1
|
Nouri R, Mashanov V, Harris A, New G, Taylor W, Janies D, Reid RW, Jacob Machado D. Unveiling putative modulators of mutable collagenous tissue in the brittle star Ophiomastix wendtii: an RNA-Seq analysis. BMC Genomics 2024; 25:1013. [PMID: 39472826 PMCID: PMC11520437 DOI: 10.1186/s12864-024-10926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Collagenous connective tissue, found throughout the bodies of metazoans, plays a crucial role in maintaining structural integrity. This versatile tissue has the potential for numerous biomedical applications, including the development of innovative collagen-based biomaterials. Inspiration for such advancements can be drawn from echinoderms, a group of marine invertebrates that includes sea stars, sea cucumbers, brittle stars, sea urchins, and sea lilies. Through their nervous system, these organisms can reversibly control the pliability of their connective tissue components (i.e., tendons and ligaments) that are composed of mutable collagenous tissue (MCT). The variable tensile properties of the MCT allow echinoderms to perform unique functions, including postural maintenance, reduction of muscular energy use, autotomy to avoid predators, and asexual reproduction through fission. The changes in the tensile strength of MCT structures are specifically controlled by specialized neurosecretory cells called juxtaligamental cells. These cells release substances that either soften or stiffen the MCT. So far, only a few of these substances have been purified and characterized, and the genetic underpinning of MCT biology remains unknown. Therefore, we have conducted this research to identify MCT-related genes in echinoderms as a first step towards a better understanding of the MCT molecular control mechanisms. Our ultimate goal is to unlock new biomaterial applications based on this knowledge. In this project, we used RNA-Seq to identify and annotate differentially expressed genes in the MCT structures of the brittle star Ophiomastix wendtii. As a result, we present a list of 16 putative MCT modulator genes, which will be validated and characterized in forthcoming functional analyses.
Collapse
Affiliation(s)
- Reyhaneh Nouri
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, 28223, NC, USA
- Computational Intelligence to Predict Health and Environmental Risks (CIPHER) Research Center, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, 28223, NC, USA
| | - Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, 27101, NC, USA
| | - April Harris
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, 28223, NC, USA
| | - Gari New
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, 28223, NC, USA
| | - William Taylor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, 28223, NC, USA
| | - Daniel Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, 28223, NC, USA
- Computational Intelligence to Predict Health and Environmental Risks (CIPHER) Research Center, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, 28223, NC, USA
| | - Robert W Reid
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, 28223, NC, USA
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, 28223, NC, USA.
- Computational Intelligence to Predict Health and Environmental Risks (CIPHER) Research Center, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, 28223, NC, USA.
| |
Collapse
|
2
|
Candia Carnevali MD, Sugni M, Bonasoro F, Wilkie IC. Mutable Collagenous Tissue: A Concept Generator for Biomimetic Materials and Devices. Mar Drugs 2024; 22:37. [PMID: 38248662 PMCID: PMC10817530 DOI: 10.3390/md22010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Echinoderms (starfish, sea-urchins and their close relations) possess a unique type of collagenous tissue that is innervated by the motor nervous system and whose mechanical properties, such as tensile strength and elastic stiffness, can be altered in a time frame of seconds. Intensive research on echinoderm 'mutable collagenous tissue' (MCT) began over 50 years ago, and over 20 years ago, MCT first inspired a biomimetic design. MCT, and sea-cucumber dermis in particular, is now a major source of ideas for the development of new mechanically adaptable materials and devices with applications in diverse areas including biomedical science, chemical engineering and robotics. In this review, after an up-to-date account of present knowledge of the structural, physiological and molecular adaptations of MCT and the mechanisms responsible for its variable tensile properties, we focus on MCT as a concept generator surveying biomimetic systems inspired by MCT biology, showing that these include both bio-derived developments (same function, analogous operating principles) and technology-derived developments (same function, different operating principles), and suggest a strategy for the further exploitation of this promising biological resource.
Collapse
Affiliation(s)
- M. Daniela Candia Carnevali
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.D.C.C.); (M.S.); (F.B.)
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.D.C.C.); (M.S.); (F.B.)
