1
|
Xu P, Song J, Fan W, Zhang Y, Guan Y, Ni C, Wu M, Mu J. Impact of whole-body vibration training on ankle joint proprioception and balance in stroke patients: a prospective cohort study. BMC Musculoskelet Disord 2024; 25:768. [PMID: 39354501 PMCID: PMC11446111 DOI: 10.1186/s12891-024-07906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Although whole-body vibration (WBV) training is acknowledged for its benefits in enhancing motor functions across several neurological disorders, its precise influence on ankle joint proprioception and balance in stroke patients is still not well understood. This research seeks to assess the impact of WBV training on ankle joint proprioception and balance in stroke patients, thereby filling this important research void. METHODS In this prospective cohort study, thirty-five stroke patients were randomly assigned to either the WBV group (n = 17) or a control group (n = 18) using a random number table method. The control group received daily general rehabilitation for four weeks, while the WBV group received an additional 30 min of WBV training each day with the Trunsan S110 Vibration Training System. Blinded outcome assessments were conducted at baseline and post-treatment, utilizing the Berg balance scale (BBS), Functional reach test (FRT), Romberg test length (RTL) and area (RTA), and completion rates of ankle joint dorsiflexion-plantar flexion (DP) and inversion-eversion (IE) tests. Follow-up assessments were performed after four weeks of intervention, focusing on RTL, RTA, DP, and IE as primary outcomes. RESULTS Analysis of intra-group changes from baseline to post-treatment revealed significant improvements across the BBS, FRT, RTL, RTA, and DP and IE assessments (p < 0.001). Notably, the WBV group showed significant enhancements compared to the control group in DP and IE (p < 0.001 and p < 0.05, respectively), with mean values increasing from 13.556 to 16.765 (23.7%) and from 5.944 to 8.118 (36.6%), respectively. However, WBV did not provide additional benefits over the control treatment for balance recovery parameters such as BBS, FRT, RTL, and RTA (p > 0.05). CONCLUSIONS This study demonstrates that WBV therapy is equally effective as conventional methods in enhancing proprioception and balance in stroke patients, but it does not provide additional benefits for balance recovery. WBV significantly improves proprioceptive functions, particularly in DP and IE parameters. However, it does not surpass traditional rehabilitation methods in terms of balance recovery. These findings indicate that WBV should be incorporated into stroke rehabilitation primarily to enhance proprioception rather than to optimize balance recovery. TRIAL REGISTRATION This study was retrospectively registered in the ISRCTN Registry on 29/07/2024 ( https://www.isrctn.com/ , ISRCTN64602845).
Collapse
Affiliation(s)
- Peng Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Jianxia Song
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Wenxiang Fan
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Yang Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Yeming Guan
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Chaoming Ni
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Ming Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
| | - Jingsong Mu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
2
|
Leszczak J, Pniak B, Drużbicki M, Poświata A, Mikulski M, Roksela A, Guzik A. Assessment of inter-rater and intra-rater reliability of the Luna EMG robot as a tool for assessing upper limb proprioception in patients with stroke-a prospective observational study. PeerJ 2024; 12:e17903. [PMID: 39221272 PMCID: PMC11366229 DOI: 10.7717/peerj.17903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Background The aim of the study was to assess the inter-rater and intra-rater agreement of measurements performed with the Luna EMG (electromyography) multifunctional robot, a tool for evaluation of upper limb proprioception in individuals with stroke. Methods The study was conducted in a group of patients with chronic stroke. A total of 126 patients participated in the study, including 78 women and 48 men, on average aged nearly 60 years (mean = 59.9). Proprioception measurements were performed using the Luna EMG diagnostic and rehabilitation robot to assess the left and right upper limbs. The examinations were conducted by two raters, twice, two weeks apart. The results were compared between the raters and the examinations. Results High consistency of the measurements performed for the right and the left hand was reflected by the interclass correlation coefficients (0.996-0.998 and 0.994-0.999, respectively) and by Pearson's linear correlation which was very high (r = 1.00) in all the cases for the right and the left hand in both the inter-rater and intra-rater agreement analyses. Conclusions Measurements performed by the Luna EMG diagnostic and rehabilitation robot demonstrate high inter-rater and intra-rater agreement in the assessment of upper limb proprioception in patients with chronic stroke. The findings show that Luna EMG is a reliable tool enabling effective evaluation of upper limb proprioception post-stroke.
Collapse
Affiliation(s)
- Justyna Leszczak
- Medical College, Institute of Health Sciences, University of Rzeszow, Rzeszów, Poland
| | - Bogumiła Pniak
- Medical College, Institute of Health Sciences, University of Rzeszow, Rzeszów, Poland
- Excelsior Health and Rehabilitation Hospital, Iwonicz Zdrój, Poland
| | - Mariusz Drużbicki
- Medical College, Institute of Health Sciences, University of Rzeszow, Rzeszów, Poland
| | | | | | - Anna Roksela
- EGZOTech Sp. z o.o., Gliwice, Poland
- Faculty of Automatic Control, Electronics, and Computer Science, PhD School, Silesian University of Technology, Gliwice, Poland
| | - Agnieszka Guzik
- Medical College, Institute of Health Sciences, University of Rzeszow, Rzeszów, Poland
| |
Collapse
|
3
|
Leszczak J, Wolan-Nieroda A, Drużbicki M, Poświata A, Mikulski M, Roksela A, Guzik A. Evaluation of Reliability of the Luna EMG Rehabilitation Robot to Assess Proprioception in the Upper Limbs in 102 Healthy Young Adults. Med Sci Monit 2024; 30:e942439. [PMID: 38178559 PMCID: PMC10775584 DOI: 10.12659/msm.942439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/31/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Proprioception, the body's ability to perceive its own position and movement, is fundamental for motor control and coordination. Reliable assessment tools are essential, particularly for conditions affecting proprioceptive function. This study aimed to evaluate the external and internal compliance of the Luna EMG -multifunction robotic device in assessing proprioception. MATERIAL AND METHODS The study involved 102 healthy students (31 men and 71 women; mean age 22.2±1.46 years), assessing proprioception using the Luna EMG for the upper limbs. Two investigators conducted measurements, which were repeated after 2 weeks under identical conditions. RESULTS Based on the identified values of the interclass correlation coefficient (ICC) (ICC=0.969-0.997), which is a key measure of agreement between 2 assessments, the study shows a high agreement of measurements both between investigators (for right hand: P=0.3484 [Exam 1]; P=1.0000 [Exam 2]; for left hand: P=0.1092 [Exam 1]; P=0.7706 [Exam 2]) and between the examinations (for right hand: 0.1127 [Investigator 1]; 0.2113 [Investigator 2]; for left hand: P=0.0087 [Investigator 1]; P=0.1466 [Investigator 2]). The Bland-Altman analysis showed very small inter-rater deviations, approximately 0.05° in the first examination for the left side and 0.04° for the right side. The highest deviation between the examinations, amounting to 0.08°, was identified for the left side. CONCLUSIONS The study shows that the Luna EMG multifunction robotic device enables a reliable evaluation of upper limb proprioception. Measurements performed using this device show high internal and external consistency in the assessment of the proprioceptive senses of the upper limb in 102 healthy young adults.
