1
|
Wang Y, Chen F, Qu W, Gong Y, Wang Y, Chen L, Zhou Q, Mo J, Zhang H, Lin L, Bi T, Wang X, Gu J, Li Y, Sui L. Alternative splicing in the genome of HPV and its regulation. Front Cell Infect Microbiol 2024; 14:1443868. [PMID: 39502170 PMCID: PMC11534716 DOI: 10.3389/fcimb.2024.1443868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Persistent infection with high-risk human papillomavirus (HR-HPV) is the main cause of cervical cancer. These chronic infections are characterized by high expression of the HPV E6 and E7 oncogenes and the absence of the L1 and L2 capsid proteins. The regulation of HPV gene expression plays a crucial role in both the viral life cycle and rare oncogenic events. Alternative splicing of HPV mRNA is a key mechanism in post-transcriptional regulation. Through alternative splicing, HPV mRNA is diversified into various splice isoforms with distinct coding potentials, encoding multiple proteins and influencing the expression of HPV genes. The spliced mRNAs derived from a donor splicing site within the E6 ORF and one of the different acceptor sites located in the early mRNA contain E6 truncated mRNAs, named E6*. E6* is one of the extensively studied splicing isoforms. However, the role of E6* proteins in cancer progression remains controversial. Here, we reviewed and compared the alternative splicing events occurring in the genomes of HR-HPV and LR-HPV. Recently, new HPV alternative splicing regulatory proteins have been continuously discovered, and we have updated the regulation of HPV alternative splicing. In addition, we summarized the functions of known splice isoforms from three aspects: anti-tumorigenic, tumorigenic, and other cancer-related functions, including not only E6*, but also E6^E7, E8^E2, and so on. Comprehending their contributions to cancer development enhances insights into the carcinogenic mechanisms of HPV and explores the potential utility of alternative splicing in the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Fang Chen
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wenjie Qu
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingxin Gong
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yan Wang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Limei Chen
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qi Zhou
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiayin Mo
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hongwei Zhang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Lin Lin
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Tianyi Bi
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xujie Wang
- Department of Obstetrics and Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Jiashi Gu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital of Fudan University, Shanghai, China
| | - Yanyun Li
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Long Sui
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
2
|
Williams DE, King K, Jackson R, Kuehner F, Arnoldy C, Marroquin JN, Tobey I, Banka A, Ragonese S, Van Doorslaer K. PRMT1 Modulates Alternative Splicing to Enhance HPV18 mRNA Stability and Promote the Establishment of Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.614592. [PMID: 39386465 PMCID: PMC11463397 DOI: 10.1101/2024.09.26.614592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Only persistent HPV infections lead to the development of cancer. Thus, understanding the virus-host interplay that influences the establishment of viral infection has important implications for HPV biology and human cancers. The ability of papillomaviruses to establish in cells requires the strict temporal regulation of viral gene expression in sync with cellular differentiation. This control primarily happens at the level of RNA splicing and polyadenylation. However, the details of how this spatio-temporal regulation is achieved still need to be fully understood. Until recently, it has been challenging to study the early events of the HPV lifecycle following infection. We used a single-cell genomics approach to identify cellular factors involved in viral infection and establishment. We identify protein arginine N-methyltransferase 1 (PRMT1) as an important factor in viral infection of primary human cervical cells. PRMT1 is the main cellular enzyme responsible for asymmetric dimethylation of cellular proteins. PRMT1 is an enzyme responsible for catalyzing the methylation of arginine residues on various proteins, which influences processes such as RNA processing, transcriptional regulation, and signal transduction. In this study, we show that HPV18 infection leads to increased PRMT1 levels across the viral lifecycle. PRMT1 is critical for the establishment of a persistent infection in primary cells. Mechanistically, PRMT1 inhibition leads to a highly dysregulated viral splicing pattern. Specifically, reduced PRMT1 activity leads to intron retention and a change in the E6 and E7 expression ratio. In the absence of PRMT1, viral transcripts are destabilized and subject to degradation via the nonsense-mediated decay (NMD) pathway. These findings highlight PRMT1 as a critical regulator of the HPV18 lifecycle, particularly in RNA processing, and position it as a potential therapeutic target for persistent HPV18 infections.
Collapse
Affiliation(s)
- David E.J. Williams
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- Medical Scientist Training M.D.-Ph.D. Program, University of Arizona, Tucson, AZ, USA
| | - Kelly King
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Robert Jackson
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Franziska Kuehner
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Christina Arnoldy
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | | | - Isabelle Tobey
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Amy Banka
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Microbiology Graduate program, University of Arizona, Tucson, Arizona, USA
| | - Sofia Ragonese
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Molecular and cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Koenraad Van Doorslaer
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Microbiology Graduate program, University of Arizona, Tucson, Arizona, USA
- The BIO5 Institute, The Department of Immunobiology, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, Arizona, USA
| |
Collapse
|
3
|
Laanemets A, Babok S, Piirsoo A. Characterization and comparative analysis of phosphorylation patterns in HPV18 and HPV11 E1 helicases: Implications for viral genome replication. Virology 2023; 587:109853. [PMID: 37523977 DOI: 10.1016/j.virol.2023.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
The genome of human papillomaviruses (HPVs) encodes the E1 replication factor, whose biological activities are regulated by cellular protein kinases. Here, the phosphorylation pattern of the E1 helicase of oncogenic mucosotropic HPV18 was investigated both in vitro and in vivo. Four serine residues located in a short peptide within a localization regulatory region were found to be phosphorylated in both experimental settings. We demonstrate that this peptide is targeted in vitro by various protein kinases, including CK2, PKA, and CKD2/cyclin A/B/E complexes. Through point mutagenesis, we show that phosphorylation of this region is essential for E1 subcellular localization, the interaction of E1 with the E2 protein, and replication of the HPV18 genome. Furthermore, we demonstrate the functional conservation of this phosphorylation across the E1 proteins of the low-risk mucosotropic HPV11 and high-risk cutaneotropic HPV5. These findings provide deeper insights into the phosphorylation-mediated regulation of biological activities of the E1 protein.