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (M.D.C.C.); (M.S.); (F.B.)
| | - Iain C. Wilkie
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Mashanov V, Ademiluyi S, Jacob Machado D, Reid R, Janies D. Echinoderm radial glia in adult cell renewal, indeterminate growth, and regeneration. Front Neural Circuits 2023; 17:1258370. [PMID: 37841894 PMCID: PMC10570448 DOI: 10.3389/fncir.2023.1258370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Echinoderms are a phylum of marine deterostomes with a range of interesting biological features. One remarkable ability is their impressive capacity to regenerate most of their adult tissues, including the central nervous system (CNS). The research community has accumulated data that demonstrates that, in spite of the pentaradial adult body plan, echinoderms share deep similarities with their bilateral sister taxa such as hemichordates and chordates. Some of the new data reveal the complexity of the nervous system in echinoderms. In terms of the cellular architecture, one of the traits that is shared between the CNS of echinoderms and chordates is the presence of radial glia. In chordates, these cells act as the main progenitor population in CNS development. In mammals, radial glia are spent in embryogenesis and are no longer present in adults, being replaced with other neural cell types. In non-mammalian chordates, they are still detected in the mature CNS along with other types of glia. In echinoderms, radial glia also persist into the adulthood, but unlike in chordates, it is the only known glial cell type that is present in the fully developed CNS. The echinoderm radial glia is a multifunctional cell type. Radial glia forms the supporting scaffold of the neuroepithelium, exhibits secretory activity, clears up dying or damaged cells by phagocytosis, and, most importantly, acts as a major progenitor cell population. The latter function is critical for the outstanding developmental plasticity of the adult echinoderm CNS, including physiological cell turnover, indeterminate growth, and a remarkable capacity to regenerate major parts following autotomy or traumatic injury. In this review we summarize the current knowledge on the organization and function of the echinoderm radial glia, with a focus on the role of this cell type in adult neurogenesis.
Collapse
Affiliation(s)
- Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Soji Ademiluyi
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Robert Reid
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Daniel Janies
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
4
|
Feng Y, Piñon Gonzalez VM, Lin M, Egertová M, Mita M, Elphick MR. Localization of relaxin-like gonad-stimulating peptide expression in starfish reveals the gonoducts as a source for its role as a regulator of spawning. J Comp Neurol 2023; 531:1299-1316. [PMID: 37212624 PMCID: PMC10952978 DOI: 10.1002/cne.25496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023]
Abstract
Oocyte maturation and gamete release (spawning) in starfish are triggered by relaxin-like gonad-stimulating peptide (RGP), a neuropeptide that was first isolated from the radial nerve cords of these animals. Hitherto, it has generally been assumed that the radial nerve cords are the source of RGP that triggers spawning physiologically. To investigate other sources of RGP, here we report the first comprehensive anatomical analysis of its expression, using both in situ hybridization and immunohistochemistry to map RGP precursor transcripts and RGP, respectively, in the starfish Asterias rubens. Cells expressing RGP precursor transcripts were revealed in the ectoneural epithelium of the radial nerve cords and circumoral nerve ring, arm tips, tube feet, cardiac stomach, pyloric stomach, and, most notably, gonoducts. Using specific antibodies to A. rubens RGP, immunostaining was revealed in cells and/or fibers in the ectoneural region of the radial nerve cords and circumoral nerve ring, tube feet, terminal tentacle and other arm tip-associated structures, body wall, peristomial membrane, esophagus, cardiac stomach, pyloric stomach, pyloric caeca, and gonoducts. Our discovery that RGP is expressed in the gonoducts of A. rubens proximal to its gonadotropic site of action in the gonads is important because it provides a new perspective on how RGP may act as a gonadotropin in starfish. Thus, we hypothesize that it is the release of RGP from the gonoducts that triggers gamete maturation and spawning in starfish, while RGP produced in other parts of the body may regulate other physiological/behavioral processes.
Collapse
Affiliation(s)
- Yuling Feng
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | | | - Ming Lin
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Michaela Egertová
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Masatoshi Mita
- Department of BiochemistryShowa University School of MedicineTokyoJapan
| | - Maurice R. Elphick
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
5
|
Adameyko I. Evolutionary origin of the neural tube in basal deuterostomes. Curr Biol 2023; 33:R319-R331. [PMID: 37098338 DOI: 10.1016/j.cub.2023.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The central nervous system (CNS) of chordates, including humans, develops as a hollow tube with ciliated walls containing cerebrospinal fluid. However, most of the animals inhabiting our planet do not use this design and rather build their centralized brains from non-epithelialized condensations of neurons called ganglia, with no traces of epithelialized tubes or liquid-containing cavities. The evolutionary origin of tube-type CNSs stays enigmatic, especially as non-epithelialized ganglionic-type nervous systems dominate the animal kingdom. Here, I discuss recent findings relevant to understanding the potential homologies and scenarios of the origin, histology and anatomy of the chordate neural tube. The nerve cords of other deuterostomes might relate to the chordate neural tube at histological, developmental and cellular levels, including the presence of radial glia, layered stratification, retained epithelial features, morphogenesis via folding and formation of a lumen filled with liquid. Recent findings inspire a new view of hypothetical evolutionary scenarios explaining the tubular epithelialized structure of the CNS. One such idea suggests that early neural tubes were key for improved directional olfaction, which was facilitated by the liquid-containing internal cavity. The later separation of the olfactory portion of the tube led to the formation of the independent olfactory and posterior tubular CNS systems in vertebrates. According to an alternative hypothesis, the thick basiepithelial nerve cords could provide deuterostome ancestors with additional biomechanical support, which later improved by turning the basiepithelial cord into a tube filled with liquid - a hydraulic skeleton.
