1
|
Worsaae K, Rouan A, Seaver E, Miyamoto N, Tilic E. Postembryonic development and male paedomorphosis in Osedax (Siboglinidae, Annelida). Front Neurosci 2024; 18:1369274. [PMID: 38562300 PMCID: PMC10984269 DOI: 10.3389/fnins.2024.1369274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
Most species of the bone-devouring marine annelid, Osedax, display distinct sexual dimorphism with macroscopic sedentary females rooted in bones and free-living microscopic dwarf males. The paedomorphic male resembles the non-feeding metatrochophore larva in size, presence of eight pairs of chaetae, and a head ciliation potentially representing a residual prototroch. The male development may thus uniquely reiterate and validate the theoretical heterochrony process "progenesis", which suggests that an accelerated sexual maturation and early arrest of somatic growth can lead to a miniaturized and paedomorphic adult. In this study, we describe the postembryonic larval and juvenile organogenesis of Osedax japonicus to test for a potential synchronous arrest of somatic growth during male development. Five postembryonic stages could be distinguished, resembling day one to five in the larval development at 10°C: (0D) first cleavage of fertilized eggs (embryos undergo unequal spiral cleavage), (1D) pre-trochophore, with apical organ, (2D) early trochophore, + prototroch, brain, circumesophageal connectives and subesophageal commissure, (3D) trochophore, + telotroch, four ventral nerves, (4D) early metatrochophore, + protonephridia, dorsal and terminal sensory organs, (5D) metatrochophore, + two ventral paratrochs, mid-ventral nerve, posterior trunk commissure, two dorsal nerves; competent for metamorphosis. The larval development largely mirrors that of other lecithotrophic annelid larvae but does not show continuous chaetogenesis or full gut development. Additionally, O. japonicus larvae exhibit an unpaired, mid-dorsal, sensory organ. Female individuals shed their larval traits during metamorphosis and continue organogenesis (including circulatory system) and extensive growth for 2-3 weeks before developing oocytes. In contrast, males develop sperm within a day of metamorphosis and display a synchronous metamorphic arrest in neural and muscular development, retaining a large portion of larval features post metamorphosis. Our findings hereby substantiate male miniaturization in Osedax to be the outcome of an early and synchronous offset of somatic development, fitting the theoretical process "progenesis". This may be the first compelling morpho-developmental exemplification of a progenetic origin of a microscopic body plan. The presented morphological staging system will further serve as a framework for future examination of molecular patterns and pathways determining Osedax development.
Collapse
Affiliation(s)
- Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alice Rouan
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elaine Seaver
- The Whitney Laboratory for Marine Bioscience, University of Florida, Gainesville, FL, United States
| | - Norio Miyamoto
- X-STAR, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Ekin Tilic
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Frankfurt, Germany
| |
Collapse
|
2
|
Martín-Zamora FM, Liang Y, Guynes K, Carrillo-Baltodano AM, Davies BE, Donnellan RD, Tan Y, Moggioli G, Seudre O, Tran M, Mortimer K, Luscombe NM, Hejnol A, Marlétaz F, Martín-Durán JM. Annelid functional genomics reveal the origins of bilaterian life cycles. Nature 2023; 615:105-110. [PMID: 36697830 PMCID: PMC9977687 DOI: 10.1038/s41586-022-05636-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 12/07/2022] [Indexed: 01/26/2023]
Abstract
Indirect development with an intermediate larva exists in all major animal lineages1, which makes larvae central to most scenarios of animal evolution2-11. Yet how larvae evolved remains disputed. Here we show that temporal shifts (that is, heterochronies) in trunk formation underpin the diversification of larvae and bilaterian life cycles. We performed chromosome-scale genome sequencing in the annelid Owenia fusiformis with transcriptomic and epigenomic profiling during the life cycles of this and two other annelids. We found that trunk development is deferred to pre-metamorphic stages in the feeding larva of O. fusiformis but starts after gastrulation in the non-feeding larva with gradual metamorphosis of Capitella teleta and the direct developing embryo of Dimorphilus gyrociliatus. Accordingly, the embryos of O. fusiformis develop first into an enlarged anterior domain that forms larval tissues and the adult head12. Notably, this also occurs in the so-called 'head larvae' of other bilaterians13-17, with which the O. fusiformis larva shows extensive transcriptomic similarities. Together, our findings suggest that the temporal decoupling of head and trunk formation, as maximally observed in head larvae, facilitated larval evolution in Bilateria. This diverges from prevailing scenarios that propose either co-option9,10 or innovation11 of gene regulatory programmes to explain larva and adult origins.