Collapse
Affiliation(s)
| | - Sofiya Babok
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Alla Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
4
|
Bruyere D, Roncarati P, Lebeau A, Lerho T, Poulain F, Hendrick E, Pilard C, Reynders C, Ancion M, Luyckx M, Renard M, Jacob Y, Twizere JC, Peiffer R, Peulen O, Delvenne P, Hubert P, McBride A, Gillet N, Masson M, Herfs M. Human papillomavirus E6/E7 oncoproteins promote radiotherapy-mediated tumor suppression by globally hijacking host DNA damage repair. Theranostics 2023; 13:1130-1149. [PMID: 36793865 PMCID: PMC9925306 DOI: 10.7150/thno.78091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Rationale: Whatever the mucosa primary infected, HPV-positive cancers are traditionally associated with a favorable outcome, attributable to a high sensitivity to radiation therapy. However, the direct impact of viral E6/E7 oncoproteins on the intrinsic cellular radiosensitivity (and, globally, on host DNA repair) remains mostly speculative. Methods: Using several isogenic cell models expressing HPV16 E6 and/or E7, the effect of viral oncoproteins on global DNA damage response was first investigated by in vitro/in vivo approaches. The binary interactome of each individual HPV oncoprotein with factors involved in the various host DNA damage/repair mechanisms was then precisely mapped by Gaussia princeps luciferase complementation assay (and validated by co-immunoprecipitation). The stability/half-life of protein targets for HPV E6 and/or E7 as well as their subcellular localizations were determined. At last, the host genome integrity following E6/E7 expression and the synergy between radiotherapy and compounds targeting DNA repair were analyzed. Results: We first showed that the sole expression of one viral oncoprotein from HPV16 was able to significantly increase the sensitivity to irradiation of cells without affecting their basal viability parameters. In total, 10 novel targets (CHEK2, CLK2, CLK2/3, ERCC3, MNAT1, PER1, RMI1, RPA1, UVSSA and XRCC6) for E6 and 11 (ALKBH2, CHEK2, DNA2, DUT, ENDOV, ERCC3, PARP3, PMS1, PNKP, POLDIP2 and RBBP8) for E7 were identified. Importantly, not degraded following their interaction with E6 or E7, these proteins have been shown to be less linked to host DNA and to colocalize with HPV replication foci, denoting their crucial implication in viral life cycle. Finally, we found that E6/E7 oncoproteins globally jeopardize host genome integrity, increase the cellular sensitivity to DNA repair inhibitors and enhance their synergy with radiotherapy. Conclusion: Taken together, our findings provide a molecular insight into the direct hijacking of host DNA damage/repair responses by HPV oncoproteins, demonstrate the significant impact of this phenomenon on both intrinsic cellular radiosensitivity and host DNA integrity and suggest novel connected therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Diane Bruyere
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Alizee Lebeau
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Thomas Lerho
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Florian Poulain
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, Namur, Belgium
| | - Elodie Hendrick
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Charlotte Pilard
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Celia Reynders
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Marie Ancion
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Margaux Luyckx
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Michael Renard
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Yves Jacob
- Unit of Molecular Genetics of RNA Viruses, UMR 3569, CNRS, Pasteur Institute, University of Paris Diderot, 75015 Paris, France
| | - Jean-Claude Twizere
- Laboratory of Signaling and Protein Interactions, GIGA-Molecular Biology of Diseases, University of Liege, 4000 Liege, Belgium
| | - Raphael Peiffer
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.,Department of Pathology, University Hospital of Liege, 4000 Liege, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| | - Alison McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicolas Gillet
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, Namur, Belgium
| | - Murielle Masson
- Biothechnology Superior School, UMR 7242, CNRS, University of Strasbourg, 67412 Illkirch, France
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium
| |
Collapse
|
5
|
Rattay S, Hufbauer M, Hagen C, Putschli B, Coch C, Akgül B, Hartmann G. Human Beta Papillomavirus Type 8 E1 and E2 Proteins Suppress the Activation of the RIG-I-like Receptor MDA5. Viruses 2022; 14:v14071361. [PMID: 35891343 PMCID: PMC9317666 DOI: 10.3390/v14071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022] Open
Abstract
Persistent infections of the skin with the human papillomavirus of genus beta (β-HPV) in immunocompetent individuals are asymptomatic, but in immunosuppressed patients, β-HPV infections exhibit much higher viral loads on the skin and are associated with an increased risk of skin cancer. Unlike with HPV16, a high-risk α-HPV, the impact of β-HPV early genes on the innate immune sensing of viral nucleic acids has not been studied. Here, we used primary skin keratinocytes and U2OS cells expressing HPV8 or distinct HPV8 early genes and well-defined ligands of the nucleic-acid-sensing receptors RIG-I, MDA5, TLR3, and STING to analyze a potential functional interaction. We found that primary skin keratinocytes and U2OS cells expressed RIG-I, MDA5, TLR3, and STING, but not TLR7, TLR8, or TLR9. While HPV16-E6 downregulated the expression of RIG-I, MDA5, TLR3, and STING and, in conjunction with HPV16-E7, effectively suppressed type I IFN in response to MDA5 activation, the presence of HPV8 early genes showed little effect on the expression of these immune receptors, except for HPV8-E2, which was associated with an elevated expression of TLR3. Nevertheless, whole HPV8 genome expression, as well as the selective expression of HPV8-E1 or HPV8-E2, was found to suppress MDA5-induced type I IFN and the proinflammatory cytokine IL-6. Furthermore, RNA isolated from HPV8-E2 expressing primary human keratinocytes, but not control cells, stimulated a type I IFN response in peripheral blood mononuclear cells, indicating that the expression of HPV8-E2 in keratinocytes leads to the formation of stimulatory RNA ligands that require the active suppression of immune recognition. These results identify HPV8-E1 and HPV8-E2 as viral proteins that are responsible for the immune escape of β-HPV from the innate recognition of viral nucleic acids, a mechanism that may be necessary for establishing persistent β-HPV infections.
Collapse
Affiliation(s)
- Stephanie Rattay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
- Correspondence: ; Tel.: +49-221-478-85821; Fax: +49-221-478-85802
| | - Martin Hufbauer
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
| | - Christian Hagen
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Bastian Putschli
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| | - Baki Akgül
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56., 50935 Cologne, Germany; (M.H.); (B.A.)