Collapse
Affiliation(s)
- Igor Adameyko
- Center for Brain Research, Medical University of Vienna, Vienna, 1090, Austria; Department of Physiology and Pharmacology, Karolinska Institutet, Solna, 17165, Sweden.
| |
Collapse
|
6
|
Goharimanesh M, Stöhr S, Ghassemzadeh F, Mirshamsi O, Adriaens D. A methodological exploration to study 2D arm kinematics in Ophiuroidea (Echinodermata). Front Zool 2023; 20:15. [PMID: 37085882 PMCID: PMC10120178 DOI: 10.1186/s12983-023-00495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
Brittle stars, unlike most other echinoderms, do not use their small tube feet for locomotion but instead use their flexible arms to produce a rowing or reverse rowing movement. They are among the fastest-moving echinoderms with the ability of complex locomotory behaviors. Considering the high species diversity and variability in morphotypes, a proper understanding of intra- and interspecies variation in arm flexibility and movement is lacking. This study focuses on the exploration of the methods to investigate the variability in brittle star locomotion and individual arm use. We performed a two-dimensional (2D) image processing on horizontal movement only. The result indicated that sinuosity, disc displacement and arm angle are important parameters to interpret ophiuroid locomotion. A dedicated Python script to calculate the studied movement parameters and visualize the results applicable to all 5-armed brittle stars was developed. These results can serve as the basis for further research in robotics inspired by brittle star locomotion.
Collapse
Affiliation(s)
- Mona Goharimanesh
- Department of Biology, Ferdowsi University of Mashhad, Mashhad, Iran.
- Research Group Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium.
| | - Sabine Stöhr
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Omid Mirshamsi
- Department of Biology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Dominique Adriaens
- Research Group Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Christensen AB, Taylor G, Lamare M, Byrne M. The added costs of winter ocean warming for metabolism, arm regeneration and survival in the brittle star Ophionereis schayeri. J Exp Biol 2023; 226:287003. [PMID: 36651231 DOI: 10.1242/jeb.244613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
As the climate continues to change, it is not just the magnitude of these changes that is important - equally critical is the timing of these events. Conditions that may be well tolerated at one time can become detrimental if experienced at another, as a result of seasonal acclimation. Temperature is the most critical variable as it affects most aspects of an organism's physiology. To address this, we quantified arm regeneration and respiration in the Australian brittle star Ophionereis schayeri for 10 weeks in response to a +3°C warming (18.5°C, simulating a winter heatwave) compared with ambient winter temperature (15.5°C). The metabolic scaling rate (b=0.635 at 15.5°C and 0.746 at 18.5°C) with respect to size was similar to that of other echinoderms and was not affected by temperature. Elevated temperature resulted in up to a 3-fold increase in respiration and a doubling of regeneration growth; however, mortality was greater (up to 44.2% at 18.5°C), especially in the regenerating brittle stars. Metabolic rate of the brittle stars held at 18.5°C was much higher than expected (Q10≈23) and similar to that of O. schayeri tested in summer, which was near their estimated thermotolerance limits. The additional costs associated with the elevated metabolism and regeneration rates incurred by the unseasonably warm winter temperatures may lead to increased mortality and predation risk.
