1
|
