1
|
Wood JM, Thompson E, Wright H, Festa L, Morton SM, Reisman DS, Kim HE. Explicit and implicit locomotor learning in individuals with chronic hemiparetic stroke. J Neurophysiol 2024; 132:1172-1182. [PMID: 39230337 PMCID: PMC11495209 DOI: 10.1152/jn.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
Motor learning involves both explicit and implicit processes that are fundamental for acquiring and adapting complex motor skills. However, stroke may damage the neural substrates underlying explicit and/or implicit learning, leading to deficits in overall motor performance. Although both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke when tested during a task that elicits dissociable contributions from both. Here, we compared explicit and implicit locomotor learning in individuals with chronic stroke to age- and sex-matched neurologically intact controls. We assessed implicit learning using split-belt adaptation (where two treadmill belts move at different speeds). We assessed explicit learning (i.e., strategy-use) using visual feedback during split-belt walking to help individuals explicitly correct for step length errors created by the split-belts. After the first 40 strides of split-belt walking, we removed the visual feedback and instructed individuals to walk comfortably, a manipulation intended to minimize contributions from explicit learning. We used a multirate state-space model to characterize individual explicit and implicit process contributions to overall behavioral change. The computational and behavioral analyses revealed that, compared with controls, individuals with chronic stroke demonstrated deficits in both explicit and implicit contributions to locomotor learning, a result that runs counter to prior work testing each process individually during gait. Since poststroke locomotor rehabilitation involves interventions that rely on both explicit and implicit motor learning, future work should determine how locomotor rehabilitation interventions can be structured to optimize overall motor learning. NEW & NOTEWORTHY Motor learning involves both implicit and explicit processes, the underlying neural substrates of which could be damaged after stroke. Although both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke. Using a locomotor task that elicits dissociable contributions from both processes and computational modeling, we found evidence that chronic stroke causes deficits in both explicit and implicit locomotor learning.
Collapse
Affiliation(s)
- Jonathan M Wood
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, Delaware, United States
| | - Elizabeth Thompson
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
| | - Henry Wright
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
| | - Liam Festa
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, Delaware, United States
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, Delaware, United States
| | - Hyosub E Kim
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, Delaware, United States
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Cherry-Allen KM, Huang HD, Celnik PA, Bastian AJ. Serial engagement of distinct motor learning mechanisms to alter walking after stroke. Sci Rep 2024; 14:22706. [PMID: 39349923 PMCID: PMC11442453 DOI: 10.1038/s41598-024-73502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
This study asked if combining different motor learning mechanisms-adaptation and reinforcement-could produce immediate improvements in over ground walking after stroke. Fifteen adults with stroke engaged in three conditions: (1) reinforcement following adaptation, (2) reinforcement alone, and (3) adaptation alone. Adaptation involved split-belt treadmill walking to produce after-effects that reduce step asymmetry. Reinforcement involved the use of real-time auditory feedback about step length asymmetry. Auditory feedback was binary, signaling whether steps were asymmetric or equal, but not whether to shorten or lengthen either step. Change in step length asymmetry was the outcome assessed during over ground walking. Reinforcement following adaptation led to reductions in step length asymmetry that persisted into an immediate retention period. Importantly, it led to the desired pattern of lengthening the shorter step in a majority of participants. Reinforcement alone led to no significant change in step length asymmetry, and sometimes produced a non-optimal pattern of shortening the longer step. Our control condition of adaptation alone led to more transient reductions in step length asymmetry. These findings reveal the potential for utilizing serial delivery of adaptation and reinforcement to influence a complex movement in the real-world context of over ground walking, in people with stroke.
Collapse
Affiliation(s)
- Kendra M Cherry-Allen
- Department of Physical Therapy Education, Western University of Health Sciences, 2665 S Santiam Highway, Lebanon, OR, 97355, USA.
- Department of Physical Medicine and Rehabilitation, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Han D Huang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, The Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
- Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Amy J Bastian
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
3
|
Wood JM, Thompson E, Wright H, Festa L, Morton SM, Reisman DS, Kim HE. Explicit and implicit locomotor learning in individuals with chronic hemiparetic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578807. [PMID: 38370851 PMCID: PMC10871205 DOI: 10.1101/2024.02.04.578807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Motor learning involves both explicit and implicit processes that are fundamental for acquiring and adapting complex motor skills. However, stroke may damage the neural substrates underlying explicit and/or implicit learning, leading to deficits in overall motor performance. While both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke when tested during a task that elicits dissociable contributions from both. Here, we compared explicit and implicit locomotor learning in individuals with chronic stroke to age- and sex-matched neurologically intact controls. We assessed implicit learning using split-belt adaptation (where two treadmill belts move at different speeds). We assessed explicit learning (i.e., strategy-use) using visual feedback during split-belt walking to help individuals explicitly correct for step length errors created by the split-belts. The removal of visual feedback after the first 40 strides of split-belt walking, combined with task instructions, minimized contributions from explicit learning for the remainder of the task. We utilized a multi-rate state-space model to characterize individual explicit and implicit process contributions to overall behavioral change. The computational and behavioral analyses revealed that, compared to controls, individuals with chronic stroke demonstrated deficits in both explicit and implicit contributions to locomotor learning, a result that runs counter to prior work testing each process individually during gait. Since post-stroke locomotor rehabilitation involves interventions that rely on both explicit and implicit motor learning, future work should determine how locomotor rehabilitation interventions can be structured to optimize overall motor learning.