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Gebäude 12, Venusberg-Campus 1, 53127 Bonn, Germany; (C.H.); (B.P.); (C.C.); (G.H.)
| |
Collapse
|
6
|
Kuehner F, Stubenrauch F. Functions of Papillomavirus E8^E2 Proteins in Tissue Culture and In Vivo. Viruses 2022; 14:v14050953. [PMID: 35632695 PMCID: PMC9143700 DOI: 10.3390/v14050953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022] Open
Abstract
Papillomaviruses (PV) replicate in undifferentiated keratinocytes at low levels and to high levels in differentiated cells. The restricted replication in undifferentiated cells is mainly due to the expression of the conserved viral E8^E2 repressor protein, a fusion protein consisting of E8 and the hinge, DNA-binding, and dimerization domain of E2. E8^E2 binds to viral genomes and represses viral transcription and genome replication by recruiting cellular NCoR/SMRT-HDAC3 corepressor complexes. Tissue culture experiments have revealed that E8^E2 modulates long-term maintenance of extrachromosomal genomes, productive replication, and immortalization properties in a virus type-dependent manner. Furthermore, in vivo experiments have indicated that Mus musculus PV1 E8^E2 is required for tumor formation in immune-deficient mice. In summary, E8^E2 is a crucial inhibitor whose levels might determine the outcome of PV infections.
Collapse
|
7
|
EXPRESSION OF E8^E2 IS REQUIRED FOR WART FORMATION BY MOUSE PAPILLOMAVIRUS 1 IN VIVO. J Virol 2021; 95:JVI.01930-20. [PMID: 33472931 PMCID: PMC8103706 DOI: 10.1128/jvi.01930-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus (HPV) E1 and E2 proteins activate genome replication. E2 also modulates viral gene expression and is involved in the segregation of viral genomes. In addition to full length E2, almost all PV share the ability to encode an E8^E2 protein, that is a fusion of E8 with the C-terminal half of E2 which mediates specific DNA-binding and dimerization. HPV E8^E2 acts as a repressor of viral gene expression and genome replication. To analyze the function of E8^E2 in vivo, we used the Mus musculus PV1 (MmuPV1)-mouse model system. Characterization of the MmuPV1 E8^E2 protein revealed that it inhibits transcription from viral promoters in the absence and presence of E1 and E2 proteins and that this is partially dependent upon the E8 domain. MmuPV1 genomes, in which the E8 ATG start codon was disrupted (E8-), displayed a 10- to 25-fold increase in viral gene expression compared to wt genomes in cultured normal mouse tail keratinocytes in short-term experiments. This suggests that the function and mechanism of E8^E2 is conserved between MmuPV1 and HPVs. Surprisingly, challenge of athymic nude Foxn1nu/nu mice with MmuPV1 E8- genomes did not induce warts on the tail in contrast to wt MmuPV1. Furthermore, viral gene expression was completely absent at E8- MmuPV1 sites 20 - 22 weeks after DNA challenge on the tail or quasivirus challenge in the vaginal vault. This reveals that expression of E8^E2 is necessary to form tumors in vivo and that this is independent from the presence of T-cells.IMPORTANCE HPV encode an E8^E2 protein which acts as repressors of viral gene expression and genome replication. In cultured normal keratinocytes, E8^E2 is essential for long-term episomal maintenance of HPV31 genomes, but not for HPV16. To understand E8^E2's role in vivo, the Mus musculus PV1 (MmuPV1)-mouse model system was used. This revealed that E8^E2's function as a repressor of viral gene expression is conserved. Surprisingly, MmuPV1 E8^E2 knock out genomes did not induce warts in T-cell deficient mice. This shows for the first time that expression of E8^E2 is necessary for tumor formation in vivo independently of T cell immunity. This indicates that E8^E2 could be an interesting target for anti-viral therapy in vivo.
Collapse
|
8
|
Uncovering the Role of the E1 Protein in Different Stages of Human Papillomavirus 18 Genome Replication. J Virol 2020; 94:JVI.00674-20. [PMID: 32759324 DOI: 10.1128/jvi.00674-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
The life cycle of human papillomaviruses (HPVs) comprises three distinct phases of DNA replication: initial amplification, maintenance of the genome copy number at a constant level, and vegetative amplification. The viral helicase E1 is one of the factors required for the initiation of HPV genome replication. However, the functions of the E1 protein during other phases of the viral life cycle are largely uncharacterized. Here, we studied the role of the HPV18 E1 helicase in three phases of viral genome replication by downregulating E1 expression using RNA interference or inducing degradation of the E1 protein via inhibition of casein kinase 2α expression or catalytic activity. We generated a novel modified HPV18 genome expressing Nanoluc and tagged E1 and E2 proteins and created several stable HPV18-positive cell lines. We showed that, in contrast to initial amplification of the HPV18 genome, other phases of viral genome replication involve also an E1-independent mechanism. We characterize two distinct populations of HPV18 replicons existing during the maintenance and vegetative amplification phases. We show that a subset of these replicons, including viral genome monomers, replicate in an E1-dependent manner, while some oligomeric forms of the HPV18 genome replicate independently of E1 function.IMPORTANCE Human papillomavirus (HPV) infections pose serious medical problem. To date, there are no HPV-specific antivirals available due to poor understanding of the molecular mechanisms of virus infection cycle. The infection cycle of HPV involves initial amplification of the viral genomes and maintenance of the viral genomes with a constant copy number, followed by another round of viral genome amplification and new viral particle formation. The viral protein E1 is critical for the initial amplification of the viral genome. However, E1 involvement in other phases of the viral life cycle has remained controversial. In the present study, we show that at least two different replication modes of the HPV18 genome are undertaken simultaneously during the maintenance and vegetative amplification phases, i.e., replication of the majority of the HPV18 genome proceeds under the control of the host cell replication machinery without E1 function, whereas a minority of the genome replicates in an E1-dependent manner.
Collapse
|
9
|
Dreer M, Blondzik S, Straub E, Iftner T, Stubenrauch F. Contribution of HDAC3 to transcriptional repression by the human papillomavirus 31 E8^E2 protein. J Gen Virol 2020; 101:751-759. [PMID: 32421493 DOI: 10.1099/jgv.0.001438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human papillomaviruses (HPV) such as HPV16 and HPV31 encode an E8^E2 protein that acts as a repressor of viral replication and transcription. E8^E2's repression activities are mediated via the interaction with host-cell NCoR (nuclear receptor corepressor)/SMRT (silencing mediator of retinoid and thyroid receptors) corepressor complexes, which consist of NCoR, its homologue SMRT, GPS2 (G-protein pathway suppressor 2), HDAC3 (histone deacetylase 3), TBL1 (transducin b-like protein 1) and its homologue TBLR1 (TBL1-related protein 1). We now provide evidence that transcriptional repression by HPV31 E8^E2 is NCoR/SMRT-dependent but surprisingly always HDAC3-independent when analysing different HPV promoters. This is in contrast to the majority of several cellular transcription factors using NCoR/SMRT complexes whose transcriptional repression activities are both NCoR/SMRT- and HDAC3-dependent. However, NCoR/SMRT-dependent but HDAC3-independent repression has been described for specific cellular genes, suggesting that this may not be specific for HPV promoters but could be a feature of a subset of NCoR/SMRT-HDAC3 regulated genes.
