic strategies to cure chronic infectious diseases. We recently described that therapeutic vaccination of chronic retrovirus infected mice with a calcium phosphate (CaP) nanoparticle (NP)-based vaccine carrier, functionalized with CpG and viral peptides is able to efficiently reactivate the CD8+ T cell response and improve the eradication of virus infected cells. However, the mechanisms underlying this effect were largely unclear. While type I interferons (IFNs I) are considered to drive T cell exhaustion by persistent immune activation during chronic viral infection, we here describe an indispensable role of IFN I induced by therapeutic vaccination to efficiently reinforce cytotoxic CD8+ T cells (CTL) and improve control of chronic retroviral infection. The induction of IFN I is CpG dependent and leads to significant IFN signaling indicated by upregulation of IFN stimulated genes. By vaccinating chronically retrovirus-infected mice lacking the IFN I receptor (IFNAR−/−) or by blocking IFN I signaling in vivo during therapeutic vaccination, we demonstrate that IFN I signaling is necessary to drive full reactivation of CTLs. Surprisingly, we also identified an impaired suppressive capability of regulatory T cells in the presence of IFNα, which implicates an important role for vaccine-induced IFNα in the regulation of the T cell response during chronic retroviral infection. Our data suggest that inducing IFN I signaling in conjunction with the presentation of viral antigens can reactivate immune functions and reduce viral loads in chronic infections. Therefore, we propose CaP NPs as potential therapeutic tool to treat chronic infections.
Collapse
Affiliation(s)
- Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Olga Rotan
- Institute of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Wibke Bayer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Kollenda
- Institute of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Julia Dickow
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl S Lang
- Institute for Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Institute of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
17
|
Abstract
Tight regulation of immune responses is not only critical for preventing autoimmune diseases but also for preventing immunopathological damage during infections in which overactive immune responses may be more harmful for the host than the pathogen itself. Regulatory T cells (Tregs) play a critical role in this regulation, which was discovered using the Friend retrovirus (FV) mouse model. Subsequent FV studies revealed basic biological information about Tregs, including their suppressive activity on effector cells as well as the molecular mechanisms of virus-induced Treg expansion. Treg suppression not only limits immunopathology but also prevents complete elimination of pathogens contributing to chronic infections. Therefore, Tregs play a complex role in the pathogenesis of persistent retroviral infections. New therapeutic concepts to reactivate effector T-cell responses in chronic viral infections by manipulating Tregs also came from work with the FV model. This knowledge initiated many studies to characterize the role of Tregs in HIV pathogenesis in humans, where a complex picture is emerging. On one hand, Tregs suppress HIV-specific effector T-cell responses and are themselves targets of infection, but on the other hand, Tregs suppress HIV-induced immune hyperactivation and thus slow the infection of conventional CD4+ T cells and limit immunopathology. In this review, the basic findings from the FV mouse model are put into perspective with clinical and basic research from HIV studies. In addition, the few Treg studies performed in the simian immunodeficiency virus (SIV) monkey model will also be discussed. The review provides a comprehensive picture of the diverse role of Tregs in different retroviral infections and possible therapeutic approaches to treat retroviral chronicity and pathogenesis by manipulating Treg responses. Regulatory T cells (Tregs) play a very complex role in retroviral infections, and the balance of beneficial versus detrimental effects from Tregs can change between the acute and chronic phase of infection. Therefore, the development of therapeutics to treat chronic retroviral infections via modulation of Tregs requires detailed information regarding both the positive and negative contributions of Tregs in a particular phase of a specific infection. Here, we review the molecular mechanisms that initiate and control Treg responses in retroviral infections as well as the target cells that are functionally manipulated by Tregs. Basic findings from the Friend retrovirus mouse model that initiated this area of research are put into perspective with clinical and basic research from HIV studies. The targeted manipulation of Treg responses holds a bright future for enhancing immune responses to infections, vaccine responses, and for cure or functional cure of chronic retroviral infections.