Collapse
Affiliation(s)
| | - Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Kero Guynes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Billie E Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Rory D Donnellan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Yongkai Tan
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Giacomo Moggioli
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Océane Seudre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Martin Tran
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Kate Mortimer
- Department of Natural Sciences, Amgueddfa Cymru-Museum Wales, Cardiff, UK
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Andreas Hejnol
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Institute of Zoology and Evolutionary Research, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Ferdinand Marlétaz
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Starunova ZI, Shunkina KV, Novikova EL, Starunov VV. Histamine and gamma-aminobutyric acid in the nervous system of Pygospio elegans (Annelida: Spionidae): structure and recovery during reparative regeneration. BMC ZOOL 2022; 7:58. [PMID: 37170300 PMCID: PMC10127018 DOI: 10.1186/s40850-022-00160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
In recent two decades, studies of the annelid nervous systems were revolutionized by modern cell labeling techniques and state-of-the-art microscopy techniques. However, there are still huge gaps in our knowledge on the organization and functioning of their nervous system. Most of the recent studies have focused on the distribution of serotonin and FMRFamide, while the data about many other basic neurotransmitters such as histamine (HA) and gamma-aminobutyric acid (GABA) are scarce.
Results
Using immunohistochemistry and confocal microscopy we studied the distribution of histamine and gamma-aminobutyric acid in the nervous system of a spionid annelid Pygospio elegans and traced their redevelopment during reparative regeneration. Both neurotransmitters show specific patterns in central and peripheral nervous systems. HA-positive cells are concentrated mostly in the brain, while GABA-positive cell somata contribute equally to brain and segmental ganglia. Some immunoreactive elements were found in peripheral nerves. Both substances were revealed in high numbers in bipolar sensory cells in the palps. The first signs of regenerating HAergic and GABAergic systems were detected only by 3 days after the amputation. Further redevelopment of GABAergic system proceeds faster than that of HAergic one.
Conclusions
Comparisons with other annelids and mollusks examined in this respect revealed a number of general similarities in distribution patterns of HAergic and GABAergic cells in different species. Overall, the differences in the full redevelopment of various neurotransmitters correlate with neuronal development during embryogenesis. Our results highlight the importance of investigating the distribution of different neurotransmitters in comparative morphological and developmental studies.
Collapse
|
4
|
Zaitseva OV, Smirnov RV, Starunova ZI, Vedenin AA, Starunov VV. Sensory cells and the organization of the peripheral nervous system of the siboglinid Oligobrachia haakonmosbiensis Smirnov, 2000. BMC ZOOL 2022; 7:16. [PMID: 37170298 PMCID: PMC10127031 DOI: 10.1186/s40850-022-00114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The nervous system of siboglinids has been studied mainly in Osedax and some Vestimentifera, while data in Frenulata – one of the four pogonophoran main branches – is still fragmentary. In most of the studies, the focus is almost always on the central nervous system, while the peripheral nervous system has traditionally received little attention. In contrast to other annelids, the structure and diversity of sensory structures in siboglinids are still quite undescribed. Meanwhile, the peripheral nervous system, as well as sensory elements, are extremely evolutionarily labile, and information about their organization is of high importance to understand lifestyles and behavior as well as main trends that lead siboglinids to their peculiar organization.
Results
The structure of the peripheric nervous system, sensory elements, and neuromuscular relationships of Oligobrachia haakonmosbiensis were studied using both scanning electron and confocal laser microscopy. A significant number of monociliary sensory cells, as well as sensory complexes located diffusely in the epithelium of the whole body were revealed. The latter include the cephalic tentacles, sensory cells accumulations along the dorsal furrow and ciliary band, areas of the openings of the tubiparous glands, and papillae. The oval ciliary spot located on the cephalic lobe at the base of the tentacles can also be regarded as a sensory organ. Most of the detected sensory cells show immunoreactivity to substance P and/or acetylated α-tubulin. FMRFamide- and serotonin-like immunoreactivity are manifested by neurons that mainly innervate tentacles, muscles, body wall epithelium, skin glands, tubiparous glands, and papillae. In the larva of O. haakonmosbiensis, monociliary sensory elements were revealed in the region of the apical organ, along the body, and on the pygidium.
