1
|
Ge Y, Zhou Y, Peng P, Li Y, Huo M, Liu J, Yu J, Shao P, Xu H, Liang X, Yao Q, Gao Y. The first emergence of paramyxovirus type 12 in wild birds in mainland, China. Poult Sci 2024; 103:104228. [PMID: 39276465 PMCID: PMC11417311 DOI: 10.1016/j.psj.2024.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024] Open
Abstract
Avian paramyxoviruses (APMV) belong to the subfamily Avulavirinae of the family Paramyxoviridae and include 22 distinct subtypes or serotypes (1-22). Avian paramyxovirus serotype 12 (APMV-12) is found sporadically in wild birds worldwide, and reports from only Italy and Taiwan have been published to date; information on its genetic variation and biological characteristics is still limited. In this study, 3 APMV-12 strains, designated WB19, LY9, and LY11, were isolated from 8643 wild bird faecal samples during the annual influenza virus surveillance of wild birds in Guangdong, China between 2018 and 2024, which is first reported in mainland China. The complete genomes of the 3 viruses with 6 gene segments, 3'-N-P-M-F-HN-L-5', were 15,231 nt in length. Phylogenetic analysis based on the whole genome showed that the 3 APMV-12 strains had the highest homology with an APMV-12 strain isolated from Taiwan in 2015, followed by the prototype APMV-12 strains isolated from mallard ducks in Italy in 2005. Genetic analysis of the whole gene of each of them indicated that they were derived from a Eurasian lineage. This study provides additional evidence that wild birds transmit viruses between countries, and this should be monitored to understand APMV transmission, evolution and epidemiology.
Collapse
Affiliation(s)
- Ye Ge
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yan Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Peng Peng
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland, 110034, China
| | - Yuanguo Li
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Miaotong Huo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jing Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiantao Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Peipei Shao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hualin Xu
- Guangdong Neilingding Futian National Nature Reserve Administration Bureau, Shenzhen, Guangdong Province, 518040, China
| | - Xiaodong Liang
- Wildlife and Plant Conservation Office, Forestry Administration of Guangdong Province, Guangzhou, 510173, China
| | - Qiucheng Yao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yuwei Gao
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
2
|
Wang S, Liu X, Chen J, Yan W, Li H, Chi W, Luo R, Lin X, Yin Y, Dong C, Wang H, Zheng B, Li H, Liu Y, Stoeger T, Wajid A, Dodovski A, Gao C, Mingala CN, Andreychuk DB, Yin R. First detection and biological characterization of an avian metaavulavirus 8 isolated from a migratory swan goose in Qinghai Lake, Northwest China. Microbiol Immunol 2024. [PMID: 39360386 DOI: 10.1111/1348-0421.13175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024]
Abstract
Avian metaavulavirus 8 (AMAV-8), formerly known as avian paramyxovirus 8 (APMV-8), has been detected sporadically in wild birds worldwide since it was first identified in a Canadian goose in 1976. However, the presence of AMAV-8 in birds has never been reported in China. To understand the epidemiological situation of AMAV-8 and its ability to infect chickens, we conducted a surveillance study and in vivo analysis of the AMAV-8 isolate identified in total of 14,909 clinical samples collected from wild and domestic birds from 2014 to 2022 in China. However, in 2017, only one AMAV-8 virus (Y7) was successful isolated from the fresh droppings of a migratory swan goose in Qinghai Lake in Northwest China. Thereafter, we report the complete genome sequence of the Y7 strain with a genome length of 15,342 nucleotides and the Y7 isolate was genetically closely-related to wild bird-origin AMAV-8 viruses previously circulated in the United States, Japan, and Kazakhstan. Furthermore, AMAV-8 infections of one-day-old specific pathogen-free (SPF) chicks did not induce any clinical signs over the entire observation period but was associated with viral shedding for up to 8 days. Interestingly, although all birds infected with the Y7 strain seroconverted within the first week of infection, virus replication was only detected in the trachea but not in other tissues such as the brain, lung, or heart. Here, we report the complete genome, genetic and biological characterization, replication and pathogenicity analysis in vivo and first detection of AMAV-8 in China.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Preventive Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinxin Liu
- Department of Preventive Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Weiwen Yan
- Department of Preventive Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongjin Li
- Department of Preventive Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- School of Life Sciences, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Weiwei Chi
- Department of Preventive Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Luo
- Department of Preventive Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xianwen Lin
- Department of Preventive Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yue Yin
- Department of Preventive Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chuanrong Dong
- Department of Preventive Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Huihui Wang
- Department of Preventive Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bowen Zheng