Collapse
Affiliation(s)
- Marcel Dreer
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| | - Saskia Blondzik
- Present address: Saskia Blondzik: Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| | - Elke Straub
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| | - Thomas Iftner
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| | - Frank Stubenrauch
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| |
Collapse
|
10
|
Paget-Bailly P, Meznad K, Bruyère D, Perrard J, Herfs M, Jung AC, Mougin C, Prétet JL, Baguet A. Comparative RNA sequencing reveals that HPV16 E6 abrogates the effect of E6*I on ROS metabolism. Sci Rep 2019; 9:5938. [PMID: 30976051 PMCID: PMC6459911 DOI: 10.1038/s41598-019-42393-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/27/2019] [Indexed: 01/16/2023] Open
Abstract
High-risk Human Papillomavirus infections are responsible for anogenital and oropharyngeal cancers. Alternative splicing is an important mechanism controlling HPV16 gene expression. Modulation in the splice pattern leads to polycistronic HPV16 early transcripts encoding a full length E6 oncoprotein or truncated E6 proteins, commonly named E6*. Spliced E6*I transcripts are the most abundant RNAs produced in HPV-related cancers. To date, the biological function of the E6*I isoform remains controversial. In this study, we identified, by RNA sequencing, cellular targets deregulated by E6*I, among which genes related to ROS metabolism. Concomitantly, E6*I-overexpressing cells display high levels of ROS. However, co-overexpression of both E6 and E6*I has no effect on ROS production. In HPV16-infected cells expressing different E6/E6*I levels, we show that the newly identified targets CCL2 and RAC2 are increased by E6*I but decreased by E6 expression, suggesting that E6 abrogates the effect of E6*I. Taken together, these data support the idea that E6*I acts independently of E6 to increase ROS production and that E6 has the ability to counteract the effects of E6*I. This asks the question of how E6*I can be considered separately of E6 in the natural history of HPV16 infection.
Collapse
Affiliation(s)
- Philippe Paget-Bailly
- EA3181, LabEx LipSTIC ANR-11-LABX-0021, UFR Santé, 19 rue Ambroise Paré, Besançon, France.,Université Bourgogne Franche Comté, Besançon, France
| | - Koceila Meznad
- EA3181, LabEx LipSTIC ANR-11-LABX-0021, UFR Santé, 19 rue Ambroise Paré, Besançon, France.,Université Bourgogne Franche Comté, Besançon, France
| | - Diane Bruyère
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Jérôme Perrard
- EA3181, LabEx LipSTIC ANR-11-LABX-0021, UFR Santé, 19 rue Ambroise Paré, Besançon, France.,Université Bourgogne Franche Comté, Besançon, France
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Alain C Jung
- Université de Strasbourg, Inserm, UMR_S1113, Centre de lutte contre le cancer Paul STRAUSS, Strasbourg, France
| | - Christiane Mougin
- EA3181, LabEx LipSTIC ANR-11-LABX-0021, UFR Santé, 19 rue Ambroise Paré, Besançon, France.,Université Bourgogne Franche Comté, Besançon, France.,Centre Hospitalier Régional Universitaire, CNR HPV, 3 Bvd Alexandre Fleming, Besançon, France
| | - Jean-Luc Prétet
- EA3181, LabEx LipSTIC ANR-11-LABX-0021, UFR Santé, 19 rue Ambroise Paré, Besançon, France.,Université Bourgogne Franche Comté, Besançon, France.,Centre Hospitalier Régional Universitaire, CNR HPV, 3 Bvd Alexandre Fleming, Besançon, France
| | - Aurélie Baguet
- EA3181, LabEx LipSTIC ANR-11-LABX-0021, UFR Santé, 19 rue Ambroise Paré, Besançon, France. .,Université Bourgogne Franche Comté, Besançon, France.
| |
Collapse
|
11
|
Characterization of an HPV33 natural variant with enhanced transcriptional activity suggests a role for C/EBPβ in the regulation of the viral early promoter. Sci Rep 2019; 9:5113. [PMID: 30911096 PMCID: PMC6433916 DOI: 10.1038/s41598-019-41102-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
The Long Control Region (LCR) of the human papillomavirus (HPV) genome encompasses the early promoter (EP) that drives expression of the viral oncogenes in infected cells and HPV-associated cancers. Here, we report on a natural variant of HPV33 that displays higher EP activity than the prototype in transfected C33A and HeLa cervical carcinoma cells, and in the osteosarcoma U2OS cell line which supports replication of HPV episomes. This increased promoter activity was ascribed to a single nucleotide variation in the LCR, T7791C, in a putative binding site for the transcription factor C/EBPβ. T7791C abrogated binding of recombinant C/EBPβ to this site in vitro and stimulated the EP in vivo, suggesting that it abrogates a negatively-acting regulatory element. A second C/EBPβ binding site was identified in vitro that activated the EP in vivo and whose function and location in the epithelial-specific enhancer is shown to be conserved in the highly prevalent HPV18. These results suggest that C/EBPβ is both an activator and a repressor of the HPV33 EP, acting via two distinct binding sites. Prediction of C/EBPβ sites in the LCR of 186 HPV types suggests that C/EBPβ regulation of the EP is common among high‐risk viruses from the α genus.
