1
|
Li H, Chen Y. Whole-genome resequencing to explore genome‑wide single nucleotide polymorphisms and genes associated with avian leukosis virus subgroup J infection in chicken. 3 Biotech 2023; 13:417. [PMID: 38031589 PMCID: PMC10682322 DOI: 10.1007/s13205-023-03834-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus that causes serious economic loss in the poultry industry. Currently, no effective vaccine or drug is available against this virus. Therefore, it is imperative to explore and understand the molecular regulatory mechanisms underlying ALV-J infection. In this study, blood samples from 21 ALV-J-infected and 22 ALV-J-uninfected (DZ) chickens (JZ) were analyzed by whole-genome resequencing (WGR). By combining the fixation index (FST) with the nucleotide diversity (π) ratio based on WGR data, 425 candidate genes were identified. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed the top 20 enriched pathways, among which 9 pathways were significantly associated with diseases, including endometrial cancer, Chagas disease, PD-L1 expression and PD-1 checkpoint pathway in cancer, colorectal cancer, endocrine resistance, fluid shear stress, atherosclerosis, basal cell carcinoma, non-small cell lung cancer, and melanoma. Fourteen single nucleotide polymorphisms related to twelve genes showed a notable difference between DZ and JZ group chickens. The genes included COMMD3, PPP1CB, VEGFA, GTF2H1, NOTCH2, ITPR1, FGFR4, GNAS, NECTIN1, WNT2B, PPP1CC, and MRC2. These findings may provide a valuable foundation for further exploration of the pathogenesis of ALV-J in chickens.
Collapse
Affiliation(s)
- Hongwei Li
- School of Life Science, Huizhou University, No. 46 Yanda Road, Huizhou, 516007 China
| | - Yuan Chen
- School of Life Science, Huizhou University, No. 46 Yanda Road, Huizhou, 516007 China
| |
Collapse
|
2
|
Mo G, Wei P, Hu B, Nie Q, Zhang X. Advances on genetic and genomic studies of ALV resistance. J Anim Sci Biotechnol 2022; 13:123. [PMID: 36217167 PMCID: PMC9550310 DOI: 10.1186/s40104-022-00769-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022] Open
Abstract
Avian leukosis (AL) is a general term for a variety of neoplastic diseases in avian caused by avian leukosis virus (ALV). No vaccine or drug is currently available for the disease. Therefore, the disease can result in severe economic losses in poultry flocks. Increasing the resistance of poultry to ALV may be one effective strategy. In this review, we provide an overview of the roles of genes associated with ALV infection in the poultry genome, including endogenous retroviruses, virus receptors, interferon-stimulated genes, and other immune-related genes. Furthermore, some methods and techniques that can improve ALV resistance in poultry are discussed. The objectives are willing to provide some valuable references for disease resistance breeding in poultry.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, 530001, Guangxi, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. .,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
3
|
Duck circovirus induces a new pathogenetic characteristic, primary sclerosing cholangitis. Comp Immunol Microbiol Infect Dis 2019; 63:31-36. [PMID: 30961815 DOI: 10.1016/j.cimid.2018.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/06/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic, cholestatic liver disease of unknown cause. In the study, we found that duck circovirus (DuCV) induces PSC in natural and reproductive cases. PSC in DuCV naturally infected ducks was investigated by PCR and histopathology. A model of PSC was developed in one-day old duck by infection of DuCV. Effects on serum levels of liver enzymes and histology were evaluated, and DuCV tropism for bile duct in liver was analyzed by immuohistochemistry. Pathology observation of natural or reproductive DuCV infected ducks showed that the lesion of liver were characterized by cholangiocytic injuries and progressive fibrous obliteration of the biliary tree associated with lymphocytes infiltration. ALT, AST, ALP, GGT, ALB, TBIL and TP were significantly increased in serum of DuCV infected ducks. DuCV showed higher tropism for epithelial cells of bile duct than other cells in PSC.
Collapse
|
4
|
Harrison CA, Laubitz D, Midura-Kiela MT, Jamwal DR, Besselsen DG, Ghishan FK, Kiela PR. Sexual Dimorphism in the Response to Broad-spectrum Antibiotics During T Cell-mediated Colitis. J Crohns Colitis 2019; 13:115-126. [PMID: 30252029 PMCID: PMC6302957 DOI: 10.1093/ecco-jcc/jjy144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Broad-spectrum antibiotics [Abx], including combination therapy with ciprofloxacin and metronidazole, are often prescribed during the treatment of inflammatory bowel disease [IBD] to alleviate symptoms, but with varying success. In this pilot study, we studied the effects of Abx on the course of experimental colitis, with a particular focus on sex as a determinant of the microbial and inflammatory responses. METHODS The effects of Abx were tested on colonic inflammation and microbiome in male and female Rag-/- mice, using adoptive transfer of naïve T cells to induce colitis in a short-term [2-week] and long-term [9-week] study. RESULTS We observed disparities between the sexes in both the response to adoptive T cell transfer and the effects of Abx. At baseline without Abx, female mice displayed a trend toward a more severe colitis than males. In both the short- and the long-term experiments, gut microbiota of some female mice exposed to Abx showed weak, delayed, or negligible shifts. Caecum weight was significantly lower in Abx-treated females. Abx exposure favoured a quick and persistent rise in Enterococcaceae exclusively in females. Males had higher relative abundance of Lactobacillaceae following Abx exposure relative to females. Abx-treated females trended toward higher colitis scores than Abx-treated males, and towards higher levels of IL-17A, NOS2, and IL-22. CONCLUSIONS Although preliminary, our results suggest a differential response to both inflammation and Abx between male and female mice, The findings may be relevant to current practice and also as the basis for further studies on the differential gender effects during long-term antibiotic exposure in IBD.