- Department of Preventive Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongli Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, China
| | - Yifei Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, China
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Abdul Wajid
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Aleksandar Dodovski
- Department for Avian Diseases, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Chao Gao
- Department of Preventive Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Claro N Mingala
- Livestock Biotechnology Center, Philippine Carabao Center, Science City of Muñoz, Nueva Ecija, Philippines
| | - Dmitry B Andreychuk
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), Vladimir, Russia
| | - Renfu Yin
- Department of Preventive Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
3
|
Petherbridge G, Gadzhiev AA, Shestopalov АМ, Alekseev AY, Sharshov KA, Daudova MG. An early warning system for highly pathogenic viruses borne by waterbird species and related dynamics of climate change in the Caspian Sea region: Outlines of a concept. SOUTH OF RUSSIA: ECOLOGY, DEVELOPMENT 2022. [DOI: 10.18470/1992-1098-2022-2-233-263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim. Formulation of the outlines of the concept of ViEW (Viral Early Warning) which is intended as a long term system of multidisciplinary transboundary cooperation between specialist institutions of all five Caspian region states to research, regularly monitor and share data about the generation, transmission and epidemiology of avian‐borne pathogens and their vectors in the region, and the ways climate change may affect these processes.Material and Methods. The concept is based on the multidisciplinary experience of the authors in researching the processes incorporated in the ViEW concept and on an in‐depth survey of the literature involved.Results. The outlines of the ViEW concept are presented in this study for review and comment by interested parties and stakeholders.Conclusion. Review of activities and opinions of specialists and organizations with remits relating to the development, establishment and maintenance of ViEW, indicates that such a system is a necessity for global animal and human health because of the role that the Caspian region plays in the mass migration of species of waterbird known as vectors for avian influenza and the already evident impacts of climate change on their phenologies. Waterbirds frequenting the Caspian Sea littorals and their habitats together constitute a major potential global hotspot or High Risk region for the generation and transmission of highly pathogenic avian influenza viruses and other dangerous zoonotic diseases.
Collapse
Affiliation(s)
| | | | - А. М. Shestopalov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - A. Yu. Alekseev
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - K. A. Sharshov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | | |
Collapse
|
4
|
Zhigailov AV, Maltseva ER, Perfilyeva YV, Ostapchuk YO, Naizabayeva DA, Berdygulova ZA, Kuatbekova SA, Nizkorodova AS, Mashzhan A, Gavrilov AE, Abayev AZ, Akhmetollayev IA, Mamadaliyev SM, Skiba YA. Prevalence and genetic diversity of coronaviruses, astroviruses and paramyxoviruses in wild birds in southeastern Kazakhstan. Heliyon 2022; 8:e11324. [PMID: 36353173 PMCID: PMC9638769 DOI: 10.1016/j.heliyon.2022.e11324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Wild birds are natural reservoirs of many emerging viruses, including some zoonoses. Considering that the territory of Kazakhstan is crossed by several bird migration routes, it is important to know pathogenic viruses circulating in migratory birds in this region. Therefore, the aim of this study was to identify the host range, diversity and spatial distribution of avian paramyxoviruses, coronaviruses, and astroviruses in free-ranging wild birds in the southeastern region of Kazakhstan. For this purpose, we collected tracheal and cloacal swabs from 242 wild birds belonging to 51 species and screened them using conventional PCR assays. Overall, 4.1% (10/242) and 2.9% (7/242) of all examined birds tested positive for coronaviruses and astroviruses, respectively. Coronaviruses were found in the orders Pelecaniformes (30%; 3/10), Charadriiformes (30%; 3/10), Columbiformes (20%; 2/10), Anseriformes (10%; 1/10), and Passeriformes (10%; 1/10). All detected strains belonged to the genus Gammacoronavirus. Astroviruses were detected in birds representing the orders Passeriformes (57%; 4/7), Coraciiformes (14%; 1/7), Charadriiformes (14%; 1/7), and Columbiformes (14%; 1/7). Paramyxoviruses were observed in only two birds (0.8%; 2/242). Both strains were closely related to the species APMV-22, which had not been previously detected in Kazakhstan. Phylogenetic analysis of the partial RdRp gene sequences of the virus strains revealed three different clades of astroviruses, two clades of coronaviruses, and one clade of paramyxoviruses. The results of this study provide valuable information on the diversity and spatial distribution of paramyxoviruses, coronaviruses, and astroviruses in wild birds in southeastern Kazakhstan and highlight the importance of further thorough monitoring of wild birds in this region. First study on CoVs and AstroVs in wild birds in Kazakhstan. APMVs, CoVs and AstroVs are confirmed by RT-PCR and partial RdRp gene sequencing. The CoVs prevalence is higher in aquatic birds as compared to terrestrial species. The obtained CoV strains belong to the genus Gammacoronavirus Strains closely related to APMV-22 not previously detected in Kazakhstan are shown.