Collapse
|
12
|
Interaction of the Human Papillomavirus E1 Helicase with UAF1-USP1 Promotes Unidirectional Theta Replication of Viral Genomes. mBio 2019; 10:mBio.00152-19. [PMID: 30890612 PMCID: PMC6426595 DOI: 10.1128/mbio.00152-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human papillomaviruses (HPVs) are important pathogens that replicate their double-stranded circular DNA genome in the nucleus of infected cells. HPV genomes replicate in infected cells via bidirectional theta replication and a poorly understood unidirectional mechanism, and the onset of viral replication requires the engagement of cellular DNA damage response pathways. In this study, we showed that the previously described interaction between the viral E1 helicase and the cellular UAF1-USP1 complex is necessary for the completion of bidirectional replication and the subsequent initiation of the unidirectional replication mechanism. Our results suggest HPVs may use the cellular Fanconi anemia DNA damage pathway to achieve the separation of daughter molecules generated by bidirectional theta replication. Additionally, our results indicate that the unidirectional replication of the HPV genome is initiated from restarted bidirectional theta replication forks. Human papillomaviruses (HPVs) are important pathogens with a significant medical burden. HPV genomes replicate in infected cells via bidirectional theta replication and a poorly understood unidirectional mechanism. In this report, we provide evidence that the previously described interaction between the viral E1 helicase and the cellular UAF1-USP1 deubiquitinating enzyme complex, a member of the Fanconi anemia DNA damage response pathway, is required for the completion of the bidirectional theta replication of the HPV11 genome and the subsequent initiation of the unidirectional replication. We show that unidirectional replication proceeds via theta structures and is supported by the cellular Bloom helicase, which interacts directly with E1 and whose engagement in HPV11 replication requires UAF1-USP1 activity. We propose that the unidirectional replication of the HPV11 genome initiates from replication fork restart events. These findings suggest a new role for the Fanconi anemia pathway in HPV replication.
Collapse
|
13
|
Tombak EM, Männik A, Burk RD, Le Grand R, Ustav E, Ustav M. The molecular biology and HPV drug responsiveness of cynomolgus macaque papillomaviruses support their use in the development of a relevant in vivo model for antiviral drug testing. PLoS One 2019; 14:e0211235. [PMID: 30682126 PMCID: PMC6347367 DOI: 10.1371/journal.pone.0211235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/09/2019] [Indexed: 01/29/2023] Open
Abstract
Due to the extreme tissue and species restriction of the papillomaviruses (PVs), there is a great need for animal models that accurately mimic PV infection in humans for testing therapeutic strategies against human papillomaviruses (HPVs). In this study, we present data that demonstrate that in terms of gene expression during initial viral DNA amplification, Macaca fascicularis PV (MfPV) types 5 and 8 appear to be similar to mucosal oncogenic HPVs, while MfPV1 (isolated from skin) resembles most high-risk cutaneous beta HPVs (HPV5). Similarities were also observed in replication properties during the initial amplification phase of the MfPV genomes. We demonstrate that high-risk mucosal HPV-specific inhibitors target the transient replication of the MfPV8 genomes, which indicates that similar pathways are used by the high-risk HPVs and MfPVs during their genome replication. Taking all into account, we propose that Macaca fascicularis may serve as a highly relevant model for preclinical tests designed to evaluate therapeutic strategies against HPV-associated lesions.
Collapse
Affiliation(s)
- Eva-Maria Tombak
- University of Tartu, Institute of Technology, Tartu, Estonia
- Icosagen Cell Factory Ltd., Eerika tee 1, Õssu, Kambja, Tartumaa, Estonia
| | - Andres Männik
- University of Tartu, Institute of Technology, Tartu, Estonia
- Icosagen Cell Factory Ltd., Eerika tee 1, Õssu, Kambja, Tartumaa, Estonia
| | - Robert D. Burk
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Pediatrics (Genetics), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology & Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Roger Le Grand
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Ene Ustav
- University of Tartu, Institute of Technology, Tartu, Estonia
| | - Mart Ustav
- University of Tartu, Institute of Technology, Tartu, Estonia
- Icosagen Cell Factory Ltd., Eerika tee 1, Õssu, Kambja, Tartumaa, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
- * E-mail:
| |
Collapse
|
14
|
Liu X. Up-regulation of miR-20a by HPV16 E6 exerts growth-promoting effects by targeting PDCD6 in cervical carcinoma cells. Biomed Pharmacother 2018; 102:996-1002. [PMID: 29710555 DOI: 10.1016/j.biopha.2018.03.154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE MicroRNAs (miRNAs/miRs) have been reported to participate in progression of multiple tumors including cervical cancer. High-risk human papillomavirus (HPV) type 16 (HPV16) is the most common and lethal HPV type, leading to exceeding 50% of cervical cancer cases. However, the relationship between miRNA and HPV-induced cervical carcinogenesis remains elusive. RESULTS Here, HPV16 E6 positively regulated miR-20a expression. Overexpression of miR-20a showed growth-promoting effects on C33A cells (HPV16-negative), and knockdown of miR-20a showed growth-inhibitory effects on CaSki cells (HPV16-positive). In addition, PDCD6 was identified as a target gene of miR-20a. Overexpression of PDCD6 exerted growth-inhibitory effects (opposite to miR-20a overexpression), which could be reversed by miR-20a overexpression. More importantly, activation of AKT and p38 was observed in C33A cells overexpressing miR-20a, and the growth-promoting action of miR-20a could be abated by p38 inhibition. CONCLUSION Up-regulation of miR-20a by HPV16 E6 exerted growth-promoting effects by targeting PDCD6 in cervical carcinoma cells. This study demonstrated miR-20a might be a potential therapeutic target in HPV16 E6 infection type of cervical cancer.
Collapse
Affiliation(s)
- Xin Liu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Shanghai, 200011, China.
