1
|
Kong W, Frouard J, Xie G, Corley MJ, Helmy E, Zhang G, Schwarzer R, Montano M, Sohn P, Roan NR, Ndhlovu LC, Gan L, Greene WC. Neuroinflammation generated by HIV-infected microglia promotes dysfunction and death of neurons in human brain organoids. PNAS NEXUS 2024; 3:pgae179. [PMID: 38737767 PMCID: PMC11086946 DOI: 10.1093/pnasnexus/pgae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
Despite the success of combination antiretroviral therapy (ART) for individuals living with HIV, mild forms of HIV-associated neurocognitive disorder (HAND) continue to occur. Brain microglia form the principal target for HIV infection in the brain. It remains unknown how infection of these cells leads to neuroinflammation, neuronal dysfunction, and/or death observed in HAND. Utilizing two different inducible pluripotent stem cell-derived brain organoid models (cerebral and choroid plexus [ChP] organoids) containing microglia, we investigated the pathogenic changes associated with HIV infection. Infection of microglia was associated with a sharp increase in CCL2 and CXCL10 chemokine gene expression and the activation of many type I interferon stimulated genes (MX1, ISG15, ISG20, IFI27, IFITM3 and others). Production of the proinflammatory chemokines persisted at low levels after treatment of the cell cultures with ART, consistent with the persistence of mild HAND following clinical introduction of ART. Expression of multiple members of the S100 family of inflammatory genes sharply increased following HIV infection of microglia measured by single-cell RNA-seq. However, S100 gene expression was not limited to microglia but was also detected more broadly in uninfected stromal cells, mature and immature ChP cells, neural progenitor cells and importantly in bystander neurons suggesting propagation of the inflammatory response to bystander cells. Neurotransmitter transporter expression declined in uninfected neurons, accompanied by increased expression of genes promoting cellular senescence and cell death. Together, these studies underscore how an inflammatory response generated in HIV-infected microglia is propagated to multiple uninfected bystander cells ultimately resulting in the dysfunction and death of bystander neurons.
Collapse
Affiliation(s)
- Weili Kong
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Julie Frouard
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guorui Xie
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael J Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ekram Helmy
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Gang Zhang
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Roland Schwarzer
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Mauricio Montano
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
| | - Peter Sohn
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Nadia R Roan
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Li Gan
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Warner C Greene
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA 94158, USA
- Gladstone Institute of Virology, San Francisco, CA 94158, USA
- Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Mediouni S, Lyu S, Schader SM, Valente ST. Forging a Functional Cure for HIV: Transcription Regulators and Inhibitors. Viruses 2022; 14:1980. [PMID: 36146786 PMCID: PMC9502519 DOI: 10.3390/v14091980] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Current antiretroviral therapy (ART) increases the survival of HIV-infected individuals, yet it is not curative. The major barrier to finding a definitive cure for HIV is our inability to identify and eliminate long-lived cells containing the dormant provirus, termed viral reservoir. When ART is interrupted, the viral reservoir ensures heterogenous and stochastic HIV viral gene expression, which can reseed infection back to pre-ART levels. While strategies to permanently eradicate the virus have not yet provided significant success, recent work has focused on the management of this residual viral reservoir to effectively limit comorbidities associated with the ongoing viral transcription still observed during suppressive ART, as well as limit the need for daily ART. Our group has been at the forefront of exploring the viability of the block-and-lock remission approach, focused on the long-lasting epigenetic block of viral transcription such that without daily ART, there is no risk of viral rebound, transmission, or progression to AIDS. Numerous studies have reported inhibitors of both viral and host factors required for HIV transcriptional activation. Here, we highlight and review some of the latest HIV transcriptional inhibitor discoveries that may be leveraged for the clinical exploration of block-and-lock and revolutionize the way we treat HIV infections.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Shuang Lyu
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Susan M. Schader
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| |
Collapse
|
3
|