Collapse
Affiliation(s)
| | - Georgie Taylor
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - Miles Lamare
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Dehghani H, Rashedinia M, Mohebbi GH, Vazirizadeh A, Maryamabadi A, Barmak AR. The in vitro and in silico Anticholinesterase Ac-tivities of Brittle Star (Ophiocoma erinaceus) crude venoms from the Persian Gulf-Bushehr. IRANIAN SOUTH MEDICAL JOURNAL 2022; 25:297-325. [DOI: 10.52547/ismj.25.4.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
|
9
|
Zheng Y, Cong X, Liu H, Wang Y, Storey KB, Chen M. Nervous System Development and Neuropeptides Characterization in Embryo and Larva: Insights from a Non-Chordate Deuterostome, the Sea Cucumber Apostichopus japonicus. BIOLOGY 2022; 11:1538. [PMID: 36290441 PMCID: PMC9598280 DOI: 10.3390/biology11101538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Here, we described the complex nervous system at five early developmental stages (blastula, gastrula, auricularia, doliolaria and pentactula) of a holothurian species with highly economic value, Apostichopus japonicus. The results revealed that the nervous system of embryos and larvae is mainly distributed in the anterior apical region, ciliary bands or rings, and the feeding and attachment organs, and that serotonergic immunoreactivity was not observed until the embryo developed into the late gastrula; these are evolutionarily conserved features of echinoderm, hemichordate and protostome larvae. Furthermore, based on available transcriptome data, we reported the neuropeptide precursors profile at different embryonic and larval developmental stages. This analysis showed that 40 neuropeptide precursors present in adult sea cucumbers were also identified at different developmental stages of embryos and larvae, and only four neuropeptide precursors (SWYG precursor 2, GYWKDLDNYVKAHKT precursor, Neuropeptide precursor 14-like precursor, GLRFAmprecursor-like precursor) predicted in adults were absent in embryos and larvae. Combining the quantitative expression of ten specific neuropeptide precursor genes (NPs) by qRT-PCR, we revealed the potential important roles of neuropeptides in embryo development, feeding and attachment in A. japonicus larvae. In conclusion, this work provides novel perspectives on the diverse physiological functions of neuropeptides and contributes to understanding the evolution of neuropeptidergic systems in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
10
|
Czarkwiani A, Taylor J, Oliveri P. Neurogenesis during Brittle Star Arm Regeneration Is Characterised by a Conserved Set of Key Developmental Genes. BIOLOGY 2022; 11:biology11091360. [PMID: 36138839 PMCID: PMC9495562 DOI: 10.3390/biology11091360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Injuries to the central nervous system most often lead to irreversible damage in humans. Brittle stars are marine animals related to sea stars and sea urchins, and are one of our closest evolutionary relatives among invertebrates. Extraordinarily, they can perfectly regenerate their nerves even after completely severing the nerve cord after arm amputation. Understanding what genes and cellular mechanisms are used for this natural repair process in the brittle star might lead to new insights to guide strategies for therapeutics to improve outcomes for central nervous system injuries in humans. Abstract Neural regeneration is very limited in humans but extremely efficient in echinoderms. The brittle star Amphiura filiformis can regenerate both components of its central nervous system as well as the peripheral system, and understanding the molecular mechanisms underlying this ability is key for evolutionary comparisons not only within the echinoderm group, but also wider within deuterostomes. Here we characterise the neural regeneration of this brittle star using a combination of immunohistochemistry, in situ hybridization and Nanostring nCounter to determine the spatial and temporal expression of evolutionary conserved neural genes. We find that key genes crucial for the embryonic development of the nervous system in sea urchins and other animals are also expressed in the regenerating nervous system of the adult brittle star in a hierarchic and spatio-temporally restricted manner.
Collapse
Affiliation(s)
- Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, 01307 Dresden, Germany
- Correspondence: (A.C.); (P.O.)
| | - Jack Taylor
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Center for Life’s Origins and Evolution, University College London, London WC1E 6BT, UK
- Correspondence: (A.C.); (P.O.)
| |
Collapse
|
11
|
Mashanov V, Machado DJ, Reid R, Brouwer C, Kofsky J, Janies DA. Twinkle twinkle brittle star: the draft genome of Ophioderma brevispinum (Echinodermata: Ophiuroidea) as a resource for regeneration research. BMC Genomics 2022; 23:574. [PMID: 35953768 PMCID: PMC9367165 DOI: 10.1186/s12864-022-08750-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
Background Echinoderms are established models in experimental and developmental biology, however genomic resources are still lacking for many species. Here, we present the draft genome of Ophioderma brevispinum, an emerging model organism in the field of regenerative biology. This new genomic resource provides a reference for experimental studies of regenerative mechanisms. Results We report a de novo nuclear genome assembly for the brittle star O. brevispinum and annotation facilitated by the transcriptome assembly. The final assembly is 2.68 Gb in length and contains 146,703 predicted protein-coding gene models. We also report a mitochondrial genome for this species, which is 15,831 bp in length, and contains 13 protein-coding, 22 tRNAs, and 2 rRNAs genes, respectively. In addition, 29 genes of the Notch signaling pathway are identified to illustrate the practical utility of the assembly for studies of regeneration. Conclusions The sequenced and annotated genome of O. brevispinum presented here provides the first such resource for an ophiuroid model species. Considering the remarkable regenerative capacity of this species, this genome will be an essential resource in future research efforts on molecular mechanisms regulating regeneration. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08750-y).