Collapse
Affiliation(s)
- Andrey V. Zhigailov
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Elina R. Maltseva
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Tethys Scientific Society, Almaty, Kazakhstan
| | - Yuliya V. Perfilyeva
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Corresponding author.
| | - Yekaterina O. Ostapchuk
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Dinara A. Naizabayeva
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | | | - Anna S. Nizkorodova
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Akzhigit Mashzhan
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | | | | | | | - Yuriy A. Skiba
- Almaty Branch of the National Center for Biotechnology, Almaty, Kazakhstan
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Tethys Scientific Society, Almaty, Kazakhstan
| |
Collapse
|
5
|
Gulyaeva M, Badmaeva E, Yurchenko K, Sharshov K, Sobolev I, Bi Y, Chen J, Shi W, Diulin I, Dorzhiev T, Shestopalov A. Monitoring of Potentially Emerging Pathogens in Wild Birds at Baikal Lake Basin in 2019. ECOHEALTH 2022; 19:335-341. [PMID: 36018399 DOI: 10.1007/s10393-022-01614-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Marina Gulyaeva
- FSBSI "The Federal Research Center of Fundamental and Translational Medicine", Timakova str., 2, Novosibirsk, Russia, 630060.
- Novosibirsk State University, Pirogova St., 2, Novosibirsk, Russia, 630090.
| | | | - Kseniya Yurchenko
- FSBSI "The Federal Research Center of Fundamental and Translational Medicine", Timakova str., 2, Novosibirsk, Russia, 630060
| | - Kirill Sharshov
- FSBSI "The Federal Research Center of Fundamental and Translational Medicine", Timakova str., 2, Novosibirsk, Russia, 630060
| | - Ivan Sobolev
- FSBSI "The Federal Research Center of Fundamental and Translational Medicine", Timakova str., 2, Novosibirsk, Russia, 630060
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Jianjun Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuhan, 430071, Hubei, People's Republic of China
| | - Weifeng Shi
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, People's Republic of China
| | - Iliya Diulin
- FSBSI "The Federal Research Center of Fundamental and Translational Medicine", Timakova str., 2, Novosibirsk, Russia, 630060
| | | | - Alexander Shestopalov
- FSBSI "The Federal Research Center of Fundamental and Translational Medicine", Timakova str., 2, Novosibirsk, Russia, 630060
| |
Collapse
|
6
|
Young KT, Stephens JQ, Poulson RL, Stallknecht DE, Dimitrov KM, Butt SL, Stanton JB. Putative Novel Avian Paramyxovirus (AMPV) and Reidentification of APMV-2 and APMV-6 to the Species Level Based on Wild Bird Surveillance (United States, 2016-2018). Appl Environ Microbiol 2022; 88:e0046622. [PMID: 35612300 PMCID: PMC9195946 DOI: 10.1128/aem.00466-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Avian paramyxoviruses (APMVs) (subfamily Avulavirinae) have been isolated from over 200 species of wild and domestic birds around the world. The International Committee on Taxonomy of Viruses (ICTV) currently defines 22 different APMV species, with Avian orthoavulavirus 1 (whose viruses are designated APMV-1) being the most frequently studied due to its economic burden to the poultry industry. Less is known about other APMV species, including limited knowledge on the genetic diversity in wild birds, and there is a paucity of public whole-genome sequences for APMV-2 to -22. The goal of this study was to use MinION sequencing to genetically characterize APMVs isolated from wild bird swab samples collected during 2016 to 2018 in the United States. Multiplexed MinION libraries were prepared using a random strand-switching approach using 37 egg-cultured, influenza-negative, hemagglutination-positive samples. Forty-one APMVs were detected, with 37 APMVs having complete polymerase coding sequences allowing for species identification using ICTV's current Paramyxoviridae phylogenetic methodology. APMV-1, -4, -6, and -8 viruses were classified, one putative novel species (Avian orthoavulavirus 23) was identified from viruses isolated in this study, two putative new APMV species (Avian metaavulavirus 24 and 27) were identified from viruses isolated in this study and from retrospective GenBank sequences, and two putative new APMV species (Avian metaavulavirus 25 and 26) were identified solely from retrospective GenBank sequences. Furthermore, coinfections of APMVs were identified in four samples. The potential limitations of the branch length being the only species identification criterion and the potential benefit of a group pairwise distance analysis are discussed. IMPORTANCE Most species of APMVs are understudied and/or underreported, and many species were incidentally identified from asymptomatic wild birds; however, the disease significance of APMVs in wild birds is not fully determined. The rapid rise in high-throughput sequencing coupled with avian influenza surveillance programs have identified 12 different APMV species in the last decade and have challenged the resolution of classical serological methods to identify new viral species. Currently, ICTV's only criterion for Paramyxoviridae species classification is the requirement of a branch length of >0.03 using a phylogenetic tree constructed from polymerase (L) amino acid sequences. The results from this study identify one new APMV species, propose four additional new APMV species, and highlight that the criterion may have insufficient resolution for APMV species demarcation and that refinement or expansion of this criterion may need to be established for Paramyxoviridae species identification.