Deubiquitinating Enzyme USP21 Inhibits HIV-1 Replication by Downregulating Tat Expression. J Virol 2021; 95:e0046021. [PMID: 33827943 DOI: 10.1128/jvi.00460-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ubiquitination plays an important role in human immunodeficiency virus 1 (HIV-1) infection. HIV proteins such as Vif and Vpx mediate the degradation of the host proteins APOBEC3 and SAMHD1, respectively, through the proteasome pathway. However, whether deubiquitylating enzymes play an essential role in HIV-1 infection is largely unknown. Here, we demonstrate that the deubiquitinase USP21 potently inhibits HIV-1 production by indirectly downregulating the expression of HIV-1 transactivator of transcription (Tat), which is essential for transcriptional elongation in HIV-1. USP21 deubiquitylates Tat via its deubiquitinase activity, but a stronger ability to reduce Tat expression than a dominant-negative ubiquitin mutant (Ub-KO) showed that other mechanisms may contribute to USP21-mediated inhibition of Tat. Further investigation showed that USP21 downregulates cyclin T1 mRNA levels by increasing methylation of histone K9 in the promoter of cyclin T1, a subunit of the positive transcription elongation factor b (P-TEFb) that interacts with Tat and transactivation response element (TAR) and is required for transcription stimulation and Tat stability. Moreover, USP21 had no effect on the function of other HIV-1 accessory proteins, including Vif, Vpr, Vpx, and Vpu, indicating that USP21 was specific to Tat. These findings improve our understanding of USP21-mediated functional suppression of HIV-1 production. IMPORTANCE Ubiquitination plays an essential role in viral infection. Deubiquitinating enzymes (DUBs) reverse ubiquitination by cleaving ubiquitins from target proteins, thereby affecting viral infection. The role of the members of the USP family, which comprises the largest subfamily of DUBs, is largely unknown in HIV-1 infection. Here, we screened a series of USP members and found that USP21 inhibits HIV-1 production by specifically targeting Tat but not the other HIV-1 accessory proteins. Further investigations revealed that USP21 reduces Tat expression in two ways. First, USP21 deubiquitinates polyubiquitinated Tat, causing Tat instability, and second, USP21 reduces the mRNA levels of cyclin T1 (CycT1), an important component of P-TEFb, that leads to Tat downregulation. Thus, in this study, we report a novel role of the deubiquitinase, USP21, in HIV-1 infection. USP21 represents a potentially useful target for the development of novel anti-HIV drugs.
Collapse
|
4
|
The Anti-Inflammatory Protein TNIP1 Is Intrinsically Disordered with Structural Flexibility Contributed by Its AHD1-UBAN Domain. Biomolecules 2020; 10:biom10111531. [PMID: 33182596 PMCID: PMC7697625 DOI: 10.3390/biom10111531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
TNFAIP3 interacting protein 1 (TNIP1) interacts with numerous non-related cellular, viral, and bacterial proteins. TNIP1 is also linked with multiple chronic inflammatory disorders on the gene and protein levels, through numerous single-nucleotide polymorphisms and reduced protein amounts. Despite the importance of TNIP1 function, there is limited investigation as to how its conformation may impact its apparent multiple roles. Hub proteins like TNIP1 are often intrinsically disordered proteins. Our initial in silico assessments suggested TNIP1 is natively unstructured, featuring numerous potentials intrinsically disordered regions, including the ABIN homology domain 1-ubiquitin binding domain in ABIN proteins and NEMO (AHD1-UBAN) domain associated with its anti-inflammatory function. Using multiple biophysical approaches, we demonstrate the structural flexibility of full-length TNIP1 and the AHD1-UBAN domain. We present evidence the AHD1-UBAN domain exists primarily as a pre-molten globule with limited secondary structure in solution. Data presented here suggest the previously described coiled-coil conformation of the crystallized UBAN-only region may represent just one of possibly multiple states for the AHD1-UBAN domain in solution. These data also characterize the AHD1-UBAN domain in solution as mostly monomeric with potential to undergo oligomerization under specific environmental conditions (e.g., binding partner availability, pH-dependence). This proposed intrinsic disorder across TNIP1 and within the AHD1-UBAN region is likely to impact TNIP1 function and interaction with its multiple partners.
Collapse
|
5
|
CRISPR-based gene knockout screens reveal deubiquitinases involved in HIV-1 latency in two Jurkat cell models. Sci Rep 2020; 10:5350. [PMID: 32210344 PMCID: PMC7093534 DOI: 10.1038/s41598-020-62375-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
The major barrier to a HIV-1 cure is the persistence of latent genomes despite treatment with antiretrovirals. To investigate host factors which promote HIV-1 latency, we conducted a genome-wide functional knockout screen using CRISPR-Cas9 in a HIV-1 latency cell line model. This screen identified IWS1, POLE3, POLR1B, PSMD1, and TGM2 as potential regulators of HIV-1 latency, of which PSMD1 and TMG2 could be confirmed pharmacologically. Further investigation of PSMD1 revealed that an interacting enzyme, the deubiquitinase UCH37, was also involved in HIV-1 latency. We therefore conducted a comprehensive evaluation of the deubiquitinase family by gene knockout, identifying several deubiquitinases, UCH37, USP14, OTULIN, and USP5 as possible HIV-1 latency regulators. A specific inhibitor of USP14, IU1, reversed HIV-1 latency and displayed synergistic effects with other latency reversal agents. IU1 caused degradation of TDP-43, a negative regulator of HIV-1 transcription. Collectively, this study is the first comprehensive evaluation of deubiquitinases in HIV-1 latency and establishes that they may hold a critical role.
