1
|
Min M, Egli C, Dulai AS, Sivamani RK. Critical review of aging clocks and factors that may influence the pace of aging. FRONTIERS IN AGING 2024; 5:1487260. [PMID: 39735686 PMCID: PMC11671503 DOI: 10.3389/fragi.2024.1487260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024]
Abstract
Background and objectives Aging clocks are computational models designed to measure biological age and aging rate based on age-related markers including epigenetic, proteomic, and immunomic changes, gut and skin microbiota, among others. In this narrative review, we aim to discuss the currently available aging clocks, ranging from epigenetic aging clocks to visual skin aging clocks. Methods We performed a literature search on PubMed/MEDLINE databases with keywords including: "aging clock," "aging," "biological age," "chronological age," "epigenetic," "proteomic," "microbiome," "telomere," "metabolic," "inflammation," "glycomic," "lifestyle," "nutrition," "diet," "exercise," "psychosocial," and "technology." Results Notably, several CpG regions, plasma proteins, inflammatory and immune biomarkers, microbiome shifts, neuroimaging changes, and visual skin aging parameters demonstrated roles in aging and aging clock predictions. Further analysis on the most predictive CpGs and biomarkers is warranted. Limitations of aging clocks include technical noise which may be corrected with additional statistical techniques, and the diversity and applicability of samples utilized. Conclusion Aging clocks have significant therapeutic potential to better understand aging and the influence of chronic inflammation and diseases in an expanding older population.
Collapse
Affiliation(s)
- Mildred Min
- Integrative Research Institute, Sacramento, CA, United States
- Integrative Skin Science and Research, Sacramento, CA, United States
- College of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Caitlin Egli
- Integrative Research Institute, Sacramento, CA, United States
- Integrative Skin Science and Research, Sacramento, CA, United States
- College of Medicine, University of St. George’s, University Centre, West Indies, Grenada
| | - Ajay S. Dulai
- Integrative Research Institute, Sacramento, CA, United States
- Integrative Skin Science and Research, Sacramento, CA, United States
| | - Raja K. Sivamani
- Integrative Research Institute, Sacramento, CA, United States
- Integrative Skin Science and Research, Sacramento, CA, United States
- College of Medicine, California Northstate University, Elk Grove, CA, United States
- Pacific Skin Institute, Sacramento, CA, United States
- Department of Dermatology, University of California-Davis, Sacramento, CA, United States
| |
Collapse
|
2
|
Anitua E, Tierno R, Martínez de Lagrán Z, Alkhraisat MH. Bioactive Effect of Plasma-Rich in Growth Factors (PRGFs) on Cell-Based In Vitro Models of Skin Inflammation in Relation to Inflammatory Skin Disorders. Cureus 2024; 16:e74252. [PMID: 39712761 PMCID: PMC11663451 DOI: 10.7759/cureus.74252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Plasma rich in growth factors (PRGFs) has proven potentially beneficial as a bioregenerator in patients with chronic skin disorders due to its anti-inflammatory effect. However, its therapeutic potential may be limited by soluble autoimmune components associated with inflammatory dermatoses in blood plasma. To evaluate the impact of skin health status on cell bioactivity, PRGF was prepared from healthy (H) donors as well as from individuals with atopic dermatitis (AD), psoriasis (PS), or lichen sclerosus (LS). Leukocyte exclusion and heat inactivation (Immunosafe treatment) were evaluated as potential methods to reduce the inflammatory components of the samples under study. The biological effect of PRGF-derived formulations was investigated using cell-based in vitro skin inflammation models, including human dermal fibroblasts (HDFs) and human epidermal keratinocytes (HEKs) exposed to a pro-inflammatory environment. The data confirmed that viability, proliferation, and migration rates were enhanced in inflamed cell cultures supplemented with PRGF formulations compared to those maintained in standard culture media. Nevertheless, significant differences have been identified. About the healthy control, inflamed epidermal keratinocytes supplemented with most PRGF-based formulations obtained from pathological donors (PS/LS) showed lower viability. Heat inactivation significantly promoted cell proliferation in epidermal keratinocytes supplemented with SP (PS/LS) and L-PRP supernatant (LSP) samples (AD), and also cell migration in inflamed HDF (AD/H/LS) and HEK (AD/LS) models supplemented with LSP. Leukocyte exclusion improved cell behavior in terms of migration with the only exception of LSP from individuals with AD added to inflamed HEK cultures. In conclusion, PRGF derived from pathological patients contains autoimmune components that could compromise its effectiveness as a therapy for treating individuals with chronic inflammatory disorders. However, heat inactivation (Immunosafe treatment) or leukocyte exclusion could minimize local adverse effects.