Conclusions
The diversity of sensory structures in O. haakonmosbiensis comprises epidermal solitary sensory cells, sensory spots around tubiparous glands openings, and putative sensory organs such as cephalic tentacles, an oval ciliary spot on the cephalic lobe, the dorsal furrow, and papillae. Sensory structures associated with papillae and tubiparous glands play presumable mechanosensory functions and are associated with regulation of tube building as well as anchorage of the worm inside the tube. Sensory structures of the dorsal furrow are presumably engaged in the regulation of reproductive behavior. An overall low level of morphological differentiation of O. haakonmosbiensis peripheral nervous system is not typical even for annelids with the intraepithelial nervous system. This can be considered as a plesiomorphic feature of its peripheral plexus’s organization, or as evidence for the neotenic origin of Siboglinidae.
Collapse
|
5
|
Fofanova E, Mayorova TD, Voronezhskaya EE. Dinophiliformia early neurogenesis suggests the evolution of conservative neural structures across the Annelida phylogenetic tree. PeerJ 2021; 9:e12386. [PMID: 34966573 PMCID: PMC8667735 DOI: 10.7717/peerj.12386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022] Open
Abstract
Despite the increasing data concerning the structure of the adult nervous system in various Lophotrochozoa groups, the early events during the neurogenesis of rare and unique groups need clarification. Annelida are a diverse clade of Lophotrochozoa, and their representatives demonstrate a variety of body plans, lifestyles, and life cycles. Comparative data about the early development are available for Errantia, Sedentaria, Sipuncula, and Palaeoannelida; however, our knowledge of Dinophiliformia is currently scarce. Representatives of Dinophiliformia are small interstitial worms combining unique morphological features of different Lophotrochozoan taxa and expressing paedomorphic traits. We describe in detail the early neurogenesis of two related species: Dimorphilus gyrociliatus and Dinophilus vorticoides, from the appearance of first nerve cells until the formation of an adult body plan. In both species, the first cells were detected at the anterior and posterior regions at the early trochophore stage and demonstrated positive reactions with pan-neuronal marker anti-acetylated tubulin only. Long fibers of early cells grow towards each other and form longitudinal bundles along which differentiating neurons later appear and send their processes. We propose that these early cells serve as pioneer neurons, forming a layout of the adult nervous system. The early anterior cell of D. vorticoides is transient and present during the short embryonic period, while early anterior and posterior cells in D. gyrociliatus are maintained throughout the whole lifespan of the species. During development, the growing processes of early cells form compact brain neuropile, paired ventral and lateral longitudinal bundles; unpaired medial longitudinal bundle; and commissures in the ventral hyposphere. Specific 5-HT- and FMRFa-immunopositive neurons differentiate adjacent to the ventral bundles and brain neuropile in the middle trochophore and late trochophore stages, i.e. after the main structures of the nervous system have already been established. Processes of 5-HT- and FMRFa-positive cells constitute a small proportion of the tubulin-immunopositive brain neuropile, ventral cords, and commissures in all developmental stages. No 5-HT- and FMRFa-positive cells similar to apical sensory cells of other Lophotrochozoa were detected. We conclude that: (i) like in Errantia and Sedentaria, Dinophiliformia neurogenesis starts from the peripheral cells, whose processes prefigure the forming adult nervous system, (ii) Dinophiliformia early cells are negative to 5-HT and FMRFa antibodies like Sedentaria pioneer cells.
Collapse
Affiliation(s)
- Elizaveta Fofanova
- Department of Comparative and Developmental Physiology, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| | - Tatiana D Mayorova
- Department of Comparative and Developmental Physiology, Koltzov Institute of Developmental Biology RAS, Moscow, Russia.,Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Elena E Voronezhskaya
- Department of Comparative and Developmental Physiology, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|
6
|
Slyusarev GS, Bondarenko NI, Skalon EK, Rappoport AK, Radchenko D, Starunov VV. The structure of the muscular and nervous systems of the orthonectid Rhopalura litoralis (Orthonectida) or what parasitism can do to an annelid. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00519-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Carrillo-Baltodano AM, Seudre O, Guynes K, Martín-Durán JM. Early embryogenesis and organogenesis in the annelid Owenia fusiformis. EvoDevo 2021; 12:5. [PMID: 33971947 PMCID: PMC8111721 DOI: 10.1186/s13227-021-00176-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Annelids are a diverse group of segmented worms within Spiralia, whose embryos exhibit spiral cleavage and a variety of larval forms. While most modern embryological studies focus on species with unequal spiral cleavage nested in Pleistoannelida (Sedentaria + Errantia), a few recent studies looked into Owenia fusiformis, a member of the sister group to all remaining annelids and thus a key lineage to understand annelid and spiralian evolution and development. However, the timing of early cleavage and detailed morphogenetic events leading to the formation of the idiosyncratic mitraria larva of O. fusiformis remain largely unexplored. RESULTS Owenia fusiformis undergoes equal spiral cleavage where the first quartet of animal micromeres are slightly larger than the vegetal macromeres. Cleavage results in a coeloblastula approximately 5 h post-fertilization (hpf) at 19 °C. Gastrulation occurs via invagination and completes 4 h later, with putative mesodermal precursors and the chaetoblasts appearing 10 hpf at the dorso-posterior side. Soon after, at 11 hpf, the apical tuft emerges, followed by the first neurons (as revealed by the expression of elav1 and synaptotagmin-1) in the apical organ and the prototroch by 13 hpf. Muscles connecting the chaetal sac to various larval tissues develop around 18 hpf and by the time the mitraria is fully formed at 22 hpf, there are FMRFamide+ neurons in the apical organ and prototroch, the latter forming a prototrochal ring. As the mitraria feeds, it grows in size and the prototroch expands through active proliferation. The larva becomes competent after ~ 3 weeks post-fertilization at 15 °C, when a conspicuous juvenile rudiment has formed ventrally. CONCLUSIONS Owenia fusiformis embryogenesis is similar to that of other equal spiral cleaving annelids, supporting that equal cleavage is associated with the formation of a coeloblastula, gastrulation via invagination, and a feeding trochophore-like larva in Annelida. The nervous system of the mitraria larva forms earlier and is more elaborated than previously recognized and develops from anterior to posterior, which is likely an ancestral condition to Annelida. Altogether, our study identifies the major developmental events during O. fusiformis ontogeny, defining a conceptual framework for future investigations.
Collapse
Affiliation(s)
| | - Océane Seudre
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Kero Guynes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - José María Martín-Durán
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
8
|
Abstract
Members of the following marine annelid families are found almost exclusively in the interstitial environment and are highly adapted to move between sand grains, relying mostly on ciliary locomotion: Apharyngtidae n. fam., Dinophilidae, Diurodrilidae, Nerillidae, Lobatocerebridae, Parergodrilidae, Polygordiidae, Protodrilidae, Protodriloididae, Psammodrilidae and Saccocirridae. This article provides a review of the evolution, systematics, and diversity of these families, with the exception of Parergodrilidae, which was detailed in the review of Orbiniida by Meca, Zhadan, and Struck within this Special Issue. While several of the discussed families have previously only been known by a few described species, recent surveys inclusive of molecular approaches have increased the number of species, showing that all of the aforementioned families exhibit a high degree of cryptic diversity shadowed by a limited number of recognizable morphological traits. This is a challenge for studies of the evolution, taxonomy, and diversity of interstitial families as well as for their identification and incorporation into ecological surveys. By compiling a comprehensive and updated review on these interstitial families, we hope to promote new studies on their intriguing evolutionary histories, adapted life forms and high and hidden diversity.
Collapse
|
9
|
Conservative route to genome compaction in a miniature annelid. Nat Ecol Evol 2020; 5:231-242. [PMID: 33199869 PMCID: PMC7854359 DOI: 10.1038/s41559-020-01327-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
The causes and consequences of genome reduction in animals are unclear because our understanding of this process mostly relies on lineages with often exceptionally high rates of evolution. Here, we decode the compact 73.8-megabase genome of Dimorphilus gyrociliatus, a meiobenthic segmented worm. The D. gyrociliatus genome retains traits classically associated with larger and slower-evolving genomes, such as an ordered, intact Hox cluster, a generally conserved developmental toolkit and traces of ancestral bilaterian linkage. Unlike some other animals with small genomes, the analysis of the D. gyrociliatus epigenome revealed canonical features of genome regulation, excluding the presence of operons and trans-splicing. Instead, the gene-dense D. gyrociliatus genome presents a divergent Myc pathway, a key physiological regulator of growth, proliferation and genome stability in animals. Altogether, our results uncover a conservative route to genome compaction in annelids, reminiscent of that observed in the vertebrate Takifugu rubripes. This study reports the genome of the miniature segmented annelid Dimorphilus gyrociliatus and reveals no drastic changes in genome architecture and regulation, unlike other cases of genome miniaturization.