Collapse
Affiliation(s)
- Kim J. Hasenkrug
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
18
|
Sokolova V, Shi Z, Huang S, Du Y, Kopp M, Frede A, Knuschke T, Buer J, Yang D, Wu J, Westendorf AM, Epple M. Delivery of the TLR ligand poly(I:C) to liver cells in vitro and in vivo by calcium phosphate nanoparticles leads to a pronounced immunostimulation. Acta Biomater 2017; 64:401-410. [PMID: 28963016 DOI: 10.1016/j.actbio.2017.09.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023]
Abstract
The selective activation of the immune system is a concurrent problem in the treatment of persistent diseases like viral infections (e.g. hepatitis). For the delivery of the toll-like receptor ligand poly(I:C), an immunostimulatory action was discovered earlier by hydrodynamic injection. However, this technique is not clinically transferable to human patients. A modular system where the immunoactive toll-like-receptor ligand 3 (TLR-3) poly(I:C) was incorporated into calcium phosphate nanoparticles was developed. The nanoparticles had a hydrodynamic diameter of 275nm and a zeta potential of +20mV, measured by dynamic light scattering. The diameter of the solid core was 120nm by scanning electron microscopy. In vitro, the nanoparticle uptake was investigated after 1 and 24h of incubation of THP-1 cells (macrophages) with nanoparticles by fluorescence microscopy. After intravenous injection into BALB/c and C57BL/6J mice, respectively, the in vivo uptake was especially prominent in lung and liver, 1 and 3h after the injection. Pronounced immunostimulatory effects of the nanoparticles were found in vitro with primary liver cells, i.e. Kupffer cells (KC) and liver sinusoidal endothelial cells (LSEC) from wild-type C57BL/6J mice. Thus, they represent a suitable alternative to hydrodynamic injection treatments for future vaccination concepts. STATEMENT OF SIGNIFICANCE The selective activation of the immune system is a concurrent problem in the treatment of persistent diseases like viral infections (e.g. hepatitis). For the delivery of the toll-like receptor ligand poly(I:C), an immunostimulatory action has been discovered earlier by hydrodynamic injection. However, this technique is not clinically transferable to human patients. We have developed a modular system where poly(I:C) was incorporated into calcium phosphate nanoparticles. The uptake into relevant liver cells was studied both in vitro and in vivo. After intravenous injection into mice, the in vivo uptake was especially prominent in lung and liver, 1 and 3h after the injection. The corresponding strong immune reaction proves their high potential to turn up the immune system, e.g. against viral infections, without adverse side reactions.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Zou Shi
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Shunmei Huang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Yanqin Du
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Mathis Kopp
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Annika Frede
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Torben Knuschke
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Jan Buer
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Astrid Maria Westendorf
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany.
| |
Collapse
|
19
|
Molecular adjuvants that modulate regulatory T cell function in vaccination: A critical appraisal. Pharmacol Res 2017; 129:237-250. [PMID: 29175113 DOI: 10.1016/j.phrs.2017.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Adjuvants are substances used to enhance the efficacy of vaccines. They influence the magnitude and alter the quality of the adaptive immune response to vaccine antigens by amplifying or modulating different signals involved in the innate immune response. The majority of known adjuvants have been empirically identified. The limited immunogenicity of new vaccine antigens and the need for safer vaccines have increased the importance of identifying single, well-defined adjuvants with known cellular and molecular mechanisms for rational vaccine design. Depletion or functional inhibition of CD4+CD25+FoxP3+ regulatory T cells (Tregs) by molecular adjuvants has become an emergent approach in this field. Different successful results have been obtained for specific vaccines, but there are still unresolved issues such as the risk of autoimmune disease induction, the involvement of cells other than Tregs and optimization for different conditions. This work provides a comprehensive analysis of current approaches to inhibit Tregs with molecular adjuvants for vaccine improvement, highlights the progress being made, and describes ongoing challenges.