Collapse
Affiliation(s)
- Kelsey T. Young
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jazz Q. Stephens
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Rebecca L. Poulson
- Department of Population Health, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, USA
| | - David E. Stallknecht
- Department of Population Health, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, USA
| | - Kiril M. Dimitrov
- Department of Virology, Texas A&M University, College Station, Texas, USA
| | - Salman L. Butt
- Department of Pathology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - James B. Stanton
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
Genetic and evolutionary characterization of avian paramyxovirus type 4 in China. INFECTION GENETICS AND EVOLUTION 2021; 91:104777. [PMID: 33631368 DOI: 10.1016/j.meegid.2021.104777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 01/11/2023]
Abstract
As an economically important poultry pathogen, avian paramyxovirus serotype 4 (APMV-4) frequently reported and isolated from domestic and wild birds particularly waterfowls worldwide. However, evolutionary dynamics of APMV-4 based on genomic characteristics is lacking. In this study, APMV-4 strain designated JX-G13 was isolated from oropharyngeal and cloacal swab samples of wild birds in China. Phylogenetic analysis revealed APMV-4 strains were divided into four genetic genotypes and China isolates were mainly clustered into Genotype I. The MCMC tree indicated that APMV-4 diverged about 104 years ago with the evolutionary rate of 1.2927 × 10-3 substitutions/site/year. BSP analysis suggested that the effective population size of APMV-4 exhibited a steady state and decreased slowly after 2013. The F gene of APMV-4 was considered relatively conserved among isolates based on nucleotide diversity analysis. Although the F gene was under purifying selection, two positions (5 and 21) located in 3'-UTR were subject to positive selection. Our study firstly presented the evolutionary assessments on the genetic diversity of circulating APMV-4 from wild birds and domestic poultry.
Collapse
|
8
|
Karamendin K, Kydyrmanov A, Kasymbekov Y, Daulbayeva K, Khan E, Seidalina A, Sayatov M, Gavrilov A, Fereidouni S. Cormorants as Potential Victims and Reservoirs of Velogenic Newcastle Disease Virus (Orthoavulavirus-1) in Central Asia. Avian Dis 2020; 63:599-605. [PMID: 31865674 DOI: 10.1637/aviandiseases-d-19-00092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/01/2019] [Indexed: 11/05/2022]
Abstract
Virulent strains of avian orthoavulavirus 1, historically known as Newcastle disease virus (NDV), are widespread and cause high levels of mortality in poultry worldwide. Wild birds may play an important role in the maintenance of Avian orthoavulavirus 1 in nature. Prior to 2014, most of the lentogenic NDV strains isolated from Central Asia were obtained from the avian order Anseriformes (ducks and geese). Wild birds were monitored from 2014-2016 to detect the circulation of NDV. A total of 1522 samples belonging to 73 avian species were examined, and 26 positive samples were identified. The isolates of Avian orthoavulavirus 1 belonged to three genotypes: viruses from doves (Columbiformes) and cormorants (Suliformes) were attributed to the velogenic genotypes VI and XIII, respectively, while the isolate from poultry belonged to lentogenic genotype I. The isolation of Avian orthoavulavirus 1 from doves may confirm their role as a reservoir of pigeon paramyxoviruses (antigenic variant of the genotype VI NDV) in nature and indicates the potential threat of introduction of velogenic strains into the poultry population. Our study describes an epizootic scenario in Kazakhstan among cormorants with mortality among juveniles of up to 3 wk of age and isolation of the NDV from apparently healthy birds. These observations may support the idea that cormorants are one of the potential reservoirs and victims of velogenic Avian orthoavulavirus 1 in Central Asia. The seasonal migrations of cormorants may partially contribute to viral dissemination throughout the continent; however, this hypothesis needs more evidence.