| |
Collapse
|
15
|
Identification and Functional Characterization of Phosphorylation Sites of the Human Papillomavirus 31 E8^E2 Protein. J Virol 2018; 92:JVI.01743-17. [PMID: 29167339 DOI: 10.1128/jvi.01743-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022] Open
Abstract
The papillomavirus E2 protein regulates transcription, replication, and nuclear retention of viral genomes. Phosphorylation of E2 in the hinge region has been suggested to modulate protein stability, DNA-binding activity, and chromosomal attachment. The papillomavirus E8^E2 protein shares the hinge domain with E2 and acts as a repressor of viral replication. Mass spectrometry analyses of human papillomavirus 31 (HPV31) E8^E2 and E2 proteins identify phosphorylated S78, S81, and S100 in E8^E2 and S266 and S269 in E2 in their hinge regions. Phos-tag analyses of wild-type and mutant proteins indicate that S78 is a major phosphorylation site in E8^E2, but the corresponding S266 in E2 is not. Phosphorylation at S78 regulates E8^E2's repression activity of reporter constructs, whereas the corresponding E2 mutants do not display a phenotype. Phosphorylation at S78 does not alter E8^E2's protein stability, nuclear localization, or binding to DNA or to cellular NCoR/SMRT complexes. Surprisingly, in the context of HPV31 genomes, mutation of E8^E2 S78 does not modulate viral replication or transcription in undifferentiated or differentiated cells. However, comparative transcriptome analyses of differentiated HPV31 E8^E2 S78A and S78E cell lines reveal that the expression of a small number of cellular genes is changed. Validation experiments suggest that the transcription of the cellular LYPD2 gene is altered in a phospho-S78 E8^E2-dependent manner. In summary, our data suggest that phosphorylation of S78 in E8^E2 regulates its repression activity by a novel mechanism, and this seems to be important for the modulation of host cell gene expression but not viral replication.IMPORTANCE Posttranslational modification of viral proteins is a common feature to modulate their activities. Phosphorylation of serine residues S298 and S301 in the hinge region of the bovine papillomavirus type 1 E2 protein has been shown to restrict viral replication. The papillomavirus E8^E2 protein shares the hinge domain with E2 and acts as a repressor of viral replication. A large fraction of HPV31 E8^E2 is phosphorylated at S78 in the hinge region, and this is important for E8^E2's repression activity. Surprisingly, phosphorylation at S78 in E8^E2 has no impact on viral replication in tissue culture but rather seems to modulate the expression of a small number of cellular genes. This may indicate that phosphorylation of viral transcription factors serves to broaden their target gene specificity.
Collapse
|
16
|
Xue XY, Majerciak V, Uberoi A, Kim BH, Gotte D, Chen X, Cam M, Lambert PF, Zheng ZM. The full transcription map of mouse papillomavirus type 1 (MmuPV1) in mouse wart tissues. PLoS Pathog 2017; 13:e1006715. [PMID: 29176795 PMCID: PMC5720830 DOI: 10.1371/journal.ppat.1006715] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/07/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
Mouse papillomavirus type 1 (MmuPV1) provides, for the first time, the opportunity to study infection and pathogenesis of papillomaviruses in the context of laboratory mice. In this report, we define the transcriptome of MmuPV1 genome present in papillomas arising in experimentally infected mice using a combination of RNA-seq, PacBio Iso-seq, 5’ RACE, 3’ RACE, primer-walking RT-PCR, RNase protection, Northern blot and in situ hybridization analyses. We demonstrate that the MmuPV1 genome is transcribed unidirectionally from five major promoters (P) or transcription start sites (TSS) and polyadenylates its transcripts at two major polyadenylation (pA) sites. We designate the P7503, P360 and P859 as “early” promoters because they give rise to transcripts mostly utilizing the polyadenylation signal at nt 3844 and therefore can only encode early genes, and P7107 and P533 as “late” promoters because they give rise to transcripts utilizing polyadenylation signals at either nt 3844 or nt 7047, the latter being able to encode late, capsid proteins. MmuPV1 genome contains five splice donor sites and three acceptor sites that produce thirty-six RNA isoforms deduced to express seven predicted early gene products (E6, E7, E1, E1^M1, E1^M2, E2 and E8^E2) and three predicted late gene products (E1^E4, L2 and L1). The majority of the viral early transcripts are spliced once from nt 757 to 3139, while viral late transcripts, which are predicted to encode L1, are spliced twice, first from nt 7243 to either nt 3139 (P7107) or nt 757 to 3139 (P533) and second from nt 3431 to nt 5372. Thirteen of these viral transcripts were detectable by Northern blot analysis, with the P533-derived late E1^E4 transcripts being the most abundant. The late transcripts could be detected in highly differentiated keratinocytes of MmuPV1-infected tissues as early as ten days after MmuPV1 inoculation and correlated with detection of L1 protein and viral DNA amplification. In mature warts, detection of L1 was also found in more poorly differentiated cells, as previously reported. Subclinical infections were also observed. The comprehensive transcription map of MmuPV1 generated in this study provides further evidence that MmuPV1 is similar to high-risk cutaneous beta human papillomaviruses. The knowledge revealed will facilitate the use of MmuPV1 as an animal virus model for understanding of human papillomavirus gene expression, pathogenesis and immunology. Papillomavirus (PV) infections lead to development of both benign warts and cancers. Because PVs are epitheliotropic and species specific, it has been extremely challenging to study PV infection in the context of a naturally occurring infection in a tractable laboratory animal. The recent discovery of the papillomavirus, MmuPV1, that infects laboratory mice, provides an important new animal model system for understanding the pathogenesis of papillomavirus-associated diseases. By using state of the art RNA-seq to provide deep sequencing analysis of what regions of the viral genome are transcribed and PacBio Iso-seq that produces longer reads to define the complete sequences of individual transcripts in combination with several conventional technologies to confirm transcription starts sites, splice sites, and polyadenylation sites, we provide the first detailed description of the MmuPV1 transcript map using RNA from MmuPV1-induced mouse warts. This study reveals the presence of mRNA transcripts capable of coding for ten protein products in the MmuPV1 genome and leads to correctly re-assigning the E1^E4, L2 and L1 coding regions. We were able to detect individual transcripts from the infected wart tissues by RT-PCR, Northern blot and RNA ISH, to define the temporal onset of productive viral infection and to ectopically express a predicted viral protein for functional studies. The constructed MmuPV1 transcript map provides a foundation to advance our understanding of papillomavirus biology and pathogenesis.
Collapse
Affiliation(s)
- Xiang-Yang Xue
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, NCI/NIH, Frederick, Maryland, United States of America
- Department of Microbiology and Immunology, Wenzhou Medical University, Zhejiang, China
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, NCI/NIH, Frederick, Maryland, United States of America
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Bong-Hyun Kim
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, United States of America
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, United States of America
| | - Deanna Gotte
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, NCI/NIH, Frederick, Maryland, United States of America
| | - Xiongfong Chen
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, United States of America
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, United States of America
| | - Maggie Cam
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, NCI/NIH, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Preclinical infection model systems are extremely valuable tools to aid in our understanding of Human Papillomavirus (HPV) biology, disease progression, prevention, and treatments. In this context, rodent papillomaviruses and their respective infection models are useful tools but remain underutilized resources in the field of papillomavirus biology. Two rodent papillomaviruses, MnPV1, which infects the Mastomys species of multimammate rats, and MmuPV1, which infects laboratory mice, are currently the most studied rodent PVs. Both of these viruses cause malignancy in the skin and can provide attractive infection models to study the lesser understood cutaneous papillomaviruses that have been frequently associated with HPV-related skin cancers. Of these, MmuPV1 is the first reported rodent papillomavirus that can naturally infect the laboratory strain of mice. MmuPV1 is an attractive model virus to study papillomavirus pathogenesis because of the ubiquitous availability of lab mice and the fact that this mouse species is genetically modifiable. In this review, we have summarized the knowledge we have gained about PV biology from the study of rodent papillomaviruses and point out the remaining gaps that can provide new research opportunities.