Collapse
Affiliation(s)
- Justyna Leszczak
- Institute of Health Sciences, Medical Faculty, University of Rzeszów, Rzeszów, Poland
| | | | - Mariusz Drużbicki
- Institute of Health Sciences, Medical Faculty, University of Rzeszów, Rzeszów, Poland
| | | | | | - Anna Roksela
- EGZOTech, Sp. z o.o., Gliwice, Poland
- Faculty of Automatic Control, Electronics, and Computer Science, PhD School, Silesian University of Technology, Gliwice, Poland
| | - Agnieszka Guzik
- Institute of Health Sciences, Medical Faculty, University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
4
|
Bruyneel AV, Reinmann A, Sordet C, Venturelli P, Feldmann I, Guyen E. Reliability and validity of the trunk position sense and modified functional reach tests in individuals after stroke. Physiother Theory Pract 2024; 40:118-127. [PMID: 35850603 DOI: 10.1080/09593985.2022.2101407] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
The psychometric qualities of the proprioception and dynamic trunk control tests have rarely been studied in individuals after stroke. OBJECTIVE To investigate the reliability and validity of the Trunk Position Sense Test (TPS) and Modified Functional Reach Test (MFRT) in persons after stroke. METHODS Thirty-two participants were included. The TPS and MFRT were assessed by two physiotherapists during a first session. After resting, a second session was conducted. The intraclass correlation coefficient (ICC) was calculated to assess the test-retest (ICC3,k) and inter-rater reliability (ICC2,k). Pearson correlations coefficients were calculated between TPS/MFRT performances and clinical tests (trunk strength, Timed Up and Go and Balance Assessment in Sitting and Standing Positions - BASSP). RESULTS The TPS inter-rater reliability was good for vertical error (ICC = 0.75 [0.50-0.88]) while it was moderate for horizontal error (ICC = 0.48 [0.10-0.75]) as well as for test-retest reliability (0.39 ≤ ICC ≤ 0.59). As for the MFRT, inter-rater (0.76 ≤ ICC ≤ 0.90) and test-retest reliability (0.71 ≤ ICC ≤ 0.91) were good to excellent for anterior, paretic et non-paretic displacements. Horizontal errors for the TPS (-0.26 ≤ r ≤ -0.36) and anterior MFRT (0.38 ≤ r ≤ 0.64) values correlated moderately with trunk strength. CONCLUSION The MFRT is a reliable test for persons after stroke with trunk control impairments. The TPS does not appear to be relevant for post-stroke individuals. This can be explained by the fact that its procedure is not easily applied for individuals after stroke - who may have significant motor and cognitive impairments.
Collapse
Affiliation(s)
- Anne-Violette Bruyneel
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Aline Reinmann
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Caroline Sordet
- Neuro-rehabilitation department, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Pablo Venturelli
- Neuro-rehabilitation department, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Irmgard Feldmann
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
- Neuro-rehabilitation department, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Emmanuel Guyen
- Neuro-rehabilitation department, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| |
Collapse
|
5
|
Ketkar VD, Wolbrecht ET, Perry JC, Farrens A. Design and Development of a Spherical 5-Bar Thumb Exoskeleton Mechanism for Poststroke Rehabilitation. J Med Device 2023; 17:021002. [PMID: 37152413 PMCID: PMC10158975 DOI: 10.1115/1.4056864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
This paper presents the kinematic design and development of a two degree-of-freedom (2DOF) spherical 5-bar thumb exoskeleton to augment the finger individuating grasp exercise robot (FINGER) rehabilitation robot, which assists the index and middle fingers individually in naturalistic grasping. The thumb module expands the capabilities of FINGER, allowing for broader proprioceptive training and assessment of hand function. The design process started by digitizing thumb-grasping motions to the index and the middle fingers separately, recorded from multiple healthy subjects utilizing a motion capture system. Fitting spheres to trajectory data of each subject allowed normalization of all subjects' data to a common center and radius. A two-revolute joint serial-chain mechanism was synthesized (intermediate optimization step) to reach the normalized trajectories. Next, the two resulting grasping trajectories were spatially sampled as targets for the 2DOF spherical 5-bar synthesis. Optimization of the spherical 5-bar included symmetry constraints and cost-function penalties for poor manipulability. The resulting exoskeleton assists both flexion/extension and abduction/adduction of the thumb enabling a wide range of motions. Consistent with FINGER, the parallel structure of the spherical 5-bar places the actuators at the base of the module, allowing for desirable characteristics, including high backdrivability, high controllable bandwidth, and low mechanical impedance. The mechanical design was developed from the kinematic solution, including an adjustable thumb cuff to accommodate different hand sizes. Fit and function of the device were tested on multiple subjects, including survivors of stroke. A proportional-derivative force controller with gravity and friction compensation was implemented to reduce resistance to motion during subject testing.
Collapse
Affiliation(s)
- Vishwanath D. Ketkar
- Department of Electrical Engineering, University of Idaho, Moscow, ID 83844-0902
| | - Eric T. Wolbrecht
- Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844-0902
| | - Joel C. Perry
- Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844-0902
| | - Andria Farrens
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
| |
Collapse
|
6
|
Wood JM, Morton SM, Kim HE. A reliable and efficient adaptive Bayesian method to assess static lower limb position sense. J Neurosci Methods 2023; 392:109875. [PMID: 37150304 PMCID: PMC10285506 DOI: 10.1016/j.jneumeth.2023.109875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Lower limb proprioception is critical for maintaining stability during gait and may impact how individuals modify their movements in response to changes in the environment and body state, a process termed "sensorimotor adaptation". However, the connection between lower limb proprioception and sensorimotor adaptation during human gait has not been established. We suspect this gap is due in part to the lack of reliable, efficient methods to assess global lower limb proprioception in an ecologically valid context. NEW METHOD We assessed static lower limb proprioception using an alternative forced choice task, administered twice to determine test-retest reliability. Participants stood on a dual-belt treadmill which passively moved one limb to stimulus locations selected by a Bayesian adaptive algorithm. At the stimulus locations, participants judged relative foot positions and the algorithm estimated the point of subjective equality (PSE) and the uncertainty of lower limb proprioception. RESULTS Using the Bland-Altman method, combined with Bayesian statistics, we found that both the PSE and uncertainty estimates had good reliability. COMPARISON WITH EXISTING METHOD(S) Current methods assessing static lower limb proprioception do so within a single joint, in non-weight bearing positions, and rely heavily on memory. One exception assessed static lower limb proprioception in standing but did not measure reliability and contained confounds impacting participants' judgments, which we experimentally controlled here. CONCLUSIONS This efficient and reliable method assessing lower limb proprioception will aid future mechanistic understanding of locomotor adaptation and serve as a useful tool for basic and clinical researchers studying balance and falls.
Collapse
Affiliation(s)
- Jonathan M Wood
- Department of Physical Therapy, University of Delaware, Newark, DE 19711, United States; Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19711, United States.
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, Newark, DE 19711, United States; Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19711, United States
| | - Hyosub E Kim
- Department of Physical Therapy, University of Delaware, Newark, DE 19711, United States; Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19711, United States; Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States; School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Wood JM, Morton SM, Kim HE. A reliable and efficient adaptive Bayesian method to assess static lower limb position sense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525102. [PMID: 36747823 PMCID: PMC9900742 DOI: 10.1101/2023.01.23.525102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background Lower limb proprioception is critical for maintaining stability during gait and may impact how individuals modify their movements in response to changes in the environment and body state, a process termed "sensorimotor adaptation". However, the connection between lower limb proprioception and sensorimotor adaptation during human gait has not been established. We suspect this gap is due in part to the lack of reliable, efficient methods to assess global lower limb proprioception in an ecologically valid context. New Method We assessed static lower limb proprioception using an alternative forced choice task, administered twice to determine test-retest reliability. Participants stood on a dual-belt treadmill which passively moved one limb to stimulus locations selected by a Bayesian adaptive algorithm. At the stimulus locations, participants judged relative foot positions and the algorithm estimated the point of subjective equality (PSE) and the uncertainty of lower limb proprioception. Results Using the Bland-Altman method, combined with Bayesian statistics, we found that both the PSE and uncertainty estimates had good reliability. Comparison with Existing Methods Current methods assessing static lower limb proprioception do so within a single joint, in non-weight bearing positions, and rely heavily on memory. One exception assessed static lower limb proprioception in standing but did not measure reliability and contained confounds impacting participants' judgments, which we experimentally controlled here. Conclusions This efficient and reliable method assessing lower limb proprioception will aid future mechanistic understanding of locomotor adaptation and serve as a useful tool for basic and clinical researchers studying balance and falls.