Collapse
|
6
|
Tryptophan Metabolism Activates Aryl Hydrocarbon Receptor-Mediated Pathway To Promote HIV-1 Infection and Reactivation. mBio 2019; 10:mBio.02591-19. [PMID: 31848275 PMCID: PMC6918076 DOI: 10.1128/mbio.02591-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple cellular metabolic pathways are altered by HIV-1 infection, with an impact on immune activation, inflammation, and acquisition of non-AIDS comorbid diseases. The dysfunction of tryptophan (Trp) metabolism has been observed clinically in association with accelerated HIV-1 pathogenesis, but the underlying mechanism remains unknown. In this study, we demonstrated that the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, is activated by Trp metabolites to promote HIV-1 infection and reactivation. AHR directly binds to the HIV-1 5' long terminal repeat (5'-LTR) at the molecular level to activate viral transcription and infection, and AHR activation by Trp metabolites increases its nuclear translocation and association with the HIV 5'-LTR; moreover, the binding of AHR with HIV-1 Tat facilitates the recruitment of positive transcription factors to viral promoters. These findings not only elucidate a previously unappreciated mechanism through which cellular Trp metabolites affect HIV pathogenesis but also suggest that a downstream target AHR may be a potential target for modulating HIV-1 infection.IMPORTANCE Cellular metabolic pathways that are altered by HIV-1 infection may accelerate disease progression. Dysfunction in tryptophan (Trp) metabolism has been observed clinically in association with accelerated HIV-1 pathogenesis, but the mechanism responsible was not known. This study demonstrates that Trp metabolites augment the activation of aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, to promote HIV-1 infection and transcription. These findings not only elucidate a previously unappreciated mechanism through which cellular Trp metabolites affect HIV pathogenesis but also suggest that a downstream target AHR may be a potential target for modulating HIV-1 infection.
Collapse
|
7
|
Colomer-Lluch M, Castro-Gonzalez S, Serra-Moreno R. Ubiquitination and SUMOylation in HIV Infection: Friends and Foes. Curr Issues Mol Biol 2019; 35:159-194. [PMID: 31422939 DOI: 10.21775/cimb.035.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As intracellular parasites, viruses hijack the cellular machinery to facilitate their replication and spread. This includes favouring the expression of their viral genes over host genes, appropriation of cellular molecules, and manipulation of signalling pathways, including the post-translational machinery. HIV, the causative agent of AIDS, is notorious for using post-translational modifications to generate infectious particles. Here, we discuss the mechanisms by which HIV usurps the ubiquitin and SUMO pathways to modify both viral and host factors to achieve a productive infection, and also how the host innate sensing system uses these post-translational modifications to hinder HIV replication.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
8
|
Pinto DO, Scott TA, DeMarino C, Pleet ML, Vo TT, Saifuddin M, Kovalskyy D, Erickson J, Cowen M, Barclay RA, Zeng C, Weinberg MS, Kashanchi F. Effect of transcription inhibition and generation of suppressive viral non-coding RNAs. Retrovirology 2019; 16:13. [PMID: 31036006 PMCID: PMC6489247 DOI: 10.1186/s12977-019-0475-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 04/20/2019] [Indexed: 01/03/2023] Open
Abstract
Background HIV-1 patients receiving combination antiretroviral therapy (cART) survive infection but require life-long adherence at high expense. In chronic cART-treated patients with undetectable viral titers, cell-associated viral RNA is still detectable, pointing to low-level viral transcriptional leakiness. To date, there are no FDA-approved drugs against HIV-1 transcription. We have previously shown that F07#13, a third generation Tat peptide mimetic with competitive activity against Cdk9/T1-Tat binding sites, inhibits HIV-1 transcription in vitro and in vivo. Results Here, we demonstrate that increasing concentrations of F07#13 (0.01, 0.1, 1 µM) cause a decrease in Tat levels in a dose-dependent manner by inhibiting the Cdk9/T1-Tat complex formation and subsequent ubiquitin-mediated Tat sequestration and degradation. Our data indicate that complexes I and IV contain distinct patterns of ubiquitinated Tat and that transcriptional inhibition induced by F07#13 causes an overall reduction in Tat levels. This reduction may be triggered by F07#13 but ultimately is mediated by TAR-gag viral RNAs that bind suppressive transcription factors (similar to 7SK, NRON, HOTAIR, and Xist lncRNAs) to enhance transcriptional gene silencing and latency. These RNAs complex with PRC2, Sin3A, and Cul4B, resulting in epigenetic modifications. Finally, we observed an F07#13-mediated decrease of viral burden by targeting the R region of the long terminal repeat (HIV-1 promoter region, LTR), promoting both paused polymerases and increased efficiency of CRISPR/Cas9 editing in infected cells. This implies that gene editing may be best performed under a repressed transcriptional state. Conclusions Collectively, our results indicate that F07#13, which can terminate RNA Polymerase II at distinct sites, can generate scaffold RNAs, which may assemble into specific sets of “RNA Machines” that contribute to gene regulation. It remains to be seen whether these effects can also be seen in various clades that have varying promoter strength, mutant LTRs, and in patient samples. Electronic supplementary material The online version of this article (10.1186/s12977-019-0475-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Tristan A Scott
- Center for Gene Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Thy T Vo
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Mohammed Saifuddin
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Dmytro Kovalskyy
- Protein Engineering Department, Institute of Molecular Biology and Genetics, UAS, Kiev, Ukraine
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Robert A Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Marc S Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Wits/SA MRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA. .,Laboratory of Molecular Virology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA, 20110, USA.
| |
Collapse
|
9
|
Lata S, Mishra R, Banerjea AC. Proteasomal Degradation Machinery: Favorite Target of HIV-1 Proteins. Front Microbiol 2018; 9:2738. [PMID: 30524389 PMCID: PMC6262318 DOI: 10.3389/fmicb.2018.02738] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Proteasomal degradation pathways play a central role in regulating a variety of protein functions by controlling not only their turnover but also the physiological behavior of the cell. This makes it an attractive target for the pathogens, especially viruses which rely on the host cellular machinery for their propagation and pathogenesis. Viruses have evolutionarily developed various strategies to manipulate the host proteasomal machinery thereby creating a cellular environment favorable for their own survival and replication. Human immunodeficiency virus-1 (HIV-1) is one of the most dreadful viruses which has rapidly spread throughout the world and caused high mortality due to its high evolution rate. Here, we review the various mechanisms adopted by HIV-1 to exploit the cellular proteasomal machinery in order to escape the host restriction factors and components of host immune system for supporting its own multiplication, and successfully created an infection.
Collapse
Affiliation(s)
- Sneh Lata
- Virology Lab II, National Institute of Immunology, New Delhi, India
| | - Ritu Mishra
- Virology Lab II, National Institute of Immunology, New Delhi, India
| | - Akhil C Banerjea
- Virology Lab II, National Institute of Immunology, New Delhi, India
| |
Collapse
|
10
|
Chen L, Chen L, Zuo L, Gao Z, Shi Y, Yuan P, Han S, Yin J, Peng B, He X, Liu W. Short Communication: Long Noncoding RNA GAS5 Inhibits HIV-1 Replication Through Interaction with miR-873. AIDS Res Hum Retroviruses 2018; 34:544-549. [PMID: 29620929 DOI: 10.1089/aid.2017.0177] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HIV is the causative pathogen of AIDS, which has generated worldwide concern. Long noncoding RNAs (lncRNAs) are a rising star in virus-host cross-talk pathways; they are differentially expressed during many viral infections and are involved in multiple biological processes. Currently, lncRNA growth arrest-specific transcript 5 (GAS5) is known to be downregulated during HIV-1 infection. However, the functions and mechanisms of GAS5 in HIV-1 infection remain largely unknown. In this report, it was found for the first time that GAS5 could inhibit HIV-1 replication. Interestingly, using bioinformatics analyses (with Genomica and starBase.v2.0), GAS5 was found to potentially interact with miR-873. It was further verified that GAS5 could suppress miR-873. Moreover, miR-873 could promote HIV-1 replication. Together, these results not only suggest that GAS5 may inhibit HIV-1 replication through interaction with miR-873 but the results may also provide novel biomarkers for antiviral drugs or potential targets for future therapeutics for HIV/AIDS.