Collapse
|
10
|
Worsaae K, Kerbl A, Vang Á, Gonzalez BC. Broad North Atlantic distribution of a meiobenthic annelid - against all odds. Sci Rep 2019; 9:15497. [PMID: 31664164 PMCID: PMC6820731 DOI: 10.1038/s41598-019-51765-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/30/2019] [Indexed: 01/10/2023] Open
Abstract
DNA barcoding and population genetic studies have revealed an unforeseen hidden diversity of cryptic species among microscopic marine benthos, otherwise exhibiting highly similar and simple morphologies. This has led to a paradigm shift, rejecting cosmopolitism of marine meiofauna until genetically proven and challenging the "Everything is Everywhere, but the environment selects" hypothesis that claims ubiquitous distribution of microscopic organisms. With phylogenetic and species delimitation analyses of worldwide genetic samples of the meiofaunal family Dinophilidae (Annelida) we here resolve three genera within the family and showcase an exceptionally broad, boreal, North Atlantic distribution of a single microscopic marine species with no obvious means of dispersal besides vicariance. With its endobenthic lifestyle, small size, limited migratory powers and lack of pelagic larvae, the broad distribution of Dinophilus vorticoides seems to constitute a "meiofaunal paradox". This species feasts in the biofilm among sand grains, but also on macroalgae and ice within which it can likely survive long-distance rafting dispersal due to its varying lifecycle stages; eggs encapsulated in cocoons and dormant encystment stages. Though often neglected and possibly underestimated among marine microscopic species, dormancy may be a highly significant factor for explaining wide distribution patterns and a key to solving this meiofaunal paradox.
Collapse
Affiliation(s)
- Katrine Worsaae
- University of Copenhagen, Department of Biology, Marine Biological Section, Universitetsparken 4, 2100, Copenhagen Ø, Denmark.
| | - Alexandra Kerbl
- University of Copenhagen, Department of Biology, Marine Biological Section, Universitetsparken 4, 2100, Copenhagen Ø, Denmark
| | - Áki Vang
- University of Copenhagen, Department of Biology, Marine Biological Section, Universitetsparken 4, 2100, Copenhagen Ø, Denmark
| | - Brett C Gonzalez
- University of Copenhagen, Department of Biology, Marine Biological Section, Universitetsparken 4, 2100, Copenhagen Ø, Denmark.
- Smithsonian Institution, National Museum of Natural History, Department of Invertebrate Zoology, MRC-163, P.O. BOX 37012, Washington, D.C., 20013, USA.
| |
Collapse
|
11
|
Kerbl A, Winther Tolstrup E, Worsaae K. Nerves innervating copulatory organs show common FMRFamide, FVRIamide, MIP and serotonin immunoreactivity patterns across Dinophilidae (Annelida) indicating their conserved role in copulatory behaviour. BMC ZOOL 2019. [DOI: 10.1186/s40850-019-0045-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Males of the microscopic annelid family Dinophilidae use their prominent glandomuscular copulatory organ (penis) to enzymatically dissolve the female’s epidermis and thereafter inject sperm. In order to test for putative conserved copulatory structures and neural orchestration across three dinophilid species, we reconstructed the reproductive myo- and neuroanatomy and mapped immunoreactivity patterns against two specific neurotransmitter markers with reported roles in invertebrate male mating behaviour (FVRIamide, MIP) and three general neural markers (acetylated α-tubulin, serotonin, FMRFamide).
Results
Seminal vesicles (one or two pairs), surrounded by a thin layer of longitudinal and circular muscles and innervated by neurites, are found between testes and copulatory organ in the larger males of Dinophilus vorticoides and Trilobodrilus axi, but are missing in the only 0.05 mm long D. gyrociliatus dwarf males. The midventral copulatory organ is in all species composed of an outer muscular penis sheath and an inner penis cone. Neurites encircle the organ equatorially, either as a ring-shaped circumpenial fibre mass or as dorsal and ventral commissures, which are connected to the ventrolateral nerve cords. All three examined dinophilids show similar immunoreactivity patterns against serotonin, FMRFamide, and FVRIamide in the neurons surrounding the penis, supporting the hypotheses about the general involvement of these neurotransmitters in copulatory behaviour in dinophilids. Immunoreactivity against MIP is restricted to the circumpenial fibre mass in D. gyrociliatus and commissures around the penis in T. axi (but not found in D. vorticoides), indicating its role in controlling the copulatory organ.
Conclusions
The overall myo- and neuroanatomy of the reproductive organs is rather similar in the three studied species, suggesting a common ancestry of the unpaired glandomuscular copulatory organ and its innervation in Dinophilidae. This is furthermore supported by the similar immunoreactivity patterns against the tested neurotransmitters around the penis. Smaller differences in the immunoreactivity patterns around the seminal vesicles and spermioducts might account for additional, individual traits. We thus show morphological support for the putatively conserved role of FMRFamide, FVRIamide, MIP and serotonin in dinophilid copulatory behaviour.