Collapse
Affiliation(s)
- Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, 27101, NC, USA. .,University of North Florida, Department of Biology, 1 UNF Drive, Jacksonville, 32224, FL, USA.
| | - Denis Jacob Machado
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Robert Reid
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Cory Brouwer
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Janice Kofsky
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Daniel A Janies
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| |
Collapse
|
12
|
Parmentier T, Gaju-Ricart M, Wenseleers T, Molero-Baltanás R. Chemical and behavioural strategies along the spectrum of host specificity in ant-associated silverfish. BMC ZOOL 2022; 7:23. [PMID: 37170164 PMCID: PMC10127367 DOI: 10.1186/s40850-022-00118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Host range is a fundamental trait to understand the ecological and evolutionary dynamics of symbionts. Increasing host specificity is expected to be accompanied with specialization in different symbiont traits. We tested this specificity-specialization association in a large group of 16 ant-associated silverfish species by linking their level of host specificity to their degree of behavioural integration into the colony and to their accuracy of chemically imitating the host’s recognition system, i.e. the cuticular hydrocarbon (CHC) profile.
Results
As expected, facultative associates and host generalists (targeting multiple unrelated ants) tend to avoid the host, whereas host-specialists (typically restricted to Messor ants) were bolder, approached the host and allowed inspection. Generalists and host specialists regularly followed a host worker, unlike the other silverfish. Host aggression was extremely high toward non-ant-associated silverfish and modest to low in ant-associated groups. Surprisingly, the degree of chemical deception was not linked to host specificity as most silverfish, including facultative ant associates, imitated the host’s CHC profile. Messor specialists retained the same CHC profile as the host after moulting, in contrast to a host generalist, suggesting an active production of the cues (chemical mimicry). Host generalist and facultative associates flexibly copied the highly different CHC profiles of alternative host species, pointing at passive acquisition (chemical camouflage) of the host’s odour.
Conclusions
Overall, we found that behaviour that seems to facilitate the integration in the host colony was more pronounced in host specialist silverfish. Chemical deception, however, was employed by all ant-associated species, irrespective of their degree of host specificity.
Collapse
|
13
|
Mashanov V, Whaley L, Davis K, Heinzeller T, Machado DJ, Reid RW, Kofsky J, Janies D. A subterminal growth zone at arm tip likely underlies life-long indeterminate growth in brittle stars. Front Zool 2022; 19:15. [PMID: 35413857 PMCID: PMC9004015 DOI: 10.1186/s12983-022-00461-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Echinoderms are a phylum of marine invertebrates with close phylogenetic relationships to chordates. Many members of the phylum Echinodermata are capable of extensive post-traumatic regeneration and life-long indeterminate growth. Different from regeneration, the life-long elongation of the main body axis in adult echinoderms has received little attention. The anatomical location and the nature of the dividing progenitor cells contributing to adults' growth is unknown. RESULTS We show that the proliferating cells that drive the life-long growth of adult brittle star arms are mostly localized to the subterminal (second from the tip) arm segment. Each of the major anatomical structures contains dividing progenitors. These structures include: the radial nerve, water-vascular canal, and arm coelomic wall. Some of those proliferating progenitor cells are capable of multiple rounds of cell division. Within the nervous system, the progenitor cells were identified as a subset of radial glial cells that do not express Brn1/2/4, a transcription factor with a conserved role in the neuronal fate specification. In addition to characterizing the growth zone and the nature of the precursor cells, we provide a description of the microanatomy of the four distal-most arm segments contrasting the distal with the proximal segments, which are more mature. CONCLUSIONS The growth of the adult brittle star arms occurs via proliferation of progenitor cells in the distal segments, which are most abundant in the second segment from the tip. At least some of the progenitors are capable of multiple rounds of cell division. Within the nervous system the dividing cells were identified as Brn1/2/4-negative radial glial cells.
Collapse
Affiliation(s)
- Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA.
- Department of Biology, University of North Florida, Jacksonville, FL, USA.