Collapse
Affiliation(s)
- Kobey Karamendin
- Scientific and Production Center for Microbiology and Virology, 103 Bogenbay batyr Str., 050010, Almaty, Kazakhstan,
| | - Aidyn Kydyrmanov
- Scientific and Production Center for Microbiology and Virology, 103 Bogenbay batyr Str., 050010, Almaty, Kazakhstan
| | - Yermukhammet Kasymbekov
- Scientific and Production Center for Microbiology and Virology, 103 Bogenbay batyr Str., 050010, Almaty, Kazakhstan
| | - Klara Daulbayeva
- Scientific and Production Center for Microbiology and Virology, 103 Bogenbay batyr Str., 050010, Almaty, Kazakhstan
| | - Elizaveta Khan
- Scientific and Production Center for Microbiology and Virology, 103 Bogenbay batyr Str., 050010, Almaty, Kazakhstan
| | - Aigerim Seidalina
- Scientific and Production Center for Microbiology and Virology, 103 Bogenbay batyr Str., 050010, Almaty, Kazakhstan
| | - Marat Sayatov
- Scientific and Production Center for Microbiology and Virology, 103 Bogenbay batyr Str., 050010, Almaty, Kazakhstan
| | - Andrey Gavrilov
- Institute of Zoology, 93 al Farabi Str., 050060, Almaty, Kazakhstan
| | - Sasan Fereidouni
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, Vienna, Austria
| |
Collapse
|
9
|
Karamendin K, Kydyrmanov A, Kasymbekov Y, Seidalina A, Daulbayeva K, Sayatov M, Fereidouni S. Evolution of Avian orthoavulavirus 16 in wild avifauna of Central Asia. Heliyon 2020; 6:e03099. [PMID: 32042933 PMCID: PMC7002782 DOI: 10.1016/j.heliyon.2019.e03099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/01/2019] [Accepted: 12/18/2019] [Indexed: 12/03/2022] Open
Abstract
In 2014, a novel Avian orthoavulavirus 16 species was described among wild birds in Korea. In 2018, after massive parallel sequencing of archival strains of Avian orthoavulaviruses, isolated in 2006 in Central Kazakhstan, isolates belonging to this serotype were detected. The obtained data allowed to trace the evolution of this serotype in Asia and to reveal its evolutionary relationships with other Avulavirinae subfamily species. It was determined that Avian orthoavulavirus 16 is phylogenetically very close to Avian orthoavulavirus 1 (Newcastle disease virus) in its genomic characteristics. It is known that Avian orthoavulavirus 1 is divided into two phylogenetically distant Classes I and II. Avian orthoavulavirus 16 turned out to be very close to lentogenic Class I, which circulates mainly among wild birds. It was suggested that Avian orthoavulaviruses 1 and 16 may have common evolutionary origin and in ecological terms, both serotypes are circulating among wild birds of the order Anseriformes (ducks and geese), but Avian orthoavulavirus 1 has gradually replaced Avian orthoavulavirus 16 from active circulation.
Collapse
Affiliation(s)
- Kobey Karamendin
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, 103 Bogenbay Batyr Str, 050010, Almaty, Kazakhstan
| | - Aidyn Kydyrmanov
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, 103 Bogenbay Batyr Str, 050010, Almaty, Kazakhstan
| | - Yermukhammet Kasymbekov
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, 103 Bogenbay Batyr Str, 050010, Almaty, Kazakhstan
| | - Aigerim Seidalina
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, 103 Bogenbay Batyr Str, 050010, Almaty, Kazakhstan
| | - Klara Daulbayeva
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, 103 Bogenbay Batyr Str, 050010, Almaty, Kazakhstan
| | - Marat Sayatov
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, 103 Bogenbay Batyr Str, 050010, Almaty, Kazakhstan
| | - Sasan Fereidouni
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
10
|
Aziz-Ul-Rahman, Rohaim MA, El Naggar RF, Mustafa G, Chaudhry U, Shabbir MZ. Comparative clinico-pathological assessment of velogenic (sub-genotype VIIi) and mesogenic (sub-genotype VIm) Avian avulavirus 1 in chickens and pigeons. Avian Pathol 2019; 48:610-621. [PMID: 31403322 DOI: 10.1080/03079457.2019.1648751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Newcastle disease (ND), caused by virulent Avian avulavirus 1 (AAvV 1), affects a wide range of avian species worldwide. Recently, several AAvVs of diverse genotypes have emerged with varying genomic and residue substitutions, and subsequent clinical impact on susceptible avian species. We assessed the clinico-pathological influence of two different AAvV 1 pathotypes [wild bird originated-velogenic strain (sub-genotype VIIi, MF437287) and feral pigeon originated-mesogenic strain (sub-genotype VIm, KU885949)] in commercial broiler chickens and pigeons. The velogenic strain caused 100% mortality in both avian species while the mesogenic strain caused 0% and 30% mortality in chickens and pigeons, respectively. Both strains showed tissue tropism for multiple tissues including visceral organs; however, minor variances were observed according to host and pathotype. The observed gross and microscopic lesions were typical of AAvV 1 infection. Utilizing oropharyngeal and cloacal swabs, a comparable pattern of viral shedding was observed for both strains from each of the infected individuals of both avian species. The study concludes a varying susceptibility of chickens and pigeons to different wild bird-originated AAvV 1 pathotypes and, therefore, suggests continuous monitoring and surveillance of currently prevailing strains for effective control of the disease worldwide, particularly in disease-endemic countries.