Collapse
|
12
|
Gąsiorowski L, Furu A, Hejnol A. Morphology of the nervous system of monogonont rotifer Epiphanes senta with a focus on sexual dimorphism between feeding females and dwarf males. Front Zool 2019; 16:33. [PMID: 31406495 PMCID: PMC6686465 DOI: 10.1186/s12983-019-0334-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 11/23/2022] Open
Abstract
Background Monogononta is a large clade of rotifers comprised of diverse morphological forms found in a wide range of ecological habitats. Most monogonont species display cyclical parthenogenesis, where generations of asexually reproducing females are interspaced by mixis events when sexual reproduction occurs between mictic females and dwarf, haploid males. The morphology of monogonont feeding females is relatively well described, however data on male anatomy are very limited. Thus far, male musculature of only two species has been described with confocal laser scanning microscopy (CLSM) and it remains unknown how dwarfism influences the neuroanatomy of males on detailed level. Results Here, we provide a CLSM-based description of the nervous system of both sexes of Epiphanes senta, a freshwater monogonont rotifer. The general nervous system architecture is similar between males and females and shows a similar level of complexity. However, the nervous system in males is more compact and lacks a stomatogastric part. Conclusion Comparison of the neuroanatomy between male and normal-sized feeding females provides a better understanding of the nature of male dwarfism in Monogononta. We propose that dwarfism of monogonont non-feeding males is the result of a specific case of heterochrony, called “proportional dwarfism” as they, due to their inability to feed, retain a juvenile body size, but still develop a complex neural architecture comparable to adult females. Reduction of the stomatogastric nervous system in the males correlates with the loss of the entire digestive tract and associated morphological structures. Electronic supplementary material The online version of this article (10.1186/s12983-019-0334-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlens Gate 55, N-5006 Bergen, Norway
| | - Anlaug Furu
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlens Gate 55, N-5006 Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlens Gate 55, N-5006 Bergen, Norway
| |
Collapse
|
13
|
Starunov VV. The organization of musculature and the nervous system in the pygidial region of phyllodocid annelids. ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-018-00430-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Rimskaya-Korsakova NN, Galkin SV, Malakhov VV. The neuroanatomy of the siboglinid Riftia pachyptila highlights sedentarian annelid nervous system evolution. PLoS One 2018; 13:e0198271. [PMID: 30543637 PMCID: PMC6292602 DOI: 10.1371/journal.pone.0198271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/24/2018] [Indexed: 12/28/2022] Open
Abstract
Tracing the evolution of the siboglinid group, peculiar group of marine gutless annelids, requires the detailed study of the fragmentarily explored central nervous system of vestimentiferans and other siboglinids. 3D reconstructions of the neuroanatomy of Riftia revealed that the "brain" of adult vestimentiferans is a fusion product of the supraesophageal and subesophageal ganglia. The supraesophageal ganglion-like area contains the following neural structures that are homologous to the annelid elements: the peripheral perikarya of the brain lobes, two main transverse commissures, mushroom-like structures, commissural cell cluster, and the circumesophageal connectives with two roots which give rise to the palp neurites. Three pairs of giant perikarya are located in the supraesophageal ganglion, giving rise to the paired giant axons. The circumesophageal connectives run to the VNC. The subesophageal ganglion-like area contains a tripartite ventral aggregation of perikarya (= the postoral ganglion of the VNC) interconnected by the subenteral commissure. The paired VNC is intraepidermal, not ganglionated over most of its length, associated with the ciliary field, and comprises the giant axons. The pairs of VNC and the giant axons fuse posteriorly. Within siboglinids, the vestimentiferans are distinguished by a large and considerably differentiated brain. This reflects the derived development of the tentacle crown. The tentacles of vestimentiferans are homologous to the annelid palps based on their innervation from the dorsal and ventral roots of the circumesophageal connectives. Neuroanatomy of the vestimentiferan brains is close to the brains of Cirratuliiformia and Spionida/Sabellida, which have several transverse commissures, specific position of the giant somata (if any), and palp nerve roots (if any). The palps and palp neurite roots originally developed in all main annelid clades (basally branching, errantian and sedentarian annelids), show the greatest diversity in their number in sedentarian species. Over the course of evolution of Sedentaria, the number of palps and their nerve roots either dramatically increased (as in vestimentiferan siboglinids) or were lost.