| | - Lauren Whaley
- Department of Biology, University of North Florida, Jacksonville, FL, USA
| | | | | | | | - Robert W Reid
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Janice Kofsky
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Daniel Janies
- University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
14
|
Formery L, Orange F, Formery A, Yaguchi S, Lowe CJ, Schubert M, Croce JC. Neural anatomy of echinoid early juveniles and comparison of nervous system organization in echinoderms. J Comp Neurol 2020; 529:1135-1156. [PMID: 32841380 DOI: 10.1002/cne.25012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The echinoderms are a phylum of marine deuterostomes characterized by the pentaradial (five fold) symmetry of their adult bodies. Due to this unusual body plan, adult echinoderms have long been excluded from comparative analyses aimed at understanding the origin and evolution of deuterostome nervous systems. Here, we investigated the neural anatomy of early juveniles of representatives of three of the five echinoderm classes: the echinoid Paracentrotus lividus, the asteroid Patiria miniata, and the holothuroid Parastichopus parvimensis. Using whole mount immunohistochemistry and confocal microscopy, we found that the nervous system of echinoid early juveniles is composed of three main structures: a basiepidermal nerve plexus, five radial nerve cords connected by a circumoral nerve ring, and peripheral nerves innervating the appendages. Our whole mount preparations further allowed us to obtain thorough descriptions of these structures and of several innervation patterns, in particular at the level of the appendages. Detailed comparisons of the echinoid juvenile nervous system with those of asteroid and holothuroid juveniles moreover supported a general conservation of the main neural structures in all three species, including at the level of the appendages. Our results support the previously proposed hypotheses for the existence of two neural units in echinoderms: one consisting of the basiepidermal nerve plexus to process sensory stimuli locally and one composed of the radial nerve cords and the peripheral nerves constituting a centralized control system. This study provides the basis for more in-depth comparisons of the echinoderm adult nervous system with those of other animals, in particular hemichordates and chordates, to address the long-standing controversies about deuterostome nervous system evolution.
Collapse
Affiliation(s)
- Laurent Formery
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intracellular Signaling in Development (EvoInSiDe), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - François Orange
- Centre Commun de Microscopie Appliquée (CCMA), Université Côte d'Azur, Nice, France
| | | | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Christopher J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intracellular Signaling in Development (EvoInSiDe), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Jenifer C Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intracellular Signaling in Development (EvoInSiDe), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| |
Collapse
|
15
|
Mashanov V, Akiona J, Khoury M, Ferrier J, Reid R, Machado DJ, Zueva O, Janies D. Active Notch signaling is required for arm regeneration in a brittle star. PLoS One 2020; 15:e0232981. [PMID: 32396580 PMCID: PMC7217437 DOI: 10.1371/journal.pone.0232981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and cell death. Specific functions of the pathway are, however, highly context-dependent and are not well characterized in post-traumatic regeneration. Here, we use a small-molecule inhibitor of the pathway (DAPT) to demonstrate that Notch signaling is required for proper arm regeneration in the brittle star Ophioderma brevispina, a highly regenerative member of the phylum Echinodermata. We also employ a transcriptome-wide gene expression analysis (RNA-seq) to characterize the downstream genes controlled by the Notch pathway in the brittle star regeneration. We demonstrate that arm regeneration involves an extensive cross-talk between the Notch pathway and other cell signaling pathways. In the regrowing arm, Notch regulates the composition of the extracellular matrix, cell migration, proliferation, and apoptosis, as well as components of the innate immune response. We also show for the first time that Notch signaling regulates the activity of several transposable elements. Our data also suggests that one of the possible mechanisms through which Notch sustains its activity in the regenerating tissues is via suppression of Neuralized1.
Collapse
Affiliation(s)
- Vladimir Mashanov
- Department of Biology, University of North Florida, Jacksonville, FL, United states of America
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United states of America
- * E-mail:
| | - Jennifer Akiona
- Department of Biology, University of North Florida, Jacksonville, FL, United states of America
| | - Maleana Khoury
- Department of Biology, University of North Florida, Jacksonville, FL, United states of America
| | - Jacob Ferrier
- University of North Carolina at Charlotte, Charlotte, NC, United states of America
| | - Robert Reid
- University of North Carolina at Charlotte, Charlotte, NC, United states of America
| | - Denis Jacob Machado
- University of North Carolina at Charlotte, Charlotte, NC, United states of America
| | - Olga Zueva
- Department of Biology, University of North Florida, Jacksonville, FL, United states of America
| | - Daniel Janies
- University of North Carolina at Charlotte, Charlotte, NC, United states of America
| |
Collapse
|
16
|
Márquez-Borrás F, Solís-Marín FA, Mejía-Ortiz LM. Troglomorphism in the brittle star Ophionereis commutabilis Bribiesca-Contreras et al., 2019 (Echinodermata, Ophiuroidea, Ophionereididae). SUBTERRANEAN BIOLOGY 2020. [DOI: 10.3897/subtbiol.33.48721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Due to their peculiar and sometimes bizarre morphology, cave fauna (across invertebrates and vertebrates from both aquatic and terrestrial cave habitats) have fascinated researchers throughout history. Despite their success in colonizing most marine ecosystems, the adaptations of cave brittle stars (Ophiuroidea) to a stygobiotic lifestyle have been scarcely examined. Employing comparative methods on a data set of two species belonging to the genus Ophionereis, this study addresses whether a cave-dwelling species from Cozumel exhibited similar troglomorphic traits as those of other taxa inhabiting caves. Our work demonstrated that some characters representing potential morphological cave adaptations in O. commutabilis were: bigger sizes, elongation of arms and tube feet and the presence of traits potentially paedomorphic. In addition, an element of ophiuroid’s photoreceptor system, as well as pigmentation, was observed to be peculiar in this stygobiotic species, plausibly as a result of inhabiting a low light-energy environment. Finally, we add evidence to the statement that O. commutabilis is a cave endemic species, already supported by demography, distribution and origin of this species, and now by a typical array of troglomorphisms.