Collapse
Affiliation(s)
- Jonathan M Wood
- Department of Physical Therapy, University of Delaware, Newark, DE 19711, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19711, United States
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, Newark, DE 19711, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19711, United States
| | - Hyosub E Kim
- Department of Physical Therapy, University of Delaware, Newark, DE 19711, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19711, United States
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Zbytniewska-Mégret M, Kanzler CM, Raats J, Yilmazer C, Feys P, Gassert R, Lambercy O, Lamers I. Reliability, validity and clinical usability of a robotic assessment of finger proprioception in persons with multiple sclerosis. Mult Scler Relat Disord 2023; 70:104521. [PMID: 36701909 DOI: 10.1016/j.msard.2023.104521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 12/31/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Multiple sclerosis often leads to proprioceptive impairments of the hand. However, it is challenging to objectively assess such deficits using clinical methods, thereby also impeding accurate tracking of disease progression and hence the application of personalized rehabilitation approaches. OBJECTIVE We aimed to evaluate test-retest reliability, validity, and clinical usability of a novel robotic assessment of hand proprioceptive impairments in persons with multiple sclerosis (pwMS). METHODS The assessment was implemented in an existing one-degree of freedom end-effector robot (ETH MIKE) acting on the index finger metacarpophalangeal joint. It was performed by 45 pwMS and 59 neurologically intact controls. Additionally, clinical assessments of somatosensation, somatosensory evoked potentials and usability scores were collected in a subset of pwMS. RESULTS The test-retest reliability of robotic task metrics in pwMS was good (ICC=0.69-0.87). The task could identify individuals with impaired proprioception, as indicated by the significant difference between pwMS and controls, as well as a high impairment classification agreement with a clinical measure of proprioception (85.00-86.67%). Proprioceptive impairments were not correlated with other modalities of somatosensation. The usability of the assessment system was satisfactory (System Usability Scale ≥73.10). CONCLUSION The proposed assessment is a promising alternative to commonly used clinical methods and will likely contribute to a better understanding of proprioceptive impairments in pwMS.
Collapse
Affiliation(s)
- Monika Zbytniewska-Mégret
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Christoph M Kanzler
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - Joke Raats
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; Universitair MS Centrum UMSC Hasselt, Pelt, Belgium
| | - Cigdem Yilmazer
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; Universitair MS Centrum UMSC Hasselt, Pelt, Belgium
| | - Peter Feys
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; Universitair MS Centrum UMSC Hasselt, Pelt, Belgium
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - Ilse Lamers
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; Universitair MS Centrum UMSC Hasselt, Pelt, Belgium; Noorderhart Rehabilitation and MS Centre, Pelt, Belgium
| |
Collapse
|
9
|
Hossain D, Scott SH, Cluff T, Dukelow SP. The use of machine learning and deep learning techniques to assess proprioceptive impairments of the upper limb after stroke. J Neuroeng Rehabil 2023; 20:15. [PMID: 36707846 PMCID: PMC9881388 DOI: 10.1186/s12984-023-01140-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Robots can generate rich kinematic datasets that have the potential to provide far more insight into impairments than standard clinical ordinal scales. Determining how to define the presence or absence of impairment in individuals using kinematic data, however, can be challenging. Machine learning techniques offer a potential solution to this problem. In the present manuscript we examine proprioception in stroke survivors using a robotic arm position matching task. Proprioception is impaired in 50-60% of stroke survivors and has been associated with poorer motor recovery and longer lengths of hospital stay. We present a simple cut-off score technique for individual kinematic parameters and an overall task score to determine impairment. We then compare the ability of different machine learning (ML) techniques and the above-mentioned task score to correctly classify individuals with or without stroke based on kinematic data. METHODS Participants performed an Arm Position Matching (APM) task in an exoskeleton robot. The task produced 12 kinematic parameters that quantify multiple attributes of position sense. We first quantified impairment in individual parameters and an overall task score by determining if participants with stroke fell outside of the 95% cut-off score of control (normative) values. Then, we applied five machine learning algorithms (i.e., Logistic Regression, Decision Tree, Random Forest, Random Forest with Hyperparameters Tuning, and Support Vector Machine), and a deep learning algorithm (i.e., Deep Neural Network) to classify individual participants as to whether or not they had a stroke based only on kinematic parameters using a tenfold cross-validation approach. RESULTS We recruited 429 participants with neuroimaging-confirmed stroke (< 35 days post-stroke) and 465 healthy controls. Depending on the APM parameter, we observed that 10.9-48.4% of stroke participants were impaired, while 44% were impaired based on their overall task score. The mean performance metrics of machine learning and deep learning models were: accuracy 82.4%, precision 85.6%, recall 76.5%, and F1 score 80.6%. All machine learning and deep learning models displayed similar classification accuracy; however, the Random Forest model had the highest numerical accuracy (83%). Our models showed higher sensitivity and specificity (AUC = 0.89) in classifying individual participants than the overall task score (AUC = 0.85) based on their performance in the APM task. We also found that variability was the most important feature in classifying performance in the APM task. CONCLUSION Our ML models displayed similar classification performance. ML models were able to integrate more kinematic information and relationships between variables into decision making and displayed better classification performance than the overall task score. ML may help to provide insight into individual kinematic features that have previously been overlooked with respect to clinical importance.
Collapse
Affiliation(s)
- Delowar Hossain
- grid.22072.350000 0004 1936 7697Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Stephen H. Scott
- grid.410356.50000 0004 1936 8331Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| | - Tyler Cluff
- grid.22072.350000 0004 1936 7697Faculty of Kinesiology, University of Calgary, Calgary, AB Canada
| | - Sean P. Dukelow
- grid.22072.350000 0004 1936 7697Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| |
Collapse
|
10
|
Jamal K, Penisson A, Rostagno S, Duclos C. Where Are We on Proprioception Assessment Tests Among Poststroke Individuals? A Systematic Review of Psychometric Properties. J Neurol Phys Ther 2022; 46:231-239. [PMID: 35671401 DOI: 10.1097/npt.0000000000000405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Proprioception is often impaired in poststroke individuals. This is a significant issue since altered proprioception is associated with poorer physical function outcomes poststroke. However, there is limited consensus on the best tools for assessing proprioception and support for their widespread use by clinicians. The objective is to appraise the psychometric properties of each test used to assess proprioception in poststroke individuals. METHODS A systematic search was performed according to PRISMA guidelines using the databases MEDLINE, Cochrane Library, PEDro, DiTa, and BioMedicalCentral for articles published up to January 2021. RESULTS Sixteen studies of low methodological quality were included. Sixteen different proprioception assessment tests were extracted. The proprioception portion of the Fugl-Meyer Assessment Scale was found to be the most valid and reliable tool for screening patients in clinical settings. Although no real gold standard exists, the technological devices demonstrated better responsiveness and measurement accuracy than clinical tests. Technological devices might be more appropriate for assessing proprioception recovery or better suited for research purposes. DISCUSSION AND CONCLUSIONS This review revealed low-quality articles and a paucity of tests with good psychometric properties available to clinicians to properly screen and assess all subcomponents of proprioception. In perspective, technological devices, such as robotic orthoses or muscle vibration, may provide the best potential for assessing the different subcomponents of proprioception. Further studies should be conducted to develop and investigate such approaches.Video, Supplemental Digital Content 1, available at:http://links.lww.com/JNPT/A388.
