1
|
SARS-CoV-2 Cellular Entry Is Independent of the ACE2 Cytoplasmic Domain Signaling. Cells 2021; 10:cells10071814. [PMID: 34359983 PMCID: PMC8304749 DOI: 10.3390/cells10071814] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
Recently emerged severe acute respiratory syndrome coronavirus (SARS-CoV)-1 and -2 initiate virus infection by binding of their spike glycoprotein with the cell-surface receptor angiotensin-converting enzyme 2 (ACE2) and enter into the host cells mainly via the clathrin-mediated endocytosis pathway. However, the internalization process post attachment with the receptor is not clear for both SARS-CoV-1 and -2. Understanding the cellular factor/s or pathways used by these CoVs for internalization might provide insights into viral pathogenesis, transmission, and development of novel therapeutics. Here, we demonstrated that the cytoplasmic tail of ACE2 is not essential for the entry of SARS-CoV-1 and -2 by using bioinformatics, mutational, confocal imaging, and pseudotyped SARS-CoVs infection studies. ACE2 cytoplasmic domain (cytACE2) contains a conserved internalization motif and eight putative phosphorylation sites. Complete cytoplasmic domain deleted ACE2 (∆cytACE2) was properly synthesized and presented on the surface of HEK293T and BHK21 cells like wtACE2. The SARS-CoVs S1 or RBD of spike protein binds and colocalizes with the receptors followed by internalization into the host cells. Moreover, pseudotyped SARS-CoVs entered into wtACE2- and ∆cytACE2-transfected cells but not into dipeptidyl peptidase 4 (DPP4)-expressing cells. Their entry was significantly inhibited by treatment with dynasore, a dynamin inhibitor, and NH4Cl, an endosomal acidification inhibitor. Furthermore, SARS-CoV antibodies and the soluble form of ACE2-treated pseudotyped SARS-CoVs were unable to enter the wtACE2 and ∆cytACE2-expressing cells. Altogether, our data show that ACE2 cytoplasmic domain signaling is not essential for the entry of SARS-CoV-1 and -2 and that SARS-CoVs entry might be mediated via known/unknown host factor/s.
Collapse
|
2
|
Favipiravir Does Not Inhibit Chikungunya Virus Replication in Mosquito Cells and Aedes aegypti Mosquitoes. Microorganisms 2021; 9:microorganisms9050944. [PMID: 33925738 PMCID: PMC8145424 DOI: 10.3390/microorganisms9050944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
Favipiravir (T-705) is a broad-spectrum antiviral drug that inhibits RNA viruses after intracellular conversion into its active form, T-705 ribofuranosyl 5'-triphosphate. We previously showed that T-705 is able to significantly inhibit the replication of chikungunya virus (CHIKV), an arbovirus transmitted by Aedes mosquitoes, in mammalian cells and in mouse models. In contrast, the effect of T-705 on CHIKV infection and replication in the mosquito vector is unknown. Since the antiviral activity of T-705 has been shown to be cell line-dependent, we studied here its antiviral efficacy in Aedes-derived mosquito cells and in Aedes aegypti mosquitoes. Interestingly, T-705 was devoid of anti-CHIKV activity in mosquito cells, despite being effective against CHIKV in Vero cells. By investigating the metabolic activation profile, we showed that, unlike Vero cells, mosquito cells were not able to convert T-705 into its active form. To explore whether alternative metabolization pathways might exist in vivo, Aedes aegypti mosquitoes were infected with CHIKV and administered T-705 via an artificial blood meal. Virus titrations of whole mosquitoes showed that T-705 was not able to reduce CHIKV infection in mosquitoes. Combined, these in vitro and in vivo data indicate that T-705 lacks antiviral activity in mosquitoes due to inadequate metabolic activation in this animal species.