Collapse
|
20
|
Mbofung RM, McKenzie JA, Malu S, Zhang M, Peng W, Liu C, Kuiatse I, Tieu T, Williams L, Devi S, Ashkin E, Xu C, Huang L, Zhang M, Talukder AH, Tripathi SC, Khong H, Satani N, Muller FL, Roszik J, Heffernan T, Allison JP, Lizee G, Hanash SM, Proia D, Amaria R, Davis RE, Hwu P. HSP90 inhibition enhances cancer immunotherapy by upregulating interferon response genes. Nat Commun 2017; 8:451. [PMID: 28878208 PMCID: PMC5587668 DOI: 10.1038/s41467-017-00449-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/29/2017] [Indexed: 01/05/2023] Open
Abstract
T-cell-based immunotherapies are promising treatments for cancer patients. Although durable responses can be achieved in some patients, many patients fail to respond to these therapies, underscoring the need for improvement with combination therapies. From a screen of 850 bioactive compounds, we identify HSP90 inhibitors as candidates for combination with immunotherapy. We show that inhibition of HSP90 with ganetespib enhances T-cell-mediated killing of patient-derived human melanoma cells by their autologous T cells in vitro and potentiates responses to anti-CTLA4 and anti-PD1 therapy in vivo. Mechanistic studies reveal that HSP90 inhibition results in upregulation of interferon response genes, which are essential for the enhanced killing of ganetespib treated melanoma cells by T cells. Taken together, these findings provide evidence that HSP90 inhibition can potentiate T-cell-mediated anti-tumor immune responses, and rationale to explore the combination of immunotherapy and HSP90 inhibitors. Many patients fail to respond to T cell based immunotherapies. Here, the authors, through a high-throughput screening, identify HSP90 inhibitors as a class of preferred drugs for treatment combination with immunotherapy.
Collapse
Affiliation(s)
- Rina M Mbofung
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Jodi A McKenzie
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Shruti Malu
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Min Zhang
- Department of Lymphoma/Myeloma Unit 903, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Weiyi Peng
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Chengwen Liu
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Isere Kuiatse
- Department of Lymphoma/Myeloma Unit 903, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Trang Tieu
- Institute for Applied Cancer Sciences Unit 1956, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Leila Williams
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Seram Devi
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Emily Ashkin
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Chunyu Xu
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Lu Huang
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Minying Zhang
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Amjad H Talukder
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention Unit 1013, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Hiep Khong
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Nikunj Satani
- Cancer Imaging Systems Unit 1907, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Florian L Muller
- Cancer Imaging Systems Unit 1907, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Timothy Heffernan
- Institute for Applied Cancer Sciences Unit 1956, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - James P Allison
- Department of Immunology Unit 901, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Gregory Lizee
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Sam M Hanash
- Department of Clinical Cancer Prevention Unit 1013, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - David Proia
- Synta Pharmaceuticals Inc., 45 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Rodabe Amaria
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - R Eric Davis
- Department of Lymphoma/Myeloma Unit 903, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology Unit 904, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Lin Y, Wang X, Huang X, Zhang J, Xia N, Zhao Q. Calcium phosphate nanoparticles as a new generation vaccine adjuvant. Expert Rev Vaccines 2017; 16:895-906. [DOI: 10.1080/14760584.2017.1355733] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yahua Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
- School of Life Science, Xiamen University, Xiamen, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
- School of Life Science, Xiamen University, Xiamen, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| |
Collapse
|
22
|
Kopp M, Rotan O, Papadopoulos C, Schulze N, Meyer H, Epple M. Delivery of the autofluorescent protein R-phycoerythrin by calcium phosphate nanoparticles into four different eukaryotic cell lines (HeLa, HEK293T, MG-63, MC3T3): Highly efficient, but leading to endolysosomal proteolysis in HeLa and MC3T3 cells. PLoS One 2017; 12:e0178260. [PMID: 28586345 PMCID: PMC5460861 DOI: 10.1371/journal.pone.0178260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic molecules across the cell membrane because many molecules are not able to cross the cell membrane on their own. The uptake of nanoparticles together with their cargo typically occurs via endocytosis, raising concerns about the possible degradation of the cargo in the endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and processing is not indicative of the presence of the protein itself but only for the fluorescent label, a label-free tracking was performed with the red-fluorescing model protein R-phycoerythrin (R-PE). Four different eukaryotic cell lines were investigated: HeLa, HEK293T, MG-63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa cells, the protein was found in early endosomes (shown by the marker EEA1) and lysosomes (shown by the marker Lamp1). There, it was still intact and functional (i.e. properly folded) as its red fluorescence was detected. However, a few hours after the uptake, proteolysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the protein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein degradation in lysosomes, the fluorescence of R-PE remained intact over the whole observation period in the four cell lines. These results indicate that despite an efficient nanoparticle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent the desired (e.g. therapeutic) effect of a protein inside a cell.