Collapse
Affiliation(s)
- Karim Jamal
- Institut universitaire sur la réadaptation en déficience physique de Montréal-IURDPM, Centre de Recherche Interdisciplinaire en Réadaptation du Montréal métropolitain-CRIR Canada and School of Rehabilitation, Université de Montréal, Montreal, Quebec, Canada (K.J., C.D.); Physical and Rehabilitation Medicine Department, University Hospital of Rennes, Rennes, France (K.J.); and Physiotherapy School of Marseille-France, Marseille, France (A.P., S.R.)
| | | | | | | |
Collapse
|
11
|
Villar Ortega E, Aksöz EA, Buetler KA, Marchal-Crespo L. Enhancing touch sensibility by sensory retraining in a sensory discrimination task via haptic rendering. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:929431. [PMID: 36189030 PMCID: PMC9397824 DOI: 10.3389/fresc.2022.929431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Stroke survivors are commonly affected by somatosensory impairment, hampering their ability to interpret somatosensory information. Somatosensory information has been shown to critically support movement execution in healthy individuals and stroke survivors. Despite the detrimental effect of somatosensory impairments on performing activities of daily living, somatosensory training—in stark contrast to motor training—does not represent standard care in neurorehabilitation. Reasons for the neglected somatosensory treatment are the lack of high-quality research demonstrating the benefits of somatosensory interventions on stroke recovery, the unavailability of reliable quantitative assessments of sensorimotor deficits, and the labor-intensive nature of somatosensory training that relies on therapists guiding the hands of patients with motor impairments. To address this clinical need, we developed a virtual reality-based robotic texture discrimination task to assess and train touch sensibility. Our system incorporates the possibility to robotically guide the participants' hands during texture exploration (i.e., passive touch) and no-guided free texture exploration (i.e., active touch). We ran a 3-day experiment with thirty-six healthy participants who were asked to discriminate the odd texture among three visually identical textures –haptically rendered with the robotic device– following the method of constant stimuli. All participants trained with the passive and active conditions in randomized order on different days. We investigated the reliability of our system using the Intraclass Correlation Coefficient (ICC). We also evaluated the enhancement of participants' touch sensibility via somatosensory retraining and compared whether this enhancement differed between training with active vs. passive conditions. Our results showed that participants significantly improved their task performance after training. Moreover, we found that training effects were not significantly different between active and passive conditions, yet, passive exploration seemed to increase participants' perceived competence. The reliability of our system ranged from poor (in active condition) to moderate and good (in passive condition), probably due to the dependence of the ICC on the between-subject variability, which in a healthy population is usually small. Together, our virtual reality-based robotic haptic system may be a key asset for evaluating and retraining sensory loss with minimal supervision, especially for brain-injured patients who require guidance to move their hands.
Collapse
Affiliation(s)
- Eduardo Villar Ortega
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- *Correspondence: Eduardo Villar Ortega
| | - Efe Anil Aksöz
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland
| | - Karin A. Buetler
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Laura Marchal-Crespo
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Cognitive Robotics, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
12
|
Zbytniewska-Mégret M, Decraene L, Mailleux L, Kleeren L, Kanzler CM, Gassert R, Ortibus E, Feys H, Lambercy O, Klingels K. Reliable and Valid Robotic Assessments of Hand Active and Passive Position Sense in Children With Unilateral Cerebral Palsy. Front Hum Neurosci 2022; 16:895080. [PMID: 35978982 PMCID: PMC9376476 DOI: 10.3389/fnhum.2022.895080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Impaired hand proprioception can lead to difficulties in performing fine motor tasks, thereby affecting activities of daily living. The majority of children with unilateral cerebral palsy (uCP) experience proprioceptive deficits, but accurately quantifying these deficits is challenging due to the lack of sensitive measurement methods. Robot-assisted assessments provide a promising alternative, however, there is a need for solutions that specifically target children and their needs. We propose two novel robotics-based assessments to sensitively evaluate active and passive position sense of the index finger metacarpophalangeal joint in children. We then investigate test-retest reliability and discriminant validity of these assessments in uCP and typically developing children (TDC), and further use the robotic platform to gain first insights into fundamentals of hand proprioception. Both robotic assessments were performed in two sessions with 1-h break in between. In the passive position sense assessment, participant's finger is passively moved by the robot to a randomly selected position, and she/he needs to indicate the perceived finger position on a tablet screen located directly above the hand, so that the vision of the hand is blocked. Active position sense is assessed by asking participants to accurately move their finger to a target position shown on the tablet screen, without visual feedback of the finger position. Ten children with uCP and 10 age-matched TDC were recruited in this study. Test-retest reliability in both populations was good (intraclass correlation coefficients (ICC) >0.79). Proprioceptive error was larger for children with uCP than TDC (passive: 11.49° ± 5.57° vs. 7.46° ± 4.43°, p = 0.046; active: 10.17° ± 5.62° vs. 5.34° ± 2.03°, p < 0.001), indicating discriminant validity. The active position sense was more accurate than passive, and the scores were not correlated, underlining the need for targeted assessments to comprehensively evaluate proprioception. There was a significant effect of age on passive position sense in TDC but not uCP, possibly linked to disturbed development of proprioceptive acuity in uCP. Overall, the proposed robot-assisted assessments are reliable, valid and a promising alternative to commonly used clinical methods, which could help gain a better understanding of proprioceptive impairments in uCP, facilitating the design of novel therapies.
Collapse
Affiliation(s)
- Monika Zbytniewska-Mégret
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- *Correspondence: Monika Zbytniewska-Mégret
| | - Lisa Decraene
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Faculty of Rehabilitation Sciences, Rehabilitation Research Center (REVAL), University of Hasselt, Diepenbeek, Belgium
| | - Lisa Mailleux
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Lize Kleeren
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Christoph M. Kanzler
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Els Ortibus
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Hilde Feys
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Katrijn Klingels
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Faculty of Rehabilitation Sciences, Rehabilitation Research Center (REVAL), University of Hasselt, Diepenbeek, Belgium
| |
Collapse
|
13
|
Wang Z, Rong Y, Gu L, Yang Y, Du X, Zhou M. Reliability and validity of the fall risk self-assessment scale for community-dwelling older people in China: a pilot study. BMC Geriatr 2022; 22:272. [PMID: 35365082 PMCID: PMC8976342 DOI: 10.1186/s12877-022-02962-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Background Falls are a common and serious public health issue among older adults, contributing to the loss of independence, psychological distress, and incapability to engage in meaningful occupations, etc. However, there is a lack of abundant information about the fall risk self-evaluation scale for community-dwelling older people. Therefore, this study aimed to evaluate the preliminary reliability and validity of the fall risk self-assessment scale (FRSAS) among community-dwelling older adults. Methods A cross-sectional study was conducted. A total of 230 individuals aged 65 years and over were recruited by a convenience sampling between October and December 2020 from three communities in Haidian district, Beijing. Eligible participants were required to fill in the general condition questionnaire and the fall risk self-assessment scale. The reliability and validity were analyzed by using SPSS 20.0. Results Two hundred twenty-two participants completed the assessment as required (the completion rate was 96.52%). The most items of FRSAS were understood by older adults, which was completed in 10 min. Cronbach’s α and intraclass correlation coefficient ICC (2,1) of the scale were 0.757 and 0.967 respectively, suggesting good internal consistency and test-retest reliability. Exploratory factor analysis yielded 14 factors that explained 61.744% of the variance. Five items failed to be categorized into any factors because the factor loading of these items was less than 0.4. A future large-sample study needs to be conducted to explore its construct validity. The total scores and dimensional scores except for C-dimension showed significant differences between participants who had experienced a fall in the previous 6 months and those who had not (P < 0.05), indicating good discriminant validity. Conclusions The fall risk self-assessment scale including 41 items demonstrated relatively high feasibility as well as satisfactory results in the internal consistency, test-retest reliability, and discriminant validity. Trial registration Registration number: ChiCTR2000038856; Date of registration: 7 Oct 2020. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-022-02962-3.