Collapse
Affiliation(s)
- Aziz-Ul-Rahman
- Department of Microbiology, University of Veterinary and Animal Sciences , Lahore Pakistan.,Quality Operation Laboratory, University of Veterinary and Animal Sciences , Lahore Pakistan
| | - Mohammed A Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University , Giza , Egypt.,Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University , Lancaster , UK
| | - Rania F El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City , Sadat , Egypt
| | - Ghulam Mustafa
- Department of Pathology, University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Umer Chaudhry
- Roslin Institute, Easter Bush Veterinary Centre, University of Edinburgh , Roslin, Midlothian , UK
| | - Muhammad Zubair Shabbir
- Quality Operation Laboratory, University of Veterinary and Animal Sciences , Lahore Pakistan
| |
Collapse
|
11
|
The Emergence of Avian Orthoavulavirus 13 in Wild Migratory Waterfowl in China Revealed the Existence of Diversified Trailer Region Sequences and HN Gene Lengths within this Serotype. Viruses 2019; 11:v11070646. [PMID: 31337066 PMCID: PMC6669871 DOI: 10.3390/v11070646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 01/01/2023] Open
Abstract
Avian orthoavulavirus 13 (AOAV-13), also named avian paramyxovirus 13 (APMV-13), has been found sporadically in wild birds around the world ever since the discovery of AOAV-13 (AOAV-13/wild goose/Shimane/67/2000) in a wild goose from Japan in 2000. However, there are no reports of AOAV-13 in China. In the present study, a novel AOAV-13 virus (AOAV-13/wild goose/China/Hubei/V93-1/2015), isolated from a wild migratory waterfowl in a wetland of Hubei province of China, during active surveillance from 2013 to 2018, was biologically and genetically characterized. Phylogenetic analyses demonstrated a very close genetic relationship among all AOAV-13 strains, as revealed by very few genetic variations. Moreover, pathogenicity tests indicated that the V93-1 strain is a low virulent virus for chickens. However, the genome of the V93-1 virus was found to be 16,158 nucleotides (nt) in length, which is 12 nt or 162 nt longer than the other AOAV-13 strains that have been reported to date. The length difference of 12 nt in strain V93-1 is due to the existence of three repeats of the conserved sequence, “AAAAAT”, in the 5′-end trailer of the genome. Moreover, the HN gene of the V93-1 virus is 2070 nt in size, encoding 610 aa, which is the same size as the AOAV-13 strain from Japan, whereas that of two strains from Ukraine and Kazakhstan are 2080 nt in length, encoding 579 aa. We describe a novel AOAV-13 in migratory waterfowl in China, which suggests that diversified trailer region sequences and HN gene lengths exist within serotype AOAV-13, and highlight the need for its constant surveillance in poultry from live animal markets, and especially migratory birds.
Collapse
|
12
|
Karamendin KO, Sayatov MK, Kydyrmanov AI, Kasymbekov ET, Asanova SE, Daulbayeva KD, Khan EY. [Molecular-genetic characterization of Avian avulavirus 20 strains isolated from wild birds.]. Vopr Virusol 2019; 64:185-192. [PMID: 32163685 DOI: 10.36233/0507-4088-2019-64-4-185-192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Previously unknown paramyxovirus strains were isolated from wild birds in 2013-2014 in Kazakhstan and subsequently identified as representatives of the novel Avian avulavirus 20 species. The aims and tasks were molecular genetic characterization of novel avulaviruses and investigation of their phylogenetic relationships. MATERIAL AND METHODS Embryonated chicken eggs were inoculated with cloacal and tracheal swabs from wild birds with subsequent virus isolation. The complete nucleotide sequences of viral genomes were obtained by massive parallel sequencing with subsequent bioinformatics processing. RESULTS By initial infection of chicken embryos with samples from 179 wild birds belonging to the Anatidae, Laridae, Scolopacidae and Charadriidae families, 19 hemagglutinating agents were isolated, and five of them were identified as representatives of new viral species. The study of their sequenced genomes revealed their similarity in size, but there was a significant genetic variability within the species. 2,640 nucleotide substitutions were identified and 273 of them were nonsynonymous, influencing the protein structure of viruses. It was shown that isolates Avian avulavirus 20/black-headed gull/Balkhash/5844/2013 and Avian avulavirus 20 /great black-headed gull/Atyrau/5541/2013 were 86% and 95% respectively identical to the previously described reference strain, indicating a significant evolutionary divergence within species. DISCUSSION The authors suggest the existence of two independent lineages - the Caspian, represented by the reference strain Aktau/5976 and Atyrau/5541, as well as the second, geographically significantly distant Balkhash lineage. CONCLUSION The study confirms the role of the birds of the Laridae family as the main reservoir of Avian avulavirus 20 in the avifauna that plays a key role in maintaining viruses of the genus Avulavirus in the biosphere and is a potential natural source for the emergence of new viral variants. Continuous surveillance of them in the wild is one of the most important tasks in ensuring the safety of the poultry industry.