Collapse
Affiliation(s)
- Mathis Kopp
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Olga Rotan
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | | | - Nina Schulze
- Imaging Centre Campus Essen (ICCE), University of Duisburg-Essen, Essen, Germany
| | - Hemmo Meyer
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
23
|
Chernousova S, Epple M. Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent. Gene Ther 2017; 24:282-289. [PMID: 28218744 PMCID: PMC5442419 DOI: 10.1038/gt.2017.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/28/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
Abstract
The processing of DNA (for transfection) and short interfering RNA (siRNA; for gene silencing), introduced into HeLa cells by triple-shell calcium phosphate nanoparticles, was followed by live-cell imaging. For comparison, the commercial liposomal transfection agent Lipofectamine was used. The cells were incubated with these delivery systems, carrying either enhanced green fluorescent protein (eGFP)-encoding DNA or siRNA against eGFP. In the latter case, HeLa cells that stably expressed eGFP were used. The expression of eGFP started after 5 h in the case of nanoparticles and after 4 h in the case of Lipofectamine. The corresponding times for gene silencing were 5 h (nanoparticles) and immediately after incubation (Lipofectamine). The expression of eGFP was notably enhanced 2-3 h after cell division (mitosis). In general, the transfection and gene silencing efficiencies of the nanoparticles were lower than those of Lipofectamime, even at a substantially higher dose (factor 20) of nucleic acids. However, the cytotoxicity of the nanoparticles was lower than that of Lipofectamine, making them suitable vectors for in vivo application.
Collapse
Affiliation(s)
- S Chernousova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - M Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
24
|
Rotan O, Severin KN, Pöpsel S, Peetsch A, Merdanovic M, Ehrmann M, Epple M. Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:381-393. [PMID: 28326227 PMCID: PMC5331334 DOI: 10.3762/bjnano.8.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
The efficient intracellular delivery of (bio)molecules into living cells remains a challenge in biomedicine. Many biomolecules and synthetic drugs are not able to cross the cell membrane, which is a problem if an intracellular mode of action is desired, for example, with a nuclear receptor. Calcium phosphate nanoparticles can serve as carriers for small and large biomolecules as well as for synthetic compounds. The nanoparticles were prepared and colloidally stabilized with either polyethyleneimine (PEI; cationic nanoparticles) or carboxymethyl cellulose (CMC; anionic nanoparticles) and loaded with defined amounts of the fluorescently labelled proteins HTRA1, HTRA2, and BSA. The nanoparticles were purified by ultracentrifugation and characterized by dynamic light scattering and scanning electron microscopy. Various cell types (HeLa, MG-63, THP-1, and hMSC) were incubated with fluorescently labelled proteins alone or with protein-loaded cationic and anionic nanoparticles. The cellular uptake was followed by light and fluorescence microscopy, confocal laser scanning microscopy (CLSM), and flow cytometry. All proteins were readily transported into the cells by cationic calcium phosphate nanoparticles. Notably, only HTRA1 was able to penetrate the cell membrane of MG-63 cells in dissolved form. However, the application of endocytosis inhibitors revealed that the uptake pathway was different for dissolved HTRA1 and HTRA1-loaded nanoparticles.
Collapse
Affiliation(s)
- Olga Rotan
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Katharina N Severin
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Simon Pöpsel
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Alexander Peetsch
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Melisa Merdanovic
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Michael Ehrmann
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| |
Collapse
|