Collapse
Affiliation(s)
- Zhizhuo Wang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Yuetong Rong
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Li Gu
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Yanyan Yang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Xinmin Du
- Jimenli Community Health Service Center, North Third Ring West Road, Haidian District, Beijing, 100088, China
| | - Mouwang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
14
|
Lee KW, Kang SH, Lim SC. Simple and Reliable Position Sense Assessment under Different External Torques: Toward Developing a Post-stroke Proprioception Evaluation Device. IEEE Trans Neural Syst Rehabil Eng 2022; 30:823-832. [PMID: 35324443 DOI: 10.1109/tnsre.2022.3161948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evaluation of position sense post-stroke is essential for rehabilitation. Position sense may be an output of a process needing position information, external torque, and the sense of effort. Even for healthy individuals, it is unclear whether external torque affects position sense. Thus, evaluation of position sense under different external torques in clinical settings is strongly needed. However, simple devices for measuring position sense under different external torques in clinical settings are lacking. Technologically advanced devices that may evaluate the elbow position sense under different torques were reported to be infeasible clinically because of device complexity and the need for technical experts when analyzing data. To address the unmet need, in this study, a simple and light elbow position sense measurement device was developed that allows clinicians to measure elbow position sense under different external torques in the form of position matching error objectively without any technical difficulties. The feasibility of the device, including intra-session intra-rater reliability and test-retest reliability over two consecutive days, was verified to be clinically applicable using tests with 25 healthy subjects. Thanks to its ease of use, high reliability, and ease of data analysis, it is expected that the device can help to evaluate the position sense post-stroke comprehensively.
Collapse
|
15
|
Yu Y, Chen Y, Lou T, Shen X. Correlation Between Proprioceptive Impairment and Motor Deficits After Stroke: A Meta-Analysis Review. Front Neurol 2022; 12:688616. [PMID: 35095706 PMCID: PMC8793362 DOI: 10.3389/fneur.2021.688616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction: Proprioceptive impairment is a common symptom after stroke. Clarifying how proprioception correlates with motor function after stroke may be helpful in optimizing proprioception-augmented movement training. Previous studies have shown inconsistent findings. A meta-analysis is an optimal method to explore the correlation and identify the factors contributing to these inconsistencies. Objective: To explore the correlation between proprioception and motor function after stroke through a meta-analysis, taking into account characteristics of the measurements used in these studies. Methods: We searched multiple databases until November 2021 for eligible studies that measured both proprioception and motor functions in persons with stroke and reported their correlation or data for correlation analysis. A meta-analysis of the correlations was performed. The subgroup analysis and meta-regression were further conducted to investigate potential factors contributing to the heterogeneity of correlation strength, based on the participants' characteristics, proprioception, and motor function measures. Results: In total, 28 studies comprising of 1,829 participants with stroke were included in the meta-analysis. The overall correlation between proprioception and motor function was significant (r = 0.267, p < 0.05), but there was heterogeneity across studies (I2 = 45%, p < 0.05). The results of the subgroup analysis showed proprioception of the axial segment in weight-bearing conditions (r = 0.443, p < 0.05) and upper limb without weight-bearing (r = 0.292, p < 0.05) had a stronger correlation with motor function than proprioception of the lower limb without weight-bearing. The proprioception measured through ipsilateral matching (r = 0.412, p < 0.05) showed a stronger correlation with motor function than through contralateral matching. The International Classification of Functioning, Disability, and Health (ICF) domains of motor function, movement function (r = 0.338, p < 0.05), activity performance (r = 0.239, p < 0.05), and independence (r = 0.319, p < 0.05) showed a stronger correlation with proprioception than with other domains. Conclusion: There is a significant correlation between proprioception and motor dysfunction after stroke. The proprioception measured in the axial segment under weight-bearing conditions or measured with ipsilateral matching, and motor function, specifically in the ICF domains of movement function, activity performance, and independence showed a positive contribution to the association between proprioception and motor function. The correlation does not imply causation and might be underestimated by attributes of current tests for proprioception and motor function. Further studies are needed to clarify the cause-effect relationship.
Collapse
Affiliation(s)
- Yifan Yu
- Department of Physical Therapy, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yufang Chen
- Laboratory of Biomechanics and Rehabilitation Engineering, School of Medicine, Tongji University, Shanghai, China
| | - Teng Lou
- Rehabilitation center, Shanghai First Rehabilitation Hospital, Shanghai, China
| | - Xia Shen
- Rehabilitation Medicine Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Department of Rehabilitation Sciences, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xia Shen
| |
Collapse
|
16
|
van Kordelaar J, van de Ruit M, Solis-Escalante T, Aerden LAM, Meskers CGM, van Wegen EEH, Schouten AC, Kwakkel G, van der Helm FCT. The Cortical Response Evoked by Robotic Wrist Perturbations Reflects Level of Proprioceptive Impairment After Stroke. Front Hum Neurosci 2021; 15:695366. [PMID: 34858150 PMCID: PMC8631193 DOI: 10.3389/fnhum.2021.695366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Proprioception is important for regaining motor function in the paretic upper extremity after stroke. However, clinical assessments of proprioception are subjective and require verbal responses from the patient to applied proprioceptive stimuli. Cortical responses evoked by robotic wrist perturbations and measured by electroencephalography (EEG) may be an objective method to support current clinical assessments of proprioception. Objective: To establish whether evoked cortical responses reflect proprioceptive deficits as assessed by clinical scales and whether they predict upper extremity motor function at 26 weeks after stroke. Methods: Thirty-one patients with stroke were included. In week 1, 3, 5, 12, and 26 after stroke, the upper extremity sections of the Erasmus modified Nottingham Sensory Assessment (EmNSA-UE) and the Fugl-Meyer Motor Assessment (FM-UE) and the EEG responses (64 channels) to robotic wrist perturbations were measured. The extent to which proprioceptive input was conveyed to the affected hemisphere was estimated by the signal-to-noise ratio (SNR) of the evoked response. The relationships between SNR and EmNSA-UE as well as SNR and time after stroke were investigated using linear regression. Receiver-operating-characteristic curves were used to compare the predictive values of SNR and EmNSA-UE for predicting whether patients regained some selective motor control (FM-UE > 22) or whether they could only move their paretic upper extremity within basic limb synergies (FM-UE ≤ 22) at 26 weeks after stroke. Results: Patients (N = 7) with impaired proprioception (EmNSA-UE proprioception score < 8) had significantly smaller SNR than patients with unimpaired proprioception (N = 24) [EmNSA-UE proprioception score = 8, t(29) = 2.36, p = 0.03]. No significant effect of time after stroke on SNR was observed. Furthermore, there was no significant difference in the predictive value between EmNSA-UE and SNR for predicting motor function at 26 weeks after stroke. Conclusion: The SNR of the evoked cortical response does not significantly change as a function of time after stroke and differs between patients with clinically assessed impaired and unimpaired proprioception, suggesting that SNR reflects persistent damage to proprioceptive pathways. A similar predictive value with respect to EmNSA-UE suggests that SNR may be used as an objective predictor next to clinical sensory assessments for predicting motor function at 26 weeks after stroke.