Collapse
|
3
|
Read CM, Plante K, Rafael G, Rossi SL, Braun W, Weaver SC, Schein CH. Designing multivalent immunogens for alphavirus vaccine optimization. Virology 2021; 561:117-124. [PMID: 33823988 DOI: 10.1016/j.virol.2020.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Accepted: 11/22/2020] [Indexed: 11/16/2022]
Abstract
There is a pressing need for vaccines against mosquito-borne alphaviruses such as Venezualen and eastern equine encephalitis viruses (VEEV, EEEV). We demonstrate an approach to vaccine development based on physicochemical properties (PCP) of amino acids to design a PCP-consensus sequence of the epitope-rich B domain of the VEEV major antigenic E2 protein. The consensus "spike" domain was incorporated into a live-attenuated VEEV vaccine candidate (ZPC/IRESv1). Mice inoculated with either ZPC/IRESv1 or the same virus containing the consensus E2 protein fragment (VEEVconE2) were protected against lethal challenge with VEEV strains ZPC-738 and 3908, and Mucambo virus (MUCV, related to VEEV), and had comparable neutralizing antibody titers against each virus. Both vaccines induced partial protection against Madariaga virus (MADV), a close relative of EEEV, lowering mortality from 60% to 20%. Thus PCP-consensus sequences can be integrated into a replicating virus that could, with further optimization, provide a broad-spectrum vaccine against encephalitic alphaviruses.
Collapse
Affiliation(s)
- C M Read
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Kenneth Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity (IHII), University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Grace Rafael
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Shannan L Rossi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Department of Pathology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity (IHII), University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Werner Braun
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity (IHII), University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Catherine H Schein
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity (IHII), University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
4
|
De Caluwé L, Ariën KK, Bartholomeeusen K. Host Factors and Pathways Involved in the Entry of Mosquito-Borne Alphaviruses. Trends Microbiol 2020; 29:634-647. [PMID: 33208275 DOI: 10.1016/j.tim.2020.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022]
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus that has re-emerged recently and has spread to previously unaffected regions, resulting in millions of infections worldwide. The genus Alphavirus, in the family Togaviridae, contains several members with a similar potential for epidemic emergence. In order for CHIKV to replicate in targeted cell types it is essential for the virus to enter these cells. In this review, we summarize our current understanding of the versatile and promiscuous steps in CHIKV binding and entry into human and mosquito host cells. We describe the different entry pathways, receptors, and attachment factors so far described for CHIKV and other mosquito-borne alphaviruses and discuss them in the context of tissue tropism and potential therapeutic targeting.
Collapse
Affiliation(s)
- Lien De Caluwé
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Kevin K Ariën
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Koen Bartholomeeusen
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| |
Collapse
|
5
|
Scroggs SLP, Andrade CC, Chinnasamy R, Azar SR, Schirtzinger EE, Garcia EI, Arterburn JB, Hanley KA, Rossi SL. Old Drugs with New Tricks: Efficacy of Fluoroquinolones to Suppress Replication of Flaviviruses. Viruses 2020; 12:v12091022. [PMID: 32933138 PMCID: PMC7551155 DOI: 10.3390/v12091022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Repurposing FDA-approved compounds could provide the fastest route to alleviate the burden of disease caused by flaviviruses. In this study, three fluoroquinolones, enoxacin, difloxacin and ciprofloxacin, curtailed replication of flaviviruses Zika (ZIKV), dengue (DENV), Langat (LGTV) and Modoc (MODV) in HEK-293 cells at low micromolar concentrations. Time-of-addition assays suggested that enoxacin suppressed ZIKV replication at an intermediate step in the virus life cycle, whereas ciprofloxacin and difloxacin had a wider window of efficacy. A129 mice infected with 1 × 105 plaque-forming units (pfu) ZIKV FSS13025 (n = 20) or phosphate buffered saline (PBS) (n = 11) on day 0 and treated with enoxacin at 10 mg/kg or 15 mg/kg or diluent orally twice daily on days 1–5 did not differ in weight change or virus titer in serum or brain. However, mice treated with enoxacin showed a significant, five-fold decrease in ZIKV titer in testes relative to controls. Mice infected with 1 × 102 pfu ZIKV (n = 13) or PBS (n = 13) on day 0 and treated with 15 mg/kg oral enoxacin or diluent twice daily pre-treatment and days 1–5 post-treatment also did not differ in weight and viral load in the serum, brain, and liver, but mice treated with enoxacin showed a significant, 2.5-fold decrease in ZIKV titer in testes relative to controls. ZIKV can be sexually transmitted, so reduction of titer in the testes by enoxacin should be further investigated.
Collapse
Affiliation(s)
- Stacey L. P. Scroggs
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (C.C.A.); (E.E.S.); (E.I.G.); (K.A.H.)
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
- Correspondence:
| | - Christy C. Andrade
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (C.C.A.); (E.E.S.); (E.I.G.); (K.A.H.)
- Department of Biology, Gonzaga University, Spokane, WA 99258, USA
| | - Ramesh Chinnasamy
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA; (R.C.); (J.B.A.)
| | - Sasha R. Azar
- Institute for Translational Sciences, The University of University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Erin E. Schirtzinger
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (C.C.A.); (E.E.S.); (E.I.G.); (K.A.H.)