Collapse
|
18
|
Henno L, Tombak E, Geimanen J, Orav M, Ustav E, Ustav M. Analysis of Human Papillomavirus Genome Replication Using Two‐ and Three‐Dimensional Agarose Gel Electrophoresis. ACTA ACUST UNITED AC 2017; 45:14B.10.1-14B.10.37. [DOI: 10.1002/cpmc.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Liisi Henno
- University of Tartu, Institute of Technology Tartu Estonia
| | | | | | - Marit Orav
- University of Tartu, Institute of Technology Tartu Estonia
| | - Ene Ustav
- University of Tartu, Institute of Technology Tartu Estonia
| | - Mart Ustav
- University of Tartu, Institute of Technology Tartu Estonia
- Academy of Sciences Tallinn Estonia
| |
Collapse
|
19
|
Identification of several high-risk HPV inhibitors and drug targets with a novel high-throughput screening assay. PLoS Pathog 2017; 13:e1006168. [PMID: 28182794 PMCID: PMC5300127 DOI: 10.1371/journal.ppat.1006168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022] Open
Abstract
Human papillomaviruses (HPVs) are oncogenic viruses that cause numerous different cancers as well as benign lesions in the epithelia. To date, there is no effective cure for an ongoing HPV infection. Here, we describe the generation process of a platform for the development of anti-HPV drugs. This system consists of engineered full-length HPV genomes that express reporter genes for evaluation of the viral copy number in all three HPV replication stages. We demonstrate the usefulness of this system by conducting high-throughput screens to identify novel high-risk HPV-specific inhibitors. At least five of the inhibitors block the function of Tdp1 and PARP1, which have been identified as essential cellular proteins for HPV replication and promising candidates for the development of antivirals against HPV and possibly against HPV-related cancers. Human papillomaviruses are causative agents of many different cancers; they are most commonly associated with cervical cancer which leads to about quarter of a million deaths each year. Regardless of extensive studies for decades there is no specific cure against HPV infection. During this research, we have engineered modified HPV marker genomes that express Renilla luciferase reporter gene which expression level correlates directly with viral genome copy number. We have used such modified HPV genome in high-throughput screening of NCI Diversity Set IV chemical library and have identified a number of novel high-risk HPV-specific chemical compounds and drug targets. Such Renilla-expressing marker genomes could be used in various cell systems suitable for HPV replication studies to conduct high-throughput screens and quantify viral genome copy number quickly and effectively.
Collapse
|
20
|
Graham SV, Faizo AAA. Control of human papillomavirus gene expression by alternative splicing. Virus Res 2016; 231:83-95. [PMID: 27867028 PMCID: PMC5335905 DOI: 10.1016/j.virusres.2016.11.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 11/21/2022]
Abstract
Alternative splicing is a key cellular mechanism controlling HPV gene expression. Many cellular SR proteins and hnRNPs have been identified that bind and control production of viral mRNAs. HPV16 E2 protein controls expression of SR proteins and has splicing-related functions. HPV16 infection through its regulatory effects on splicing factors may significantly alter cellular gene expression and cellular metabolism.
Human papillomaviruses possess circular double stranded DNA genomes of around 8 kb in size from which multiple mRNAs are synthesized during an infectious life cycle. Although at least three viral promoters are used to initiate transcription, viral mRNAs are largely the product of processing of pre-mRNAs by alternative splicing and polyadenylation. The HPV life cycle and viral gene expression are tightly linked to differentiation of the epithelium the virus infects: there is an orchestrated production of viral mRNAs and proteins. In this review we describe viral mRNA expression and the roles of the SR and hnRNP proteins that respectively positively and negatively regulate splicing. We discuss HPV regulation of splicing factors and detail the evidence that the papillomavirus E2 protein has splicing-related activities. We highlight the possibility that HPV-mediated control of splicing in differentiating epithelial cells may be necessary to accomplish the viral replication cycle.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research; Institute of Infection, Immunity and Inflammation; College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, Scotland, UK.
| | - Arwa Ali A Faizo
- MRC-University of Glasgow Centre for Virus Research; Institute of Infection, Immunity and Inflammation; College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, Scotland, UK
| |
Collapse
|
21
|
Dreer M, van de Poel S, Stubenrauch F. Control of viral replication and transcription by the papillomavirus E8^E2 protein. Virus Res 2016; 231:96-102. [PMID: 27825778 DOI: 10.1016/j.virusres.2016.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022]
Abstract
Human papillomaviruses have adjusted their replication levels to the differentiation state of the infected keratinocyte. PV genomes replicate in undifferentiated cells at low levels and to high levels in differentiated cells. Genome replication requires the viral E1 helicase and the viral E2 transcription/replication activator. The limited replication in undifferentiated cells is predominantly due to the expression of the highly conserved E8^E2 viral repressor protein, which is a fusion between E8 and the C-terminal half of the E2 protein. E8^E2 is a sequence-specific DNA binding protein that inhibits viral gene expression and viral genome replication. The E8 domain is required for repression activities, which are mainly due to the interaction with cellular NCoR/SMRT corepressor complexes. In the case of HPV16, the most carcinogenic HPV type, E8^E2 not only limits genome replication in undifferentiated cells but also productive replication in differentiated epithelium. E8^E2 is expressed from a separate promoter that is controlled by unknown cellular factors and the viral transcription and replication regulators E1, E2 and E8^E2. In summary, E8^E2 is an important negative regulator whose levels may be critical for the outcome of HPV infections.