Collapse
Affiliation(s)
- Joost van Kordelaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Mark van de Ruit
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Teodoro Solis-Escalante
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands.,Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A M Aerden
- Department of Neurology, Reinier de Graaf Hospital, Delft, Netherlands
| | - Carel G M Meskers
- Department of Rehabilitation Medicine, Amsterdam Neuroscience and Amsterdam Movement Sciences, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Erwin E H van Wegen
- Department of Rehabilitation Medicine, Amsterdam Neuroscience and Amsterdam Movement Sciences, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Alfred C Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands.,Department of Biomedical Engineering, University of Twente, Enschede, Netherlands
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, Amsterdam Neuroscience and Amsterdam Movement Sciences, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Frans C T van der Helm
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
17
|
Rose CG, Deshpande AD, Carducci J, Brown JD. The road forward for upper-extremity rehabilitation robotics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Zbytniewska M, Kanzler CM, Jordan L, Salzmann C, Liepert J, Lambercy O, Gassert R. Reliable and valid robot-assisted assessments of hand proprioceptive, motor and sensorimotor impairments after stroke. J Neuroeng Rehabil 2021; 18:115. [PMID: 34271954 PMCID: PMC8283922 DOI: 10.1186/s12984-021-00904-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Background Neurological injuries such as stroke often differentially impair hand motor and somatosensory function, as well as the interplay between the two, which leads to limitations in performing activities of daily living. However, it is challenging to identify which specific aspects of sensorimotor function are impaired based on conventional clinical assessments that are often insensitive and subjective. In this work we propose and validate a set of robot-assisted assessments aiming at disentangling hand proprioceptive from motor impairments, and capturing their interrelation (sensorimotor impairments). Methods A battery of five complementary assessment tasks was implemented on a one degree-of-freedom end-effector robotic platform acting on the index finger metacarpophalangeal joint. Specifically, proprioceptive impairments were assessed using a position matching paradigm. Fast target reaching, range of motion and maximum fingertip force tasks characterized motor function deficits. Finally, sensorimotor impairments were assessed using a dexterous trajectory following task. Clinical feasibility (duration), reliability (intra-class correlation coefficient ICC, smallest real difference SRD) and validity (Kruskal-Wallis test, Spearman correlations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho$$\end{document}ρ with Fugl-Meyer Upper Limb Motor Assessment, kinesthetic Up-Down Test, Box & Block Test) of robotic tasks were evaluated with 36 sub-acute stroke subjects and 31 age-matched neurologically intact controls. Results Eighty-three percent of stroke survivors with varied impairment severity (mild to severe) could complete all robotic tasks (duration: <15 min per tested hand). Further, the study demonstrated good to excellent reliability of the robotic tasks in the stroke population (ICC>0.7, SRD<30%), as well as discriminant validity, as indicated by significant differences (p-value<0.001) between stroke and control subjects. Concurrent validity was shown through moderate to strong correlations (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho$$\end{document}ρ=0.4-0.8) between robotic outcome measures and clinical scales. Finally, robotic tasks targeting different deficits (motor, sensory) were not strongly correlated with each other (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho \le$$\end{document}ρ≤0.32, p-value>0.1), thereby presenting complementary information about a patient’s impairment profile. Conclusions The proposed robot-assisted assessments provide a clinically feasible, reliable, and valid approach to distinctly characterize impairments in hand proprioceptive and motor function, along with the interaction between the two. This opens new avenues to help unravel the contributions of unique aspects of sensorimotor function in post-stroke recovery, as well as to contribute to future developments towards personalized, assessment-driven therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00904-5.
Collapse
Affiliation(s)
- Monika Zbytniewska
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Christoph M Kanzler
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| | - Lisa Jordan
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Christian Salzmann
- Kliniken Schmieder Allensbach, Zum Tafelholz 8, 78476, Allensbach, Germany
| | - Joachim Liepert
- Kliniken Schmieder Allensbach, Zum Tafelholz 8, 78476, Allensbach, Germany
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
19
|
Vandael K, Stanton TR, Meulders A. Assessing kinesthetic proprioceptive function of the upper limb: a novel dynamic movement reproduction task using a robotic arm. PeerJ 2021; 9:e11301. [PMID: 33987004 PMCID: PMC8101453 DOI: 10.7717/peerj.11301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
Background Proprioception refers to the perception of motion and position of the body or body segments in space. A wide range of proprioceptive tests exists, although tests dynamically evaluating sensorimotor integration during upper limb movement are scarce. We introduce a novel task to evaluate kinesthetic proprioceptive function during complex upper limb movements using a robotic device. We aimed to evaluate the test–retest reliability of this newly developed Dynamic Movement Reproduction (DMR) task. Furthermore, we assessed reliability of the commonly used Joint Reposition (JR) task of the elbow, evaluated the association between both tasks, and explored the influence of visual information (viewing arm movement or not) on performance during both tasks. Methods During the DMR task, participants actively reproduced movement patterns while holding a handle attached to the robotic arm, with the device encoding actual position throughout movement. In the JR task, participants actively reproduced forearm positions; with the final arm position evaluated using an angle measurement tool. The difference between target movement pattern/position and reproduced movement pattern/position served as measures of accuracy. In study 1 (N = 23), pain-free participants performed both tasks at two test sessions, 24-h apart, both with and without visual information available (i.e., vision occluded using a blindfold). In study 2 (N = 64), an independent sample of pain-free participants performed the same tasks in a single session to replicate findings regarding the association between both tasks and the influence of visual information. Results The DMR task accuracy showed good-to-excellent test–retest reliability, while JR task reliability was poor: measurements did not remain sufficiently stable over testing days. The DMR and JR tasks were only weakly associated. Adding visual information (i.e., watching arm movement) had different performance effects on the tasks: it increased JR accuracy but decreased DMR accuracy, though only when the DMR task started with visual information available (i.e., an order effect). Discussion The DMR task’s highly standardized protocol (i.e., largely automated), precise measurement and involvement of the entire upper limb kinetic chain (i.e., shoulder, elbow and wrist joints) make it a promising tool. Moreover, the poor association between the JR and DMR tasks indicates that they likely capture unique aspects of proprioceptive function. While the former mainly captures position sense, the latter appears to capture sensorimotor integration processes underlying kinesthesia, largely independent of position sense. Finally, our results show that the integration of visual and proprioceptive information is not straightforward: additional visual information of arm movement does not necessarily make active movement reproduction more accurate, on the contrary, when movement is complex, vision appears to make it worse.
Collapse
Affiliation(s)
- Kristof Vandael
- Experimental Health Psychology, University of Maastricht, Maastricht, Netherlands.,Laboratory of Biological Psychology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tasha R Stanton
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,IIMPACT in Health, University of South Australia, Adelaide, South Australia, Australia
| | - Ann Meulders
- Experimental Health Psychology, University of Maastricht, Maastricht, Netherlands.,Research Group Health Psychology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Bernard-Espina J, Beraneck M, Maier MA, Tagliabue M. Multisensory Integration in Stroke Patients: A Theoretical Approach to Reinterpret Upper-Limb Proprioceptive Deficits and Visual Compensation. Front Neurosci 2021; 15:646698. [PMID: 33897359 PMCID: PMC8058201 DOI: 10.3389/fnins.2021.646698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/04/2021] [Indexed: 11/29/2022] Open
Abstract
For reaching and grasping, as well as for manipulating objects, optimal hand motor control arises from the integration of multiple sources of sensory information, such as proprioception and vision. For this reason, proprioceptive deficits often observed in stroke patients have a significant impact on the integrity of motor functions. The present targeted review attempts to reanalyze previous findings about proprioceptive upper-limb deficits in stroke patients, as well as their ability to compensate for these deficits using vision. Our theoretical approach is based on two concepts: first, the description of multi-sensory integration using statistical optimization models; second, on the insight that sensory information is not only encoded in the reference frame of origin (e.g., retinal and joint space for vision and proprioception, respectively), but also in higher-order sensory spaces. Combining these two concepts within a single framework appears to account for the heterogeneity of experimental findings reported in the literature. The present analysis suggests that functional upper limb post-stroke deficits could not only be due to an impairment of the proprioceptive system per se, but also due to deficiencies of cross-references processing; that is of the ability to encode proprioceptive information in a non-joint space. The distinction between purely proprioceptive or cross-reference-related deficits can account for two experimental observations: first, one and the same patient can perform differently depending on specific proprioceptive assessments; and a given behavioral assessment results in large variability across patients. The distinction between sensory and cross-reference deficits is also supported by a targeted literature review on the relation between cerebral structure and proprioceptive function. This theoretical framework has the potential to lead to a new stratification of patients with proprioceptive deficits, and may offer a novel approach to post-stroke rehabilitation.