Collapse
Affiliation(s)
| | - Sergey V. Galkin
- Laboratory of Ocean Benthic Fauna, Shirshov Institute of Oceanology of the Russian Academy of Science, Moscow, Russia
| | - Vladimir V. Malakhov
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
15
|
Slyusarev GS, Nesterenko MA, Starunov VV. The structure of the muscular and nervous systems of the maleIntoshialinei(Orthonectida). ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- George S. Slyusarev
- Department of Invertebrate Zoology, Faculty of BiologySaint Petersburg State University Saint Petersburg Russia
| | - Maksim A. Nesterenko
- Department of Invertebrate Zoology, Faculty of BiologySaint Petersburg State University Saint Petersburg Russia
| | - Viktor V. Starunov
- Department of Invertebrate Zoology, Faculty of BiologySaint Petersburg State University Saint Petersburg Russia
- Zoological institute RAS Saint Petersburg Russia
| |
Collapse
|
16
|
Helm C, Beckers P, Bartolomaeus T, Drukewitz SH, Kourtesis I, Weigert A, Purschke G, Worsaae K, Struck TH, Bleidorn C. Convergent evolution of the ladder-like ventral nerve cord in Annelida. Front Zool 2018; 15:36. [PMID: 30275868 PMCID: PMC6161469 DOI: 10.1186/s12983-018-0280-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A median, segmented, annelid nerve cord has repeatedly been compared to the arthropod and vertebrate nerve cords and became the most used textbook representation of the annelid nervous system. Recent phylogenomic analyses, however, challenge the hypothesis that a subepidermal rope-ladder-like ventral nerve cord (VNC) composed of a paired serial chain of ganglia and somata-free connectives represents either a plesiomorphic or a typical condition in annelids. RESULTS Using a comparative approach by combining phylogenomic analyses with morphological methods (immunohistochemistry and CLSM, histology and TEM), we compiled a comprehensive dataset to reconstruct the evolution of the annelid VNC. Our phylogenomic analyses generally support previous topologies. However, the so far hard-to-place Apistobranchidae and Psammodrilidae are now incorporated among the basally branching annelids with high support. Based on this topology we reconstruct an intraepidermal VNC as the ancestral state in Annelida. Thus, a subepidermal ladder-like nerve cord clearly represents a derived condition. CONCLUSIONS Based on the presented data, a ladder-like appearance of the ventral nerve cord evolved repeatedly, and independently of the transition from an intraepidermal to a subepidermal cord during annelid evolution. Our investigations thereby propose an alternative set of neuroanatomical characteristics for the last common ancestor of Annelida or perhaps even Spiralia.
Collapse
Affiliation(s)
- Conrad Helm
- Animal Evolution and Biodiversity, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Patrick Beckers
- Institute of Evolutionary Biology and Ecology, University of Bonn, 53121 Bonn, Germany
| | - Thomas Bartolomaeus
- Institute of Evolutionary Biology and Ecology, University of Bonn, 53121 Bonn, Germany
| | | | - Ioannis Kourtesis
- Animal Evolution and Biodiversity, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Anne Weigert
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Günter Purschke
- Department of Developmental Biology and Zoology, University of Osnabrück, 49069 Osnabrück, Germany
| | - Katrine Worsaae
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Torsten H. Struck
- Frontiers in Evolutionary Zoology, Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, NO-0318 Oslo, Norway
| | - Christoph Bleidorn
- Animal Evolution and Biodiversity, Georg-August-University Göttingen, 37073 Göttingen, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Korshunova T, Lundin K, Malmberg K, Picton B, Martynov A. First true brackish-water nudibranch mollusc provides new insights for phylogeny and biogeography and reveals paedomorphosis-driven evolution. PLoS One 2018; 13:e0192177. [PMID: 29538398 PMCID: PMC5851531 DOI: 10.1371/journal.pone.0192177] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/16/2018] [Indexed: 11/18/2022] Open
Abstract
A unique example of brackish water fjord-related diversification of a new nudibranch genus and species Bohuslania matsmichaeli gen. n., sp. n. is presented. There are only few previously known brackish-water opisthobranchs and B. matsmichaeli gen. n., sp. n. is the first ever described brackish-water nudibranch with such an extremely limited known geographical range and apparently strict adherence to salinity levels lower than 20 per mille. Up to date the new taxon has been found only in a very restricted area in the Idefjord, bordering Sweden and Norway, but not in any other apparently suitable localities along the Swedish and Norwegian coasts. We also show in this study for the first time the molecular phylogenetic sister relationship between the newly discovered genus Bohuslania and the genus Cuthona. This supports the validity of the family Cuthonidae, which was re-established recently. Furthermore, it contributes to the understanding of the evolutionary patterns and classification of the whole group Nudibranchia. Molecular and morphological data indicate that brackish water speciation was triggered by paedomorphic evolution among aeolidacean nudibranchs at least two times independently. Thus, the present discovery of this new nudibranch genus contributes to several biological fields, including integration of molecular and morphological data as well as phylogenetic and biogeographical patterns.