Collapse
Affiliation(s)
- Liujun Chen
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lang Chen
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Luoshiyuan Zuo
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Ziang Gao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yingying Shi
- Department of Immunology, Jianghan University, Wuhan, China
| | - Peipei Yuan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Jun Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
SUN2 Modulates HIV-1 Infection and Latency through Association with Lamin A/C To Maintain the Repressive Chromatin. mBio 2018; 9:mBio.02408-17. [PMID: 29717016 PMCID: PMC5930302 DOI: 10.1128/mbio.02408-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The postintegrational latency of HIV-1 is characterized by reversible silencing of long terminal repeat (LTR)-driven transcription of the HIV genome. It is known that the formation of repressive chromatin at the 5′-LTR of HIV-1 proviral DNA impedes viral transcription by blocking the recruitment of positive transcription factors. How the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. Elucidation of which chromatin reassembly factor mediates the reorganization of chromatin is likely to facilitate the understanding of the host’s modulation of HIV-1 transcription and latency. Here we revealed that “Sad1 and UNC84 domain containing 2” (SUN2), an inner nuclear membrane protein, maintained the repressive chromatin and inhibited HIV LTR-driven transcription of proviral DNA through an association with lamin A/C. Specifically, lamin A/C tethered SUN2 to the nucleosomes 1 and 2 of the HIV-1 5′-LTR to block the initiation and elongation of HIV-1 transcription. SUN2 knockdown converted chromatin to an active form and thus enhanced the phosphorylation of RNA polymerase II and its recruitment to the 5′-LTR HIV-1 proviral DNA, leading to reactivation of HIV-1 from latency. Conversely, the exogenous factors such as tumor necrosis factor alpha (TNF-α) induced reactivation, and the replication of HIV-1 led to the disassociation between SUN2 and lamin A/C, suggesting that disruption of the association between SUN2 and lamin A/C to convert the repressive chromatin to the active form might be a prerequisite for the initiation of HIV-1 transcription and replication. Together, our findings indicate that SUN2 is a novel chromatin reassembly factor that helps to maintain chromatin in a repressive state and consequently inhibits HIV-1 transcription. Despite the successful use of scores of antiretroviral drugs, HIV latency poses a major impediment to virus eradication. Elucidation of the mechanism of latency facilitates the discovery of new therapeutic strategies. It has been known that the formation of repressive chromatin at the 5′-LTR of HIV-1 proviral DNA impedes viral transcription and maintains viral latency, but how the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. In this study, we performed in-depth virological and cell biological studies and discovered that an inner nuclear membrane protein, SUN2, is a novel chromatin reassembly factor that maintains repressive chromatin and thus modulates HIV-1 transcription and latency: therefore, targeting SUN2 may lead to new strategies for HIV cure.
Collapse
|
12
|
Ma Y, Yuan S, Tian X, Lin S, Wei S, Hu T, Chen S, Li X, Chen S, Wu D, Wang M, Guo D. ABIN1 inhibits HDAC1 ubiquitination and protects it from both proteasome- and lysozyme-dependent degradation. J Cell Biochem 2017; 119:3030-3043. [PMID: 29058807 DOI: 10.1002/jcb.26428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
ABIN1, an important immune regulator, has been shown to be involved in various cellular functions, such as immunity, development, tissue homeostasis, and tumor progression. It inhibits TNF- and TLR-induced NF-κB signaling activation and the consequent gene expression. Despite its functional significance, the mechanism of ABIN1 in the regulation of various cellular functions remains unclear. In this study, we identified HDAC1, a key regulator of eukaryotic gene expression and many important cellular events, including cell proliferation, differentiation, cancer and immunity, as an interacting partner of ABIN1. The results showed that ABIN1 acted as a modulator to down-regulate HDAC1 ubiquitination via three different linkages, thereby stabilizing HDAC1 by inhibiting its lysosomal and proteasomal degradation. Interestingly, the inhibitory function of ABIN1 required direct binding with HDAC1. Moreover, the level of p53, which was a tumor suppressor and a well-studied substrate of HDAC1, was under the regulation of ABIN1 via the modulation of HDAC1 levels, suggesting that ABIN1 was physiologically significant in tumor progression. This study has revealed a new function of ABIN1 in mediating HDAC1 modification and stability.
Collapse
Affiliation(s)
- Yuhong Ma
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Sen Yuan
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Xuezhang Tian
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shanchuan Lin
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shangmou Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Tongtong Hu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shiyou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Xueqing Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Dongcheng Wu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Min Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China.,School of Basic Medicine (Shenzhen), Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|