Collapse
Affiliation(s)
| | | | - Marc A Maier
- Université de Paris, INCC UMR 8002, CNRS, Paris, France
| | | |
Collapse
|
21
|
Simmatis LE, Jin AY, Taylor SW, Bisson EJ, Scott SH, Baharnoori M. The feasibility of assessing cognitive and motor function in multiple sclerosis patients using robotics. Mult Scler J Exp Transl Clin 2020; 6:2055217320964940. [PMID: 33149931 PMCID: PMC7580159 DOI: 10.1177/2055217320964940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background Multiple sclerosis (MS) causes pervasive motor, sensory and cognitive dysfunction. The Expanded Disability Status Scale (EDSS) is the gold standard for assessing MS disability. The EDSS is biased towards mobility and may not accurately measure MS-related disabilities in the upper limb or in cognitive functions (e.g. executive function). Objective Our objectives were to determine the feasibility of using the Kinarm robotic system to quantify neurological deficits related to arm function and cognition in MS patients, and examine relationships between traditional clinical assessments and Kinarm variables. Methods Individuals with MS performed 8 robotic tasks assessing motor, cognitive, and sensory ability. We additionally collected traditional clinical assessments and compared these to the results of the robotic assessment. Results Forty-three people with MS were assessed. Most participants could complete the robotic assessment. Twenty-six (60%) were impaired on at least one cognitive task and twenty-six (60%) were impaired on at least one upper-limb motor task. Cognitive domain task performance correlated most strongly with the EDSS. Conclusions Kinarm robotic assessment of people with MS is feasible, can identify a broad range of upper-limb motor and sensory, as well as cognitive, impairments, and complements current clinical rating scales in the assessment of MS-related disability.
Collapse
Affiliation(s)
- Leif Er Simmatis
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | | | - Sean W Taylor
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - Etienne J Bisson
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - Moogeh Baharnoori
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| |
Collapse
|
22
|
Lowrey CR, Blazevski B, Marnet JL, Bretzke H, Dukelow SP, Scott SH. Robotic tests for position sense and movement discrimination in the upper limb reveal that they each are highly reproducible but not correlated in healthy individuals. J Neuroeng Rehabil 2020; 17:103. [PMID: 32711540 PMCID: PMC7382092 DOI: 10.1186/s12984-020-00721-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/06/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Robotic technologies for neurological assessment provide sensitive, objective measures of behavioural impairments associated with injuries or disease such as stroke. Previous robotic tasks to assess proprioception typically involve single limbs or in some cases both limbs. The challenge with these approaches is that they often rely on intact motor function and/or working memory to remember/reproduce limb position, both of which can be impaired following stroke. Here, we examine the feasibility of a single-arm Movement Discrimination Threshold (MDT) task to assess proprioception by quantifying thresholds for sensing passive limb movement without vision. We use a staircase method to adjust movement magnitude based on subject performance throughout the task in order to reduce assessment time. We compare MDT task performance to our previously-designed Arm Position Matching (APM) task. Critically, we determine test-retest reliability of each task in the same population of healthy controls. METHOD Healthy participants (N = 21, age = 18-22 years) completed both tasks in the End-Point Kinarm robot. In the MDT task the robot moved the dominant arm left or right and participants indicated the direction moved. Movement displacement was systematically adjusted (decreased after correct answers, increased after incorrect) until the Discrimination Threshold was found. In the APM task, the robot moved the dominant arm and participants "mirror-matched" with the non-dominant arm. RESULTS Discrimination Threshold for direction of arm displacement in the MDT task ranged from 0.1-1.3 cm. Displacement Variability ranged from 0.11-0.71 cm. Test-retest reliability of Discrimination Threshold based on ICC confidence intervals was moderate to excellent (range, ICC = 0.78 [0.52-0.90]). Interestingly, ICC values for Discrimination Threshold increased to 0.90 [0.77-0.96] (good to excellent) when the number of trials was reduced to the first 50. Most APM parameters had ICC's above 0.80, (range, ICC = [0.86-0.88]) with the exception of variability (ICC = 0.30). Importantly, no parameters were significantly correlated across tasks as Spearman rank correlations across parameter-pairings ranged from - 0.27 to 0.30. CONCLUSIONS The MDT task is a feasible and reliable task, assessing movement discrimination threshold in ~ 17 min. Lack of correlation between the MDT and a position-matching task (APM) indicates that these tasks assess unique aspects of proprioception that are not strongly related in young, healthy individuals.
Collapse
Affiliation(s)
- Catherine R. Lowrey
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen’s University, 18 Stuart St., Kingston, ON K7L 3N6 Canada
| | - Benett Blazevski
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen’s University, 18 Stuart St., Kingston, ON K7L 3N6 Canada
| | - Jean-Luc Marnet
- BioEngineering and Innovation in Neuroscience, University Paris Descartes, Paris, France
| | - Helen Bretzke
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen’s University, 18 Stuart St., Kingston, ON K7L 3N6 Canada
| | - Sean P. Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada
| | - Stephen H. Scott
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen’s University, 18 Stuart St., Kingston, ON K7L 3N6 Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
- Department of Medicine, Queen’s University, Kingston, ON Canada
| |
Collapse
|
23
|
Simmatis LER, Early S, Moore KD, Appaqaq S, Scott SH. Statistical measures of motor, sensory and cognitive performance across repeated robot-based testing. J Neuroeng Rehabil 2020; 17:86. [PMID: 32615979 PMCID: PMC7331240 DOI: 10.1186/s12984-020-00713-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Traditional clinical assessments are used extensively in neurology; however, they can be coarse, which can also make them insensitive to change. Kinarm is a robotic assessment system that has been used for precise assessment of individuals with neurological impairments. However, this precision also leads to the challenge of identifying whether a given change in performance reflects a significant change in an individual's ability or is simply natural variation. Our objective here is to derive confidence intervals and thresholds of significant change for Kinarm Standard Tests™ (KST). METHODS We assessed participants twice within 15 days on all tasks presently available in KST. We determined the 5-95% confidence intervals for each task parameter, and derived thresholds for significant change. We tested for learning effects and corrected for the false discovery rate (FDR) to identify task parameters with significant learning effects. Finally, we calculated intraclass correlation of type ICC [1, 2] (ICC-C) to quantify consistency across assessments. RESULTS We recruited an average of 56 participants per task. Confidence intervals for Z-Task Scores ranged between 0.61 and 1.55, and the threshold for significant change ranged between 0.87 and 2.19. We determined that 4/11 tasks displayed learning effects that were significant after FDR correction; these 4 tasks primarily tested cognition or cognitive-motor integration. ICC-C values for Z-Task Scores ranged from 0.26 to 0.76. CONCLUSIONS The present results provide statistical bounds on individual performance for KST as well as significant changes across repeated testing. Most measures of performance had good inter-rater reliability. Tasks with a higher cognitive burden seemed to be more susceptible to learning effects, which should be taken into account when interpreting longitudinal assessments of these tasks.