- Arthropod-borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, Manhattan, KS 66506, USA
| | - Erin I. Garcia
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (C.C.A.); (E.E.S.); (E.I.G.); (K.A.H.)
- Science News, Washington, DC 20036, USA
| | - Jeffrey B. Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA; (R.C.); (J.B.A.)
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (C.C.A.); (E.E.S.); (E.I.G.); (K.A.H.)
| | - Shannan L. Rossi
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA;
| |
Collapse
|
6
|
Izumida M, Hayashi H, Tanaka A, Kubo Y. Cathepsin B Protease Facilitates Chikungunya Virus Envelope Protein-Mediated Infection via Endocytosis or Macropinocytosis. Viruses 2020; 12:v12070722. [PMID: 32635194 PMCID: PMC7412492 DOI: 10.3390/v12070722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) is an enveloped virus that enters host cells and transits within the endosomes before starting its replication cycle, the precise mechanism of which is yet to be elucidated. Endocytosis and endosome acidification inhibitors inhibit infection by CHIKV, murine leukemia virus (MLV), or SARS-coronavirus, indicating that these viral entries into host cells occur through endosomes and require endosome acidification. Although endosomal cathepsin B protease is necessary for MLV, Ebola virus, and SARS-CoV infections, its role in CHIKV infection is unknown. Our results revealed that endocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in 293T cells but not in TE671 cells. In contrast, macropinocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in TE671 cells but not in 293T cells, suggesting that CHIKV host cell entry occurs via endocytosis or macropinocytosis, depending on the cell lines used. Cathepsin B inhibitor and knockdown by an shRNA suppressed CHIKV-pseudotyped MLV vector infection both in 293T and TE671 cells. These results show that cathepsin B facilitates CHIKV infection regardless of the entry pathway.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (M.I.); (Y.K.)
| | - Hideki Hayashi
- Medical University Research Administrator, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan;
| | - Atsushi Tanaka
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (M.I.); (Y.K.)
| |
Collapse
|
7
|
The use of green fluorescent protein-tagged virus-like particles as a tracer in the early phase of chikungunya infection. Virus Res 2019; 272:197732. [PMID: 31445103 DOI: 10.1016/j.virusres.2019.197732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
Abstract
To visually examine the early phase of chikungunya virus (CHIKV) infection in target cells, we constructed a virus-like particle (VLP) in which the envelope protein E1 is fused with green fluorescent protein (GFP). This chikungunya VLP-GFP (CHIK-VLP-EGFP), purified by density gradient fractionation, was observed as 60-70 nm-dia. particles and was detected as tiny puncta of fluorescence in the cells. CHIK-VLP-EGFP showed binding properties similar to those of the wild-type viruses. Most of the fluorescence signals that had bound on Vero cells disappeared within 30 min at 37 °C, but not in the presence of anti-CHIKV neutralizing serum or an endosomal acidification inhibitor (bafilomycin A1), suggesting that the loss of fluorescence signals is due to the disassembly of the viral envelope following the internalization of CHIK-VLP-EGFP. In addition to these results, the fluorescence signals disappeared in highly susceptible Vero and U251MG cells but not in poorly susceptible A549 cells. Thus, CHIK-VLP-EGFP is a useful tool to examine the effects of the CHIKV neutralizing antibodies and antiviral compounds that are effective in the entry phase of CHIKV.
Collapse
|
8
|
Neutralization of Acidic Intracellular Vesicles by Niclosamide Inhibits Multiple Steps of the Dengue Virus Life Cycle In Vitro. Sci Rep 2019; 9:8682. [PMID: 31213630 PMCID: PMC6582152 DOI: 10.1038/s41598-019-45095-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/30/2019] [Indexed: 01/20/2023] Open
Abstract
Dengue fever is one of the most important mosquito-borne viral infections in large parts of tropical and subtropical countries and is a significant public health concern and socioeconomic burden. There is an urgent need to develop antivirals that can effectively reduce dengue virus (DENV) replication and decrease viral load. Niclosamide, an antiparasitic drug approved for human use, has been recently identified as an effective antiviral agent against a number of pH-dependent viruses, including flaviviruses. Here, we reveal that neutralization of low-pH intracellular compartments by niclosamide affects multiple steps of the DENV infectious cycle. Specifically, niclosamide-induced endosomal neutralization not only prevents viral RNA replication but also affects the maturation of DENV particles, rendering them non-infectious. We found that niclosamide-induced endosomal neutralization prevented E glycoprotein conformational changes on the virion surface of flaviviruses, resulting in the release of non-infectious immature virus particles with uncleaved pr peptide from host cells. Collectively, our findings support the potential application of niclosamide as an antiviral agent against flavivirus infection and highlight a previously uncharacterized mechanism of action of the drug.