Collapse
|
17
|
Byrne M. The Link between Autotomy and CNS Regeneration: Echinoderms as Non‐Model Species for Regenerative Biology. Bioessays 2020; 42:e1900219. [DOI: 10.1002/bies.201900219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Maria Byrne
- School of Medical Sciences and School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
| |
Collapse
|
18
|
Eckmair B, Jin C, Karlsson NG, Abed-Navandi D, Wilson IBH, Paschinger K. Glycosylation at an evolutionary nexus: the brittle star Ophiactis savignyi expresses both vertebrate and invertebrate N-glycomic features. J Biol Chem 2020; 295:3173-3188. [PMID: 32001617 DOI: 10.1074/jbc.ra119.011703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
Echinoderms are among the most primitive deuterostomes and have been used as model organisms to understand chordate biology because of their close evolutionary relationship to this phylogenetic group. However, there are almost no data available regarding the N-glycomic capacity of echinoderms, which are otherwise known to produce a diverse set of species-specific glycoconjugates, including ones heavily modified by fucose, sulfate, and sialic acid residues. To increase the knowledge of diversity of carbohydrate structures within this phylum, here we conducted an in-depth analysis of N-glycans from a brittle star (Ophiactis savignyi) as an example member of the class Ophiuroidea. To this end, we performed a multi-step N-glycan analysis by HPLC and various exoglyosidase and chemical treatments in combination with MALDI-TOF MS and MS/MS. Using this approach, we found a wealth of hybrid and complex oligosaccharide structures reminiscent of those in higher vertebrates as well as some classical invertebrate glycan structures. 70% of these N-glycans were anionic, carrying either sialic acid, sulfate, or phosphate residues. In terms of glycophylogeny, our data position the brittle star between invertebrates and vertebrates and confirm the high diversity of N-glycosylation in lower organisms.
Collapse
Affiliation(s)
- Barbara Eckmair
- Department für Chemie, Universität für Bodenkultur Wien, 1190 Wien, Austria
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs Universitet, 405 30 Göteborg, Sweden
| | - Niclas G Karlsson
- Institutionen för Biomedicin, Göteborgs Universitet, 405 30 Göteborg, Sweden
| | | | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur Wien, 1190 Wien, Austria
| | | |
Collapse
|
19
|
Visual Ecology: Now You See, Now You Don't. Curr Biol 2020; 30:R71-R73. [PMID: 31962079 DOI: 10.1016/j.cub.2019.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During the day, the brittle star Ophiocoma wendtii demonstrates spatial vision due to a distributed network of extraocular photoreceptors whose fields of view are restricted by chromatophores. At night, these chromatophores contract and O. wendtii loses spatial vision.
Collapse
|
20
|
Heydari S, Johnson A, Ellers O, McHenry MJ, Kanso E. Sea star inspired crawling and bouncing. J R Soc Interface 2020; 17:20190700. [PMID: 31910778 PMCID: PMC7014793 DOI: 10.1098/rsif.2019.0700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
The oral surface of sea stars is lined with arrays of tube feet that enable them to achieve highly controlled locomotion on various terrains. The activity of the tube feet is orchestrated by a nervous system that is distributed throughout the body without a central brain. How such a distributed nervous system produces a coordinated locomotion is yet to be understood. We develop mathematical models of the biomechanics of the tube feet and the sea star body. In the model, the feet are coupled mechanically through their structural connection to a rigid body. We formulate hierarchical control laws that capture salient features of the sea star nervous system. Namely, at the tube foot level, the power and recovery strokes follow a state-dependent feedback controller. At the system level, a directionality command is communicated through the nervous system to all tube feet. We study the locomotion gaits afforded by this hierarchical control model. We find that these minimally coupled tube feet coordinate to generate robust forward locomotion, reminiscent of the crawling motion of sea stars, on various terrains and for heterogeneous tube feet parameters and initial conditions. Our model also predicts a transition from crawling to bouncing consistently with recent experiments. We conclude by commenting on the implications of these findings for understanding the neuromechanics of sea stars and their potential application to autonomous robotic systems.