Collapse
Affiliation(s)
- Leif E. R. Simmatis
- grid.410356.50000 0004 1936 8331Centre for Neuroscience Studies, Queen’s University, Kingston, ON Canada
| | - Spencer Early
- grid.410356.50000 0004 1936 8331Centre for Neuroscience Studies, Queen’s University, Kingston, ON Canada
| | - Kimberly D. Moore
- grid.410356.50000 0004 1936 8331Centre for Neuroscience Studies, Queen’s University, Kingston, ON Canada
| | - Simone Appaqaq
- grid.410356.50000 0004 1936 8331Centre for Neuroscience Studies, Queen’s University, Kingston, ON Canada
| | - Stephen H. Scott
- grid.410356.50000 0004 1936 8331Centre for Neuroscience Studies, Queen’s University, Kingston, ON Canada ,grid.410356.50000 0004 1936 8331Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada ,grid.410356.50000 0004 1936 8331Department of Medicine, Queen’s University, Kingston, ON Canada
| |
Collapse
|
24
|
Galhardas L, Raimundo A, Marmeleira J. Test-retest reliability of upper-limb proprioception and balance tests in older nursing home residents. Arch Gerontol Geriatr 2020; 89:104079. [DOI: 10.1016/j.archger.2020.104079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
|
25
|
Xu C, Hauser SC, Wang Y, Gerling GJ. Roles of Force Cues and Proprioceptive Joint Angles in Active Exploration of Compliant Objects. WORLD HAPTICS CONFERENCE. WORLD HAPTICS CONFERENCE 2019; 2019:10.1109/whc.2019.8816159. [PMID: 34765101 PMCID: PMC8580133 DOI: 10.1109/whc.2019.8816159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We employ distinct exploratory procedures to improve our perceptual judgments of an object's properties. For instance, with respect to compliance, we exert pressure against a resisting force. The present work investigates ties between strategies for active control of the finger and resultant cues by which compliances may be discriminated. In particular, we employ elastic spheres that co-vary in compliance and radius, as these generate non-differentiable contact areas and are discriminable only in active touch with proprioceptive inputs. During human-subjects psychophysical experiments, we measure touch force, fingertip displacement, and joint kinematics. Two active touch paradigms are used, with and without a force constraint. First, in behaviorally-controlled situations that make force cues non-useful, the results indicate that participants can employ a force-matching strategy between the compliant objects and rely upon displacement-related cues to differentiate them. We show these cues are directly tied to a proprioception mechanism, specifically, the angle of the MCP joint. However, in the fully active paradigm, participants control displacements instead and discriminate via force-related cues. Similar to prior findings in passive touch, we find that force-related cues, likewise, are used in active touch for the optimal and efficient discrimination of compliant objects.
Collapse
Affiliation(s)
- Chang Xu
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904 USA
| | - Steven C Hauser
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904 USA
| | - Yuxiang Wang
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904 USA
| | - Gregory J Gerling
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904 USA
| |
Collapse
|
26
|
Zbytniewska M, Rinderknecht MD, Lambercy O, Barnobi M, Raats J, Lamers I, Feys P, Liepert J, Gassert R. Design and Characterization of a Robotic Device for the Assessment of Hand Proprioceptive, Motor, and Sensorimotor Impairments. IEEE Int Conf Rehabil Robot 2019; 2019:441-446. [PMID: 31374669 DOI: 10.1109/icorr.2019.8779507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hand function is often impaired after neurological injuries such as stroke. In order to design patient-specific rehabilitation, it is essential to quantitatively assess those deficits. Current clinical scores cannot provide the required level of detail, and most assessment devices have been developed for the proximal joints of the upper limb. This paper presents a new robotic platform for the assessment of proprioceptive, motor, and sensorimotor hand impairments. A detailed technical evaluation demonstrated the capabilities to render different haptic environments required for a comprehensive assessment battery, and showed that the device is suitable for human interaction due to its ergonomic design. A preliminary study on proprioceptive assessment using a gauge position matching task with one healthy, one stroke, and one multiple sclerosis subject showed that the robotic system is able to rapidly and sensitively quantify proprioceptive deficits, and has the potential to be integrated into the clinical settings.
Collapse
|
27
|
Beyond Motor Noise: Considering Other Causes of Impaired Reinforcement Learning in Cerebellar Patients. eNeuro 2019; 6:eN-COM-0458-18. [PMID: 30809589 PMCID: PMC6390197 DOI: 10.1523/eneuro.0458-18.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 11/21/2022] Open
|
28
|
Enhancing simulations with intra-subject variability for improved psychophysical assessments. PLoS One 2018; 13:e0209839. [PMID: 30596761 PMCID: PMC6312217 DOI: 10.1371/journal.pone.0209839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 12/12/2018] [Indexed: 11/19/2022] Open
Abstract
Psychometric properties of perceptual assessments, like reliability, depend on stochastic properties of psychophysical sampling procedures resulting in method variability, as well as inter- and intra-subject variability. Method variability is commonly minimized by optimizing sampling procedures through computer simulations. Inter-subject variability is inherent to the population of interest and cannot be influenced. Intra-subject variability introduced by confounds (e.g., inattention or lack of motivation) cannot be simply quantified from experimental data, as these data also include method variability. Therefore, this aspect is generally neglected when developing assessments. Yet, comparing method variability and intra-subject variability could give insights on whether effort should be invested in optimizing the sampling procedure, or in addressing potential confounds instead. We propose a new approach to estimate intra-subject variability of psychometric functions by combining computer simulations and behavioral data, and to account for it when simulating experiments. The approach was illustrated in a real-world scenario of proprioceptive difference threshold assessments. The behavioral study revealed a test-retest reliability of r = 0.212. Computer simulations without considering intra-subject variability predicted a reliability of r = 0.768, whereas the new approach including an intra-subject variability model lead to a realistic estimate of reliability (r = 0.207). Such a model also allows computing the theoretically maximally attainable reliability (r = 0.552) assuming an ideal sampling procedure. Comparing the reliability estimates when exclusively accounting for method variability versus intra-subject variability reveals that intra-subject variability should be reduced by addressing confounds and that only optimizing the sampling procedure may be insufficient to achieve a high reliability. This new approach allows computing the intra-subject variability with only two measurements per subject, and predicting the reliability for a larger number of subjects and retests based on simulations, without requiring additional experiments. Such a tool of predictive value is especially valuable for target populations where time is scarce, e.g., for assessments in clinical settings.
Collapse
|
29
|
Rinderknecht MD, Lambercy O, Gassert R. Performance metrics for an application-driven selection and optimization of psychophysical sampling procedures. PLoS One 2018; 13:e0207217. [PMID: 30485350 PMCID: PMC6261547 DOI: 10.1371/journal.pone.0207217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/26/2018] [Indexed: 01/08/2023] Open
Abstract
When estimating psychometric functions with sampling procedures, psychophysical assessments should be precise and accurate while being as efficient as possible to reduce assessment duration. The estimation performance of sampling procedures is commonly evaluated in computer simulations for single psychometric functions and reported using metrics as a function of number of trials. However, the estimation performance of a sampling procedure may vary for different psychometric functions. Therefore, the results of these type of evaluations may not be generalizable to a heterogeneous population of interest. In addition, the maximum number of trials is often imposed by time restrictions, especially in clinical applications, making trial-based metrics suboptimal. Hence, the benefit of these simulations to select and tune an ideal sampling procedure for a specific application is limited. We suggest to evaluate the estimation performance of sampling procedures in simulations covering the entire range of psychometric functions found in a population of interest, and propose a comprehensive set of performance metrics for a detailed analysis. To illustrate the information gained from these metrics in an application example, six sampling procedures were evaluated in a computer simulation based on prior knowledge on the population distribution and requirements from proprioceptive assessments. The metrics revealed limitations of the sampling procedures, such as inhomogeneous or systematically decreasing performance depending on the psychometric functions, which can inform the tuning process of a sampling procedure. More advanced metrics allowed directly comparing overall performances of different sampling procedures and select the best-suited sampling procedure for the example application. The proposed analysis metrics can be used for any sampling procedure and the estimation of any parameter of a psychometric function, independent of the shape of the psychometric function and of how such a parameter was estimated. This framework should help to accelerate the development process of psychophysical assessments.
Collapse
Affiliation(s)
- Mike D. Rinderknecht
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|