Collapse
Affiliation(s)
- Eduardo Anitua
- Medicine, University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, ESP
- Regenerative Medicine, Biotechnology Institute (BTI), Vitoria, ESP
| | - Roberto Tierno
- Medicine, University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, ESP
- Regenerative Medicine, Biotechnology Institute (BTI), Vitoria, ESP
| | | | - Mohammad H Alkhraisat
- Medicine, University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, ESP
- Regenerative Medicine, Biotechnology Institute (BTI), Vitoria, ESP
| |
Collapse
|
3
|
Macit B, Ragi SD, Moseley I, Molino J, McGeary JE, Horvath S, Qureshi A, Reginato AM, Cho E. A case-control study: epigenetic age acceleration in psoriasis. Arch Dermatol Res 2024; 316:340. [PMID: 38847964 DOI: 10.1007/s00403-024-03075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 04/26/2024] [Indexed: 09/11/2024]
Abstract
Psoriasis (PsO) is a chronic inflammatory skin condition, often accompanied by psoriatic arthritis (PsA) and linked to various comorbidities and increased mortality rates. This study aimed to explore the relationship between PsO and accelerated biological aging, specifically focusing on epigenetic DNA methylation clocks. Using a matched case-control design, 20 PsO cases were selected along with age, race, and sex-matched 20 controls without PsO from the Skin Disease Biorepository at Brown Dermatology, Inc, Providence, Rhode Island. Blood samples retrieved from both groups were analyzed for DNA methylation, and epigenetic ages were calculated using DNA methylation clocks, including Horvath, Hannum, Pheno, SkinBlood, and Grim ages. Generalized estimation equations were employed to test the differences in epigenetic and chronological ages between PsO cases and controls, as well as within various subgroups in comparison to their respective controls. There were no statistically significant differences in epigenetic ages between PsO cases and controls. However, notably, PsO cases with PsA demonstrated an accelerated PhenoAge, compared to their matched controls. This study represents a pioneering investigation into the potential link between PsO and epigenetic aging, shedding light on the possibility of accelerated epigenetic aging in PsA, possibly associated with heightened inflammatory burden. These findings emphasize the systemic impact of PsA on the aging process, prompting the need for deeper exploration into autoimmune pathways, inflammation, and epigenetic modifications underlying PsO pathogenesis and aging mechanisms. Larger-scale studies with diverse populations are imperative to discern PsO subgroups experiencing accelerated biological aging and decipher the intricate interplay between PsO, inflammation, and aging pathways.
Collapse
Affiliation(s)
- Betul Macit
- Department of Dermatology, Warren Alpert Medical School, Brown University, 339 Eddy Street, Providence, RI, 02903, USA
| | - Sara D Ragi
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Isabelle Moseley
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Janine Molino
- Department of Orthopedics, Rhode Island Hospital Providence, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - John E McGeary
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- VA Center of Innovation in Long Term Services, Providence VA Medical Center, Providence, RI, USA
| | - Steve Horvath
- Department of Human Genetics, Gonda Research Center, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Biostatistics, School of Public Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Abrar Qureshi
- Department of Dermatology, Warren Alpert Medical School, Brown University, 339 Eddy Street, Providence, RI, 02903, USA
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - Anthony M Reginato
- Department of Dermatology, Warren Alpert Medical School, Brown University, 339 Eddy Street, Providence, RI, 02903, USA
- Division of Rheumatology, Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Eunyoung Cho
- Department of Dermatology, Warren Alpert Medical School, Brown University, 339 Eddy Street, Providence, RI, 02903, USA.