Collapse
Affiliation(s)
- Sina Heydari
- Department of Aerospace and Mechanical Engineering, University of Southern California, 854 Downey Way, Los Angeles, CA 90089, USA
| | - Amy Johnson
- Department of Biology, Bowdoin College, 6500 College Station Brunswick, ME 04011, USA
| | - Olaf Ellers
- Department of Biology, Bowdoin College, 6500 College Station Brunswick, ME 04011, USA
| | - Matthew J. McHenry
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, 854 Downey Way, Los Angeles, CA 90089, USA
| |
Collapse
|
21
|
Wakita D, Kagaya K, Aonuma H. A general model of locomotion of brittle stars with a variable number of arms. J R Soc Interface 2020; 17:20190374. [PMID: 31910773 PMCID: PMC7014800 DOI: 10.1098/rsif.2019.0374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/27/2019] [Indexed: 01/16/2023] Open
Abstract
Typical brittle stars have five radially symmetrical arms that coordinate to move the body in a certain direction. However, some species have a variable number of arms, which is a unique trait since intact animals normally have a fixed number of limbs. How does a single species manage different numbers of appendages for adaptive locomotion? We herein describe locomotion in Ophiactis brachyaspis with four, five, six and seven arms to propose a common rule for the movement of brittle stars with different numbers of arms. For this, we mechanically stimulated one arm of individuals to analyse escape direction and arm movement. By gathering quantitative indices and employing Bayesian statistical modelling, we noted a pattern: regardless of the total number of arms, an anterior position emerges at one of the second neighbouring arms to a mechanically stimulated arm, while arms adjacent to the anterior one synchronously work as left and right rowers. We propose a model in which an afferent signal runs clockwise or anticlockwise along the nerve ring while linearly counting how many arms it passes through. With this model, the question on how 'left and right' emerges in a radially symmetrical body via a decentralized system is answered.
Collapse
Affiliation(s)
- Daiki Wakita
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Katsushi Kagaya
- The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan
- Seto Marine Biological Laboratory, Field Science, Education and Research Center, Kyoto University, Shirahama, Wakayama 649-2211, Japan
| | - Hitoshi Aonuma
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
22
|
Langowski JKA, Rummenie A, Pieters RPM, Kovalev A, Gorb SN, van Leeuwen JL. Estimating the maximum attachment performance of tree frogs on rough substrates. BIOINSPIRATION & BIOMIMETICS 2019; 14:025001. [PMID: 30706849 DOI: 10.1088/1748-3190/aafc37] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tree frogs can attach to smooth and rough substrates using their adhesive toe pads. We present the results of an experimental investigation of tree frog attachment to rough substrates, and of the role of mechanical interlocking between superficial toe pad structures and substrate asperities in the tree frog species Litoria caerulea and Hyla cinerea. Using a rotation platform setup, we quantified the adhesive and frictional attachment performance of whole frogs clinging to smooth, micro-, and macrorough substrates. The transparent substrates enabled quantification of the instantaneous contact area during detachment by using frustrated total internal reflection. A linear mixed-effects model shows that the adhesive performance of the pads does not differ significantly with roughness (for nominal roughness levels of 0-15 µm) in both species. This indicates that mechanical interlocking does not contribute to the attachment of whole animals. Our results show that the adhesion performance of tree frogs is higher than reported previously, emphasising the biomimetic potential of tree frog attachment. Overall, our findings contribute to a better understanding of the complex interplay of attachment mechanisms in the toe pads of tree frogs, which may promote future designs of tree-frog-inspired adhesives.
Collapse
Affiliation(s)
- Julian K A Langowski
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Mashanov V, Zueva O. Radial Glia in Echinoderms. Dev Neurobiol 2018; 79:396-405. [PMID: 30548565 DOI: 10.1002/dneu.22659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022]
Abstract
Radial glial cells are crucial in vertebrate neural development and regeneration. It has been recently proposed that this neurogenic cell type might be older than the chordate lineage itself and might have been present in the last common deuterostome ancestor. Here, we summarize the results of recent studies on radial glia in echinoderms, a highly regenerative phylum of marine invertebrates with shared ancestry to chordates. We discuss the involvement of these cells in both homeostatic neurogenesis and post-traumatic neural regeneration, compare the features of radial glia in echinoderms and chordates to each other, and review the molecular mechanisms that control differentiation and plasticity of the echinoderm radial glia. Overall, studies on echinoderm radial glia provide a unique opportunity to understand the fundamental biology of this cell type from evolutionary and comparative perspectives.
Collapse
Affiliation(s)
- Vladimir Mashanov
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Olga Zueva
- Department of Biology, University of North Florida, Jacksonville, Florida.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|