Collapse
|
9
|
Yang R, Zhang G, Zhang F, Li Z, Huang C. Membrane permeabilization design of antimicrobial peptides based on chikungunya virus fusion domain scaffold and its antibacterial activity against gram-positive Streptococcus pneumoniae in respiratory infection. Biochimie 2018; 146:139-147. [DOI: 10.1016/j.biochi.2017.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
|
10
|
Abstract
Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research.
Collapse
|
11
|
Long J, Wright E, Molesti E, Temperton N, Barclay W. Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry. F1000Res 2015; 4:30. [PMID: 26069727 PMCID: PMC4431382 DOI: 10.12688/f1000research.6085.2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2015] [Indexed: 12/19/2022] Open
Abstract
Emerging viral diseases pose a threat to the global population as intervention strategies are mainly limited to basic containment due to the lack of efficacious and approved vaccines and antiviral drugs. The former was the only available intervention when the current unprecedented Ebolavirus (EBOV) outbreak in West Africa began. Prior to this, the development of EBOV vaccines and anti-viral therapies required time and resources that were not available. Therefore, focus has turned to re-purposing of existing, licenced medicines that may limit the morbidity and mortality rates of EBOV and could be used immediately. Here we test three such medicines and measure their ability to inhibit pseudotype viruses (PVs) of two EBOV species, Marburg virus (MARV) and avian influenza H5 (FLU-H5). We confirm the ability of chloroquine (CQ) to inhibit viral entry in a pH specific manner. The commonly used proton pump inhibitors, Omeprazole and Esomeprazole were also able to inhibit entry of all PVs tested but at higher drug concentrations than may be achieved in vivo. We propose CQ as a priority candidate to consider for treatment of EBOV.
Collapse
Affiliation(s)
- Jason Long
- Section of Virology, St Mary’s Campus, Imperial College London, London, W2 1PG, UK
| | - Edward Wright
- Viral Pseudotype Unit (Fitzrovia), Faculty of Science and Technology, University of Westminster, London, W1W 6UW, UK
| | - Eleonora Molesti
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent, ME4 4TB, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent, ME4 4TB, UK
| | - Wendy Barclay
- Section of Virology, St Mary’s Campus, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
12
|
Long J, Wright E, Molesti E, Temperton N, Barclay W. Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry. F1000Res 2015; 4:30. [PMID: 26069727 PMCID: PMC4431382 DOI: 10.12688/f1000research.6085.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 12/19/2022] Open
Abstract
Emerging viral diseases pose a threat to the global population as intervention strategies are mainly limited to basic containment due to the lack of efficacious and approved vaccines and antiviral drugs. The former was the only available intervention when the current unprecedented Ebolavirus (EBOV) outbreak in West Africa began. Prior to this, the development of EBOV vaccines and anti-viral therapies required time and resources that were not available. Therefore, focus has turned to re-purposing of existing, licenced medicines that may limit the morbidity and mortality rates of EBOV and could be used immediately. Here we test three such medicines and measure their ability to inhibit pseudotype viruses (PVs) of two EBOV species, Marburg virus (MARV) and avian influenza H5 (FLU-H5). We confirm the ability of chloroquine (CQ) to inhibit viral entry in a pH specific manner. The commonly used proton pump inhibitors, Omeprazole and Esomeprazole were also able to inhibit entry of all PVs tested but at higher drug concentrations than may be achieved in vivo. We propose CQ as a priority candidate to consider for treatment of EBOV.
Collapse
Affiliation(s)
- Jason Long
- Section of Virology, St Mary’s Campus, Imperial College London, London, W2 1PG, UK
| | - Edward Wright
- Viral Pseudotype Unit (Fitzrovia), Faculty of Science and Technology, University of Westminster, London, W1W 6UW, UK
| | - Eleonora Molesti
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent, ME4 4TB, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent, ME4 4TB, UK
| | - Wendy Barclay
- Section of Virology, St Mary’s Campus, Imperial College London, London, W2 1PG, UK
| |
Collapse
|