Collapse
Affiliation(s)
- Marcel Dreer
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Elfriede-Aulhorn-Str. 6, 72076, Tuebingen, Germany
| | - Saskia van de Poel
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Elfriede-Aulhorn-Str. 6, 72076, Tuebingen, Germany
| | - Frank Stubenrauch
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Elfriede-Aulhorn-Str. 6, 72076, Tuebingen, Germany
| |
Collapse
|
22
|
Puustusmaa M, Abroi A. Conservation of the E8 CDS of the E8^E2 protein among mammalian papillomaviruses. J Gen Virol 2016; 97:2333-2345. [PMID: 27325292 DOI: 10.1099/jgv.0.000526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Papillomaviridae are small dsDNA viruses with a limited coding capacity. To fulfill all of the functional requirements for propagation and spreading, papillomaviruses use double coding and alternative protein isoforms. E8 ^ E2 is an alternative E2 protein isoform that is generated by fusing the short E8 CDS that completely overlaps E1 to the 'hinge' and the DNA-binding region of the E2 protein via alternative transcription/splicing. The papillomaviruses in which E8 ^ E2 mRNA sequences have been described exhibit a sparse phylogenomic distribution. Thus, it is not clear whether E8 ^ E2 is an ancestral protein that has not been described for other papillomavirus types or whether it randomly appears because of the conservation of the E1 protein and occurs only coincidentally. We searched for potential E8 coding sequences in a non-redundant set of papillomaviruses and applied SynPlot2 and an in-house-developed algorithm (cRegions) to determine the most plausible of the above-mentioned scenarios. Beginning with nine experimentally described E8 ^ E2 mRNAs, we predicted the potential E8 CDSs for more than 300 mammalian papillomavirus genomes. According to our analysis, E8 ^ E2 is not a result of E1 coding and represents a protein in its own right, and it most likely has an ancestral origin that precedes the divergence of major mammalian papillomavirus genera.
Collapse
Affiliation(s)
- Mikk Puustusmaa
- Department of Bioinformatics, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Aare Abroi
- Estonian Biocentre, Riia 23, Tartu 51010, Estonia
| |
Collapse
|
23
|
Dreer M, Fertey J, van de Poel S, Straub E, Madlung J, Macek B, Iftner T, Stubenrauch F. Interaction of NCOR/SMRT Repressor Complexes with Papillomavirus E8^E2C Proteins Inhibits Viral Replication. PLoS Pathog 2016; 12:e1005556. [PMID: 27064408 PMCID: PMC4827801 DOI: 10.1371/journal.ppat.1005556] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/17/2016] [Indexed: 11/19/2022] Open
Abstract
Infections with high-risk human papillomaviruses (HR-HPV) such as HPV16 and 31 can lead to ano-genital and oropharyngeal cancers and HPV types from the beta genus have been implicated in the development of non-melanoma skin cancer. HPV replicate as nuclear extrachromosomal plasmids at low copy numbers in undifferentiated cells. HPV16 and 31 mutants have indicated that these viruses express an E8^E2C protein which negatively regulates genome replication. E8^E2C shares the DNA-binding and dimerization domain (E2C) with the essential viral replication activator E2 and the E8 domain replaces the replication/transcription activation domain of E2. The HR-HPV E8 domain is required for inhibiting viral transcription and the replication of the viral origin mediated by viral E1 and E2 proteins. We show now that E8^E2C also limits replication of HPV1, a mu-PV and HPV8, a beta-PV, in normal human keratinocytes. Proteomic analyses identified all NCoR/SMRT corepressor complex components (HDAC3, GPS2, NCoR, SMRT, TBL1 and TBLR1) as co-precipitating host cell proteins for HPV16 and 31 E8^E2C proteins. Co-immunoprecipitation and co-localization experiments revealed that NCoR/SMRT components interact with HPV1, 8, 16 and 31 E8^E2C proteins in an E8-dependent manner. SiRNA knock-down experiments confirm that NCoR/SMRT components are critical for both the inhibition of transcription and HPV origin replication by E8^E2C proteins. Furthermore, a dominant-negative NCoR fragment activates transcription and replication only from HPV16 and 31 wt but not from mutant genomes encoding NCoR/SMRT-binding deficient E8^E2C proteins. In summary, our data suggest that the repressive function of E8^E2C is highly conserved among HPV and that it is mediated by an E8-dependent interaction with NCoR/SMRT complexes. Our data also indicate for the first time that NCoR/SMRT complexes not only are involved in inhibiting cellular and viral transcription but also in controlling the replication of HPV origins. Human papillomaviruses (HPV) have been shown to cause ano-genital and oropharyngeal cancers and have been also implicated in non-melanoma skin cancer. HPV have a two-stage replication cycle: in undifferentiated keratinocytes only a low level of genome replication without virus production can be observed whereas in differentiated keratinocytes high-level genome replication and virus production takes place. Previous studies have suggested that some HPV encode an E8^E2C protein that limits genome replication in undifferentiated cells. We now demonstrate that E8^E2C proteins from phylogenetically diverse HPV types interact with NCoR/SMRT corepressor complexes to limit viral transcription and genome replication. While NCoR/SMRT complexes are known to mediate the transcription repression functions of a wide variety of host transcription factors, this is the first evidence that NCoR/SMRT proteins also are involved in the repression of the replication of viral origins.
Collapse
Affiliation(s)
- Marcel Dreer
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Jasmin Fertey
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Saskia van de Poel
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Elke Straub
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Johannes Madlung
- Proteome Center Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Thomas Iftner
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Frank Stubenrauch
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
24
|
Salvermoser M, Chotewutmontri S, Braspenning-Wesch I, Hasche D, Rösl F, Vinzón SE. Transcriptome analysis of Mastomys natalensis papillomavirus in productive lesions after natural infection. J Gen Virol 2016; 97:1658-1669. [PMID: 27043420 DOI: 10.1099/jgv.0.000471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mastomys coucha, an African rodent, is a useful animal model of papillomavirus infection, as it develops both premalignant and malignant skin tumors as a consequence of a persistent infection with Mastomys natalensis papillomavirus (MnPV). In this study, we mapped the MnPV transcriptome in productive lesions by both classical molecular techniques and high-throughput RNA sequencing. Combination of these methods revealed a complex and comprehensive transcription map, with novel splicing events not described in other papillomaviruses. Furthermore, these splicing occurrences could potentially lead to the expression of novel E2, E1∧E4, E7 and L2 isoforms. Expression level estimation of each transcript showed that late-region mRNAs considerably outnumber early transcripts, with species coding for L1 and E1∧E4 being the most abundant. In summary, the full transcription map assembled in this study will allow us to further understand MnPV gene expression and the mechanisms that lead to natural tumour development.
Collapse
Affiliation(s)
- Melanie Salvermoser
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sasithorn Chotewutmontri
- Genomics and Proteomics Core Facilities, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilona Braspenning-Wesch
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Hasche
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabrina E Vinzón
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|