Collapse
Affiliation(s)
- Jonathan M. Wood
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19713, United States
| | - Elizabeth Thompson
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, United States
| | - Henry Wright
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, United States
| | - Liam Festa
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, United States
| | - Susanne M. Morton
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19713, United States
| | - Darcy S. Reisman
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19713, United States
| | - Hyosub E. Kim
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, United States
- Biomechanics and Movement Sciences Program, University of Delaware, Newark, DE 19713, United States
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Pinheiro C, Figueiredo J, Cerqueira J, Santos CP. Robotic Biofeedback for Post-Stroke Gait Rehabilitation: A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197197. [PMID: 36236303 PMCID: PMC9573595 DOI: 10.3390/s22197197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 05/09/2023]
Abstract
This review aims to recommend directions for future research on robotic biofeedback towards prompt post-stroke gait rehabilitation by investigating the technical and clinical specifications of biofeedback systems (BSs), including the complementary use with assistive devices and/or physiotherapist-oriented cues. A literature search was conducted from January 2019 to September 2022 on Cochrane, Embase, PubMed, PEDro, Scopus, and Web of Science databases. Data regarding technical (sensors, biofeedback parameters, actuators, control strategies, assistive devices, physiotherapist-oriented cues) and clinical (participants' characteristics, protocols, outcome measures, BSs' effects) specifications of BSs were extracted from the relevant studies. A total of 31 studies were reviewed, which included 660 stroke survivors. Most studies reported visual biofeedback driven according to the comparison between real-time kinetic or spatiotemporal data from wearable sensors and a threshold. Most studies achieved statistically significant improvements on sensor-based and clinical outcomes between at least two evaluation time points. Future research should study the effectiveness of using multiple wearable sensors and actuators to provide personalized biofeedback to users with multiple sensorimotor deficits. There is space to explore BSs complementing different assistive devices and physiotherapist-oriented cues according to their needs. There is a lack of randomized-controlled studies to explore post-stroke stage, mental and sensory effects of BSs.
Collapse
Affiliation(s)
- Cristiana Pinheiro
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
- LABBELS-Associate Laboratory, University of Minho, 4800-058 Guimarães, Portugal
| | - Joana Figueiredo
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
- LABBELS-Associate Laboratory, University of Minho, 4800-058 Guimarães, Portugal
| | - João Cerqueira
- Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- Clinical Academic Center (2CA-Braga), Hospital of Braga, 4710-243 Braga, Portugal
| | - Cristina P. Santos
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
- LABBELS-Associate Laboratory, University of Minho, 4800-058 Guimarães, Portugal
- Clinical Academic Center (2CA-Braga), Hospital of Braga, 4710-243 Braga, Portugal
- Correspondence:
| |
Collapse
|
5
|
Review of Real-Time Biomechanical Feedback Systems in Sport and Rehabilitation. SENSORS 2022; 22:s22083006. [PMID: 35458991 PMCID: PMC9028061 DOI: 10.3390/s22083006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023]
Abstract
Real-time biomechanical feedback (BMF) is a relatively new area of research. The potential of using advanced technology to improve motion skills in sport and accelerate physical rehabilitation has been demonstrated in a number of studies. This paper provides a literature review of BMF systems in sports and rehabilitation. Our motivation was to examine the history of the field to capture its evolution over time, particularly how technologies are used and implemented in BMF systems, and to identify the most recent studies showing novel solutions and remarkable implementations. We searched for papers in three research databases: Scopus, Web of Science, and PubMed. The initial search yielded 1167 unique papers. After a rigorous and challenging exclusion process, 144 papers were eventually included in this report. We focused on papers describing applications and systems that implement a complete real-time feedback loop, which must include the use of sensors, real-time processing, and concurrent feedback. A number of research questions were raised, and the papers were studied and evaluated accordingly. We identified different types of physical activities, sensors, modalities, actuators, communications, settings and end users. A subset of the included papers, showing the most perspectives, was reviewed in depth to highlight and present their innovative research approaches and techniques. Real-time BMF has great potential in many areas. In recent years, sensors have been the main focus of these studies, but new types of processing devices, methods, and algorithms, actuators, and communication technologies and protocols will be explored in more depth in the future. This paper presents a broad insight into the field of BMF.