Collapse
Affiliation(s)
- Christy A Harrison
- Department of Pediatrics, Steele Children’s Research Center, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Daniel Laubitz
- Department of Pediatrics, Steele Children’s Research Center, Tucson, AZ, USA
| | | | - Deepa R Jamwal
- Department of Pediatrics, Steele Children’s Research Center, Tucson, AZ, USA
| | | | - Fayez K Ghishan
- Department of Pediatrics, Steele Children’s Research Center, Tucson, AZ, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children’s Research Center, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
5
|
Meng W, Zhou D, Li C, Wang G, Huang L, Cheng Z. A polyclonal antibody against extracellular loops 1 of chNHE1 blocks avian leukosis virus subgroup J infection. Res Vet Sci 2018; 118:477-483. [PMID: 29747134 DOI: 10.1016/j.rvsc.2018.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
Abstract
Avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, induces myelocytomas and other various tumors, leading to great economical losses in poultry industry. It is a great challenge to develop effective preventive methods for ALV-J control due to its antigenic variations in the variable regions of envelope. In present study, we generated a mouse polyclonal antibody targeting the first extracellular loop (ECL1) of chicken Na+/H+ exchanger isoform 1 (chNHE1), the receptor of ALV-J, to block ALV-J infection in vitro and in vivo. In ALV-J infected DF-1 cells, chNHE1 expression and the intracellular pH (pHi) were up-regulated with "wave" pattern, indicating that the disequilibrium of ALV-J infected cells associated with chNHE1. Next, we validated that ALV-J infection was significantly blocked with time dependent after treating with anti-ECL1 antibody and accordingly the pHi value were recovered, indicating the blockage of ALV-J infection did not affect Na+/H+ exchange. Furthermore, in anti-ECL1 antibody treatment chickens that infected by ALV-J, weight gain and immune organs were recovered, and viral loads were significantly decreased, and the tissue injury and inflammation were reduced significantly from 21 to 35 days of age. The study demonstrated that anti-ECL1 antibody effectively blocks ALV-J infection without affecting Na+/H+ exchange, and sheds light on a novel strategy for retroviruses control.
Collapse
Affiliation(s)
- Wei Meng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Chengui Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Guihua Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Libo Huang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
6
|
Feng W, Zhou D, Meng W, Li G, Zhuang P, Pan Z, Wang G, Cheng Z. Growth retardation induced by avian leukosis virus subgroup J associated with down-regulated Wnt/β-catenin pathway. Microb Pathog 2017; 104:48-55. [PMID: 28065818 DOI: 10.1016/j.micpath.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 11/19/2022]
Abstract
Avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, induces growth retardation and neoplasia in chickens, leading to enormous economic losses in poultry industry. Increasing evidences showed several signal pathways involved in ALV-J infection. However, what signaling pathway involved in growth retardation is largely unknown. To explore the possible signaling pathway, we tested the cell proliferation and associated miRNAs in ALV-J infected CEF cells by CCK-8 and Hiseq, respectively. The results showed that cell proliferation was significantly inhibited by ALV-J and three associated miRNAs were identified to target Wnt/β-catenin pathway. To verify the Wnt/β-catenin pathway involved in cell growth retardation, we analyzed the key molecules of Wnt pathway in ALV-J infected CEF cells. Our data demonstrated that protein expression of β-catenin was decreased significantly post ALV-J infection compared with the normal (P < 0.05). The impact of this down-regulation caused low expression of known target genes (Axin2, CyclinD1, Tcf4 and Lef1). Further, to obtain in vivo evidence, we set up an ALV-J infection model. Post 7 weeks infection, ALV-J infected chickens showed significant growth retardation. Subsequent tests showed that the expression of β-catenin, Tcf1, Tcf4, Lef1, Axin2 and CyclinD1 were down-regulated in muscles of growth retardation chickens. Taken together, all data demonstrated that chicken growth retardation caused by ALV-J associated with down-regulated Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Weiguo Feng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Weifang Medical University, Weifang, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Wei Meng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Gen Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Pingping Zhuang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | | | - Guihua Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|