Collapse
Affiliation(s)
- Tatiana Korshunova
- Koltzov Institute of Developmental Biology, Moscow, Russia
- Zoological Museum of the Moscow State University, Moscow, Russia
| | - Kennet Lundin
- Gothenburg Natural History museum, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | | | - Bernard Picton
- National Museums Northern Ireland, Cultra, United Kingdom
| | | |
Collapse
|
18
|
Worsaae K, Giribet G, Martínez A. The role of progenesis in the diversification of the interstitial annelid lineage Psammodrilidae. INVERTEBR SYST 2018. [DOI: 10.1071/is17063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Psammodrilidae constitutes a family of understudied, nearly completely ciliated, small-sized annelids, whose systematic position in Annelida remains unsettled and whose internal phylogeny is here investigated for the first time. Psammodrilids possess hooked chaetae typical of macroscopic tube-dwelling semi-sessile annelids, such as Arenicolidae. Yet, several minute members resemble, with their conspicuous gliding by ciliary motion and vagile lifestyle, interstitial fauna, adapted to move between sand grains. Moreover, psammodrilids exhibit a range of unique features, for example, bendable aciculae, a collar region with polygonal unciliated cells, and a muscular pumping pharynx. We here present a combined phylogeny of Psammodrilidae including molecular and morphological data of all eight described species (two described herein as Psammodrilus didomenicoi, sp. nov. and P. norenburgi, sp. nov.) as well as four undescribed species. Ancestral character state reconstruction suggests the ancestor of Psammodrilidae was a semi-sessile larger form. Miniaturisation seems to have occurred multiple times independently within Psammodrilidae, possibly through progenesis, yielding small species with resemblance to a juvenile stage of the larger species. We find several new cryptic species and generally reveal an unexpected diversity and distribution of this small family. This success may be favoured by their adaptive morphology, here indicated to be genetically susceptible to progenesis.
Collapse
|
19
|
Kerbl A, Conzelmann M, Jékely G, Worsaae K. High diversity in neuropeptide immunoreactivity patterns among three closely related species of Dinophilidae (Annelida). J Comp Neurol 2017; 525:3596-3635. [PMID: 28744909 DOI: 10.1002/cne.24289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/23/2017] [Accepted: 07/07/2017] [Indexed: 12/31/2022]
Abstract
Neuropeptides are conserved metazoan signaling molecules, and represent useful markers for comparative investigations on the morphology and function of the nervous system. However, little is known about the variation of neuropeptide expression patterns across closely related species in invertebrate groups other than insects. In this study, we compare the immunoreactivity patterns of 14 neuropeptides in three closely related microscopic dinophilid annelids (Dinophilus gyrociliatus, D. taeniatus and Trilobodrilus axi). The brains of all three species were found to consist of around 700 somata, surrounding a central neuropil with 3-5 ventral and 2-5 dorsal commissures. Neuropeptide immunoreactivity was detected in the brain, the ventral cords, stomatogastric nervous system, and additional nerves. Different neuropeptides are expressed in specific, non-overlapping cells in the brain in all three species. FMRFamide, MLD/pedal peptide, allatotropin, RNamide, excitatory peptide, and FVRIamide showed a broad localization within the brain, while calcitonin, SIFamide, vasotocin, RGWamide, DLamide, FLamide, FVamide, MIP, and serotonin were present in fewer cells in demarcated regions. The different markers did not reveal ganglionic subdivisions or physical compartmentalization in any of these microscopic brains. The non-overlapping expression of different neuropeptides may indicate that the regionalization in these uniform, small brains is realized by individual cells, rather than cell clusters, representing an alternative to the lobular organization observed in several macroscopic annelids. Furthermore, despite the similar gross brain morphology, we found an unexpectedly high variation in the expression patterns of neuropeptides across species. This suggests that neuropeptide expression evolves faster than morphology, representing a possible mechanism for the evolutionary divergence of behaviors.
Collapse
Affiliation(s)
- Alexandra Kerbl
- Marine Biological Section - Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Katrine Worsaae
- Marine Biological Section - Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|