Collapse
Affiliation(s)
- K O Karamendin
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - M K Sayatov
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - A I Kydyrmanov
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - E T Kasymbekov
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - S E Asanova
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - K D Daulbayeva
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| | - E Y Khan
- SPC for Microbiology and Virology, Almaty, 050010, Kazakhstan
| |
Collapse
|
13
|
Molecular characterization and genetic diversity of avian paramyxovirus type 4 isolated in South Korea from 2013 to 2017. INFECTION GENETICS AND EVOLUTION 2018; 61:127-133. [DOI: 10.1016/j.meegid.2018.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/17/2018] [Accepted: 03/25/2018] [Indexed: 11/19/2022]
|
14
|
Molecular Characterization of Avian Paramyxovirus Types 4 and 8 Isolated from Wild Migratory Waterfowl in Mongolia. J Wildl Dis 2017; 54:342-346. [PMID: 29286260 DOI: 10.7589/2017-03-067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Avian paramyxoviruses (APMVs) constitute some of the most globally prevalent avian viruses and are frequently isolated from wild migratory bird species. Using 1,907 fresh fecal samples collected during the 2012 avian influenza surveillance program, we identified two serotypes of APMV: APMV-4 ( n=10) and APMV-8 ( n=1). Sequences for these isolates phylogenetically clustered with Asian APMV-4 and APMV-8 recently isolated from wild birds in Korea, Japan, China, and Kazakhstan. Analysis by DNA barcoding indicated that the Mongolian APMV-4 and APMV-8 strains were isolated from Anseriformes species including Mallards ( Anas platyrhynchos) and Whooper Swans ( Cygnus cygnus). The close genetic relatedness to Asian isolates, and to similar host species, suggested that wild bird species in the Anatidae family might play an important role as a natural reservoir in the spread of APMV-4 and APMV-8. However, we did not find conclusive evidence to support this hypothesis owing to the limited number of strains that could be isolated. Enhanced surveillance of poultry and wild bird populations in Asia is therefore crucial for the understanding of global AMPV transmission, ecology, evolution, and epidemiology.
Collapse
|
15
|
Karamendin K, Kydyrmanov A, Kasymbekov Y, Asanova S, Daulbayeva K, Seidalina A, Khan E, Harrison SM, Carr IM, Goodman SJ, Moldakozhayev A, Sayatov M. Novel avian paramyxovirus isolated from gulls in Caspian seashore in Kazakhstan. PLoS One 2017; 12:e0190339. [PMID: 29284037 PMCID: PMC5746266 DOI: 10.1371/journal.pone.0190339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/07/2017] [Indexed: 01/30/2023] Open
Abstract
Three isolates APMV/gull/Kazakhstan/5976/2014, APMV/gull/Kazakhstan/ 5977/2014 and APMV/gull/Kazakhstan/5979/2014, were obtained from independent samples during annual surveillance for avian influenza and paramyxoviruses in wild birds from the Caspian Sea coast in Western Kazakhstan, and were initially identified as putative paramyxoviruses on the basis of electron microscopy. Hemagglutination Inhibition Assays with antisera to nine known APMV serotypes (APMV1-9) indicated no relation to any of them. Next generation sequencing of whole genome sequences indicated the three isolates were genetically identical, and had a nucleotide structure typical for all APMVs, consisting of six genes 3'-NP-P-M-F-HN-L-5'. Phylogenetic analyses, and assessment of amino acid identities, suggested the most closely related lineages to be APMV-2, 8, 10 and 15, but the novel isolate had less than 64% identity to them and all other known avian paramyxoviruses. This value was above levels considered to generally define other APMV serotypes. Estimates of the evolutionary divergence of the nucleotide sequences of the genomes of APMVs have shown that novel Kazakhstan APMV strain was closest to APMV-2, APMV-8, APMV-10 and APMV-15, with calculated distance values of 2.057, 2.058, 2.026 and 2.286 respectively, which is above values considered to differentiate other serotypes (observed minimum was 1.108 between APMV-1 and recently isolated APMV/UPO216/Korea). Together, the data suggest that isolate APMV/gull/Kazakhstan/5976/2014 and other two should be considered as the first representative of a novel APMV-20 group, and is the first time that avian paramyxoviruses have been found infecting members of the gull family, extending the known taxonomic host range.