Collapse
|
6
|
Differences between adults and adolescents in responding to hip and knee pattern feedback during gait. Hum Mov Sci 2021; 81:102915. [PMID: 34952320 DOI: 10.1016/j.humov.2021.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/05/2021] [Accepted: 12/11/2021] [Indexed: 11/22/2022]
Abstract
Visual feedback techniques have shown potential in interventions aiming to retrain deviated gait patterns. Understanding the abilities of different age groups to modify their gait is needed to optimize interventions. Twelve adults (6F, 6 M; 26.3 ± 5.9 yrs.) and twelve adolescents (4F, 8 M; 13.6 ± 2.3 yrs) without disabilities participated in one training session. During the session, the responses to a visual kinematic feedback task in which one hip or knee target pattern was modified while unmodified target patterns were maintained in the other hip and knee joints were investigated. Limb orientation and acceleration data were collected using Inertial Measurement Units (IMU) (Xsens Awinda, Enschede, The Netherlands) with a sampling frequency of 60 Hz. Adults tended to outperform adolescents in tracking modified target patterns and showed smaller errors in unmodified regions of modified patterns (p = 0.045); they also outperformed adolescents in unmodified joints (Contralateral Hip: p = 0.003; Contralateral Knee: p = 0.002; Ipsilateral Joint: p = 0.048). These findings suggest different levels of awareness of the need and/or ability to minimize errors across joints, in turn suggesting the need for specialization of training for these age groups.
Collapse
|
7
|
Sato S, Cui A, Choi JT. Visuomotor errors drive step length and step time adaptation during 'virtual' split-belt walking: the effects of reinforcement feedback. Exp Brain Res 2021; 240:511-523. [PMID: 34816293 DOI: 10.1007/s00221-021-06275-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
Precise foot placement is dependent on changes in spatial and temporal coordination between two legs in response to a perturbation during walking. Here, we used a 'virtual' split-belt adaptation task to examine the effects of reinforcement (reward and punishment) feedback about foot placement on the changes in error, step length and step time asymmetry. Twenty-seven healthy adults (20 ± 2.5 years) walked on a treadmill with continuous feedback of the foot position and stepping targets projected on a screen, defined by a visuomotor gain for each leg. The paradigm consisted of a baseline period (same gain on both legs), visuomotor adaptation period (split: one high = 'fast', one low = 'slow' gain) and post-adaptation period (same gain). Participants were divided into 3 groups: control group received no score, reward group received increasing score for each target hit, and punishment group received decreasing score for each target missed. Re-adaptation was assessed 24 ± 2 h later. During early adaptation, the slow foot undershot and fast foot overshot the stepping target. Foot placement errors were gradually reduced by late adaptation, accompanied by increasing step length asymmetry (fast < slow step length) and step time asymmetry (fast > slow step time). Only the punishment group showed greater error reduction and step length re-adaptation on the next day. The results show that (1) explicit feedback of foot placement alone drives adaptation of both step length and step time asymmetry during virtual split-belt walking, and (2) specifically, step length re-adaptation driven by visuomotor errors may be enhanced by punishment feedback.
Collapse
Affiliation(s)
- Sumire Sato
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Ashley Cui
- Public Health Science Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Julia T Choi
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA. .,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Rendos NK, Zajac-Cox L, Thomas R, Sato S, Eicholtz S, Kesar TM. Verbal feedback enhances motor learning during post-stroke gait retraining. Top Stroke Rehabil 2020; 28:362-377. [PMID: 32942960 DOI: 10.1080/10749357.2020.1818480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Fast treadmill walking combined with functional electrical stimulation to ankle muscles (FastFES) is a well-studied gait intervention that improves post-stroke walking function. Although individualized verbal feedback is commonly incorporated during clinical gait training, and a variable practice structure is posited to enhance learning, the influence of these two factors on motor learning during locomotor interventions such as FastFES is poorly understood. OBJECTIVES To determine if the addition of individualized verbal feedback or variable practice to a FastFES training session enhances motor learning of targeted gait patterns. METHODS Nine individuals with post-stroke hemiparesis completed a crossover study comprising exposure to 3 dose-matched types of gait training: (1) FastFES (FF), comprising five 6-minute bouts of training with intermittent FES, (2) FF with addition of individualized verbal instructions and faded feedback delivered by a physical therapist (FF+PT), (3) FF with variable gait speed and FES timing (FF+Var). Gait biomechanics data were collected before (Pre), immediately after (Post), and 24-h following (Retention) each training type. Within-session and retention change scores of 3 targeted gait variables were calculated to assess locomotor learning. RESULTS FF+PT resulted in larger improvements within-session and at retention in trailing limb angle, and a trend for larger improvements in paretic pushoff compared to FF. FF+Var failed to show greater learning of biomechanical variables compared to FF. CONCLUSIONS Addition of individualized verbal feedback (FF+PT) to a single session of gait training may enhance within- and across-session learning of targeted gait variables in people post-stroke, and merits more investigation.
Collapse
Affiliation(s)
- Nicole K Rendos
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Laura Zajac-Cox
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Rahul Thomas
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Sumire Sato
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Steven Eicholtz
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Trisha M Kesar
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|