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Roig-Genoves JV, García-Giménez JL, Mena-Molla S. A miRNA-based epigenetic molecular clock for biological skin-age prediction. Arch Dermatol Res 2024; 316:326. [PMID: 38822910 PMCID: PMC11144124 DOI: 10.1007/s00403-024-03129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Skin aging is one of the visible characteristics of the aging process in humans. In recent years, different biological clocks have been generated based on protein or epigenetic markers, but few have focused on biological age in the skin. Arrest the aging process or even being able to restore an organism from an older to a younger stage is one of the main challenges in the last 20 years in biomedical research. We have implemented several machine learning models, including regression and classification algorithms, in order to create an epigenetic molecular clock based on miRNA expression profiles of healthy subjects to predict biological age-related to skin. Our best models are capable of classifying skin samples according to age groups (18-28; 29-39; 40-50; 51-60 or 61-83 years old) with an accuracy of 80% or predict age with a mean absolute error of 10.89 years using the expression levels of 1856 unique miRNAs. Our results suggest that this kind of epigenetic clocks arises as a promising tool with several applications in the pharmaco-cosmetic industry.
Collapse
Affiliation(s)
| | - José Luis García-Giménez
- Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, 46010, Spain
- INCLIVA Health Research Institute, INCLIVA, Valencia, 46010, Spain
- EpiDisease S.L (Spin-off from the CIBER-ISCIII), Parc Científic de la Universitat de Valencia, Paterna, 46980, Spain
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Spain
| | - Salvador Mena-Molla
- INCLIVA Health Research Institute, INCLIVA, Valencia, 46010, Spain.
- EpiDisease S.L (Spin-off from the CIBER-ISCIII), Parc Científic de la Universitat de Valencia, Paterna, 46980, Spain.
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Spain.
| |
Collapse
|
5
|
Beranek M, Borsky P, Fiala Z, Andrys C, Hamakova K, Chmelarova M, Kovarikova H, Karas A, Kremlacek J, Palicka V, Borska L. Telomere length, oxidative and epigenetic changes in blood DNA of patients with exacerbated psoriasis vulgaris. An Bras Dermatol 2023; 98:68-74. [PMID: 36319514 PMCID: PMC9837651 DOI: 10.1016/j.abd.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The pathogenesis of psoriasis vulgaris involves changes in DNA molecules, genomic instability, telomere attrition, and epigenetic alterations among them. These changes are also considered important mechanisms of aging in cells and tissues. OBJECTIVE This study dealt with oxidation damage, telomere length and methylation status in DNA originating from peripheral blood of 41 psoriatic patients and 30 healthy controls. METHODS Oxidative damage of serum DNA/RNA was determined immunochemically. Real-time PCR was used for the analysis of the telomere length. ELISA technique determined levels of 5-methylcytosine in blood cells' DNA. RESULTS Oxidative damage of serum DNA/RNA was higher in patients than in controls (median, 3758 vs. 2286pg/mL, p<0.001). A higher length of telomeres per chromosome was found in patients whole-cell DNA than in controls (3.57 vs. 3.04 kilobases, p=0.011). A negative correlation of the length of telomeres with an age of the control subjects was revealed (Spearman's rho=-0.420, p=0.028). Insignificantly different levels of 5-methylcytosine in patients and controls were observed (33.20 vs. 23.35%, p=0.234). No influences of sex, smoking, BMI, PASI score, and metabolic syndrome on the methylation status were found. STUDY LIMITATIONS i) A relatively small number of the participants, particularly for reliable subgroup analyses, ii) the Caucasian origin of the participants possibly influencing the results of the parameters determined, and iii) Telomerase activity was not directly measured in serum or blood cells. CONCLUSION The study demonstrated increased levels of oxidized DNA/RNA molecules in the serum of patients with exacerbated psoriasis vulgaris. The results were minimally influenced by sex, the presence of metabolic syndrome, or cigarette smoking. In the psoriatic blood cells' DNA, the authors observed longer telomeres compared to healthy controls, particularly in females. Insignificantly higher global DNA methylation in psoriasis cases compared to the controls indicated marginal clinical importance of this epigenetic test performed in the blood cells' DNA.
Collapse
Affiliation(s)
- Martin Beranek
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic,Department of Biochemical Sciences, Faculty of Pharmacy, Hradec Kralove, Charles University, Czech Republic,Corresponding author.