Collapse
Affiliation(s)
- Kobey Karamendin
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
- * E-mail:
| | - Aidyn Kydyrmanov
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
| | | | - Saule Asanova
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
| | - Klara Daulbayeva
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
| | - Aigerim Seidalina
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
| | - Elizaveta Khan
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
| | - Sally M. Harrison
- School of Medicine, Faculty of Medicine and Health, University of Leeds, St. James’s University Hospital, Leeds, United Kingdom
| | - Ian M. Carr
- School of Medicine, Faculty of Medicine and Health, University of Leeds, St. James’s University Hospital, Leeds, United Kingdom
| | - Simon J. Goodman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alibek Moldakozhayev
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
| | - Marat Sayatov
- Laboratory of Viral Ecology, Institute of Microbiology and Virology, Almaty, Kazakhstan
| |
Collapse
|
16
|
Next-generation sequencing of five new avian paramyxoviruses 8 isolates from Kazakhstan indicates a low genetic evolution rate over four decades. Arch Virol 2017; 163:331-336. [PMID: 29058150 PMCID: PMC5799330 DOI: 10.1007/s00705-017-3593-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/22/2017] [Indexed: 11/06/2022]
Abstract
Five avian paramyxoviruses of serotype 8 (APMV-8) were isolated during a study monitoring wild birds in Kazakhstan in 2013 and each was further characterized. The viruses were isolated from three White-fronted geese (Anser albifrons), one Whooper swan (Cygnus cygnus), and one Little stint (Calidris minuta). Before our study, only two complete APMV-8 sequences had been reported worldwide since their discovery in the USA and Japan in the 1970s. We report the complete genome sequences of the newly detected viruses and analyze the genetic evolution of the APMV-8 viruses over four decades.
Collapse
|
17
|
Yin R, Zhang P, Liu X, Chen Y, Tao Z, Ai L, Li J, Yang Y, Li M, Xue C, Qian J, Wang X, Chen J, Li Y, Xiong Y, Zhang J, Stoeger T, Bi Y, Chen J, Ding Z. Dispersal and Transmission of Avian Paramyxovirus Serotype 4 among Wild Birds and Domestic Poultry. Front Cell Infect Microbiol 2017; 7:212. [PMID: 28603697 PMCID: PMC5445105 DOI: 10.3389/fcimb.2017.00212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/10/2017] [Indexed: 11/13/2022] Open
Abstract
Avian paramyxovirus serotype 4 (APMV-4) is found sporadically in wild birds worldwide, and it is an economically important poultry pathogen. Despite the existence of several published strains, very little is known about the distribution, host species, and transmission of APMV-4 strains. To better understand the relationships among these factors, we conducted an APMV-4 surveillance of wild birds and domestic poultry in six provinces of China suspected of being intercontinental flyways and sites of interspecies transmission. APMV-4 surveillance was conducted in 9,160 wild birds representing seven species, and 1,461 domestic poultry in live bird markets (LMBs) from December 2013 to June 2016. The rate of APMV-4 isolation was 0.10% (11/10,621), and viruses were isolated from swan geese, bean geese, cormorants, mallards, and chickens. Sequencing and phylogenetic analyses of the 11 isolated viruses indicated that all the isolates belonging to genotype I were epidemiologically connected with wild bird-origin viruses from the Ukraine and Italy. Moreover, chicken-origin APMV-4 strains isolated from the LBMs were highly similar to wild bird-origin viruses from nearby lakes with free-living wild birds. In additional, a hemagglutination-negative APMV-4 virus was identified. These findings, together with recent APMV-4 studies, suggest potential virus interspecies transmission between wild birds and domestic poultry, and reveal possible epidemiological intercontinental connections between APMV-4 transmission by wild birds.
Collapse
Affiliation(s)
- Renfu Yin
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Pingze Zhang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xinxin Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin UniversityChangchun, China
| | - Yanyu Chen
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Zhi Tao
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Lili Ai
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Junjiao Li
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Yingying Yang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Mingxin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesHubei, China
| | - Cong Xue
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Jing Qian
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xueli Wang
- Department of Veterinary Basic Medicine, College of Animal Science and Technology, Inner Mongolia University for NationalitiesTongliao, China
| | - Jing Chen
- Hubei Wildlife Rescue, Research and Development CenterWuhan, China
| | - Yong Li
- Hubei Wildlife Rescue, Research and Development CenterWuhan, China
| | - Yanping Xiong
- Hubei Wildlife Rescue, Research and Development CenterWuhan, China
| | - Jun Zhang
- Hubei Wildlife Rescue, Research and Development CenterWuhan, China
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum MuenchenMunich, Germany
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesHubei, China
| | - Zhuang Ding
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin UniversityChangchun, China
| |
Collapse
|
18
|
Complete Genome Sequence of an Avian Paramyxovirus Type 4 Strain Isolated from Domestic Duck at a Live Bird Market in South Korea. GENOME ANNOUNCEMENTS 2017; 5:5/20/e00318-17. [PMID: 28522703 PMCID: PMC5477318 DOI: 10.1128/genomea.00318-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the first full-genome sequence of an avian paramyxovirus type 4 (APMV-4) strain isolated from a domestic mallard duck at a live bird market in South Korea. Phylogenetic analyses provide genetic information on a new genetic clade, APMV-4, isolated from a domestic duck and evidence of APMV-4 exchange between poultry and wild birds.
Collapse
|