| | - Pavel Borsky
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Kvetoslava Hamakova
- Clinic of Dermatology and Venereology, University Hospital Hradec Kralove, Czech Republic
| | - Marcela Chmelarova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Helena Kovarikova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Adam Karas
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Jan Kremlacek
- Department of Medical Biophysics, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Lenka Borska
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| |
Collapse
|
6
|
Sonkodi B. Psoriasis, Is It a Microdamage of Our "Sixth Sense"? A Neurocentric View. Int J Mol Sci 2022; 23:11940. [PMID: 36233237 PMCID: PMC9569707 DOI: 10.3390/ijms231911940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022] Open
Abstract
Psoriasis is considered a multifactorial and heterogeneous systemic disease with many underlying pathologic mechanisms having been elucidated; however, the pathomechanism is far from entirely known. This opinion article will demonstrate the potential relevance of the somatosensory Piezo2 microinjury-induced quad-phasic non-contact injury model in psoriasis through a multidisciplinary approach. The primary injury is suggested to be on the Piezo2-containing somatosensory afferent terminals in the Merkel cell−neurite complex, with the concomitant impairment of glutamate vesicular release machinery in Merkel cells. Part of the theory is that the Merkel cell−neurite complex contributes to proprioception; hence, to the stretch of the skin. Piezo2 channelopathy could result in the imbalanced control of Piezo1 on keratinocytes in a clustered manner, leading to dysregulated keratinocyte proliferation and differentiation. Furthermore, the author proposes the role of mtHsp70 leakage from damaged mitochondria through somatosensory terminals in the initiation of autoimmune and autoinflammatory processes in psoriasis. The secondary phase is harsher epidermal tissue damage due to the primary impaired proprioception. The third injury phase refers to re-injury and sensitization with the derailment of healing to a state when part of the wound healing is permanently kept alive due to genetical predisposition and environmental risk factors. Finally, the quadric damage phase is associated with the aging process and associated inflammaging. In summary, this opinion piece postulates that the primary microinjury of our “sixth sense”, or the Piezo2 channelopathy of the somatosensory terminals contributing to proprioception, could be the principal gateway to pathology due to the encroachment of our preprogrammed genetic encoding.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Sciences, 1123 Budapest, Hungary
| |
Collapse
|
7
|
Fatás-Lalana B, Cantón-Sandoval J, Rodríguez-Ruiz L, Corbalán-Vélez R, Martínez-Menchón T, Pérez-Oliva AB, Mulero V. Impact of Comorbidities of Patients with Psoriasis on Phototherapy Responses. Int J Mol Sci 2022; 23:ijms23179508. [PMID: 36076906 PMCID: PMC9455671 DOI: 10.3390/ijms23179508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
A retrospective study of 200 psoriasis patients and 100 healthy donors in a Spanish cohort was carried out to study the comorbidities associated with psoriasis and their association with the response to phototherapy. The results showed a higher incidence of psychiatric disease, liver disease, kidney disease, hypertension, heart disease, vascular disease, diabetes, gastrointestinal disease, autoimmune and infectious diseases, dyslipidemia, and psoriatic arthritis in patients with psoriasis than in the control group. The incidence of comorbidities was higher in psoriasis patients over 40 years old than in the control individuals of the same age, which could be indicative of premature aging. Phototherapy was seen to be an effective treatment in cases of moderate-severe psoriasis, total whitening being achieved in more than 30% of patients, with women showing a better response than men. Narrow-band ultraviolet B was found to be the most effective type of phototherapy, although achievement of PASI100 was lower in patients with liver disease, hypertension, heart disease, vascular disease, or diabetes. Strikingly, liver disease and anemia comorbidities favored therapeutic failure. Finally, zebrafish and human 3D organotypic models of psoriasis point to the therapeutic benefit of inhibiting the glucose transporter GLUT1 and the major regulator of blood glucose dipeptidyl peptidase 4. Our study reveals that specific comorbidities of psoriasis patients are associated to failure of phototherapy and, therefore, need to be considered when planning treatment for these patients.
Collapse
Affiliation(s)
- Belén Fatás-Lalana
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Joaquín Cantón-Sandoval
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lola Rodríguez-Ruiz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Raúl Corbalán-Vélez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Servicio de Dermatología, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Teresa Martínez-Menchón
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Dermatología, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Correspondence: (T.M.-M.); (A.B.P.-O.); (V.M.)
| | - Ana B. Pérez-Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (T.M.-M.); (A.B.P.-O.); (V.M.)
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (T.M.-M.); (A.B.P.-O.); (V.M.)
| |
Collapse
|
8
|
Chromosomal Aberrations and Oxidative Stress in Psoriatic Patients with and without Metabolic Syndrome. Metabolites 2022; 12:metabo12080688. [PMID: 35893255 PMCID: PMC9331653 DOI: 10.3390/metabo12080688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Psoriasis and metabolic syndrome (MetS), a common comorbidity of psoriasis, are associated with mild chronic systemic inflammation that increases oxidative stress and causes cell and tissue damage. At the cellular level, chromosomal and DNA damage has been documented, thus confirming their genotoxic effect. The main objective of our study was to show the genotoxic potential of chronic inflammation and determine whether the presence of both pathologies increases chromosomal damage compared to psoriasis alone and to evaluate whether there are correlations between selected parameters and chromosomal aberrations in patients with psoriasis and MetS psoriasis. Clinical examination (PASI score and MetS diagnostics according to National Cholesterol Education Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults; NCE/ATPIII criteria), biochemical analysis of blood samples (fasting glucose, total cholesterol, low density and high density lipoproteins; LDL, HDL, non-HDL, and triglycerides;TAG), DNA/RNA oxidative damage, and chromosomal aberration test were performed in 41 participants (20 patients with psoriasis without MetS and 21 with MetS and psoriasis). Our results showed that patients with psoriasis without metabolic syndrome (nonMetS) and psoriasis and MetS had a higher rate of chromosomal aberrations than the healthy population for which the limit of spontaneous, natural aberration was <2%. No significant differences in the aberration rate were found between the groups. However, a higher aberration rate (higher than 10%) and four numerical aberrations were documented only in the MetS group. We found no correlations between the number of chromosomal aberrations and the parameters tested except for the correlation between aberrations and HDL levels in nonMetS patients (rho 0.44; p < 0.02). Interestingly, in the MetS group, a higher number of chromosomal aberrations was documented in non-smokers compared to smokers. Data from our current study revealed an increased number of chromosomal aberrations in patients with psoriasis and MetS compared to the healthy population, especially in psoriasis with MetS, which could increase the genotoxic effect of inflammation and the risk of genomic instability, thus increasing the risk of carcinogenesis.
Collapse
|
9
|
Karas A, Holmannova D, Borsky P, Fiala Z, Andrys C, Hamakova K, Svadlakova T, Palicka V, Krejsek J, Rehacek V, Esterkova M, Kovarikova H, Borska L. Significantly Altered Serum Levels of NAD, AGE, RAGE, CRP, and Elastin as Potential Biomarkers of Psoriasis and Aging—A Case-Control Study. Biomedicines 2022; 10:biomedicines10051133. [PMID: 35625870 PMCID: PMC9138308 DOI: 10.3390/biomedicines10051133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 01/11/2023] Open
Abstract
Background: This study aims to investigate potential markers of psoriasis and aging, and to elucidate possible connections between these two processes. Methods: The serum samples of 60 psoriatic patients and 100 controls were analysed, and the levels of four selected parameters (AGEs, RAGE, NAD, and elastin) were determined using commercial ELISA kits. Serum C-reactive protein was assayed using an immune-nephelometry method. Findings: Among the patients, the levels of CRP, AGEs, and RAGE were all increased, while the levels of NAD were reduced when compared to the control group. A negative correlation between the levels of AGEs and NAD was found. A negative correlation between age and the NAD levels among the control group was observed, however among the patients the relationship was diminished. While there was no difference in the levels of native elastin between the patients and the controls, a positive correlation between the levels of native elastin and age and a negative correlation between the levels of native elastin and the severity of psoriasis were found. Conclusions: The results of our study support the notion of psoriasis and possibly other immune-mediated diseases accelerating the aging process through sustained systemic damage. The serum levels of CRP, NAD, AGEs, and RAGE appear to be promising potential biomarkers of psoriasis. The decrease in the serum levels of NAD is associated with (pro)inflammatory states. Our analysis indicates that the levels of native elastin might strongly reflect both the severity of psoriasis and the aging process.
Collapse
Affiliation(s)
- Adam Karas
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
- Correspondence: ; Tel.: +420-495-816-386
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Kvetoslava Hamakova
- Clinic of Dermal and Venereal Diseases, University Hospital, 500 03 Hradec Kralove, Czech Republic;
| | - Tereza Svadlakova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (V.P.); (H.K.)
| | - Jan Krejsek
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Vit Rehacek
- Transfusion Center, University Hospital, 500 03 Hradec Kralove, Czech Republic;
| | - Monika Esterkova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Helena Kovarikova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (V.P.); (H.K.)
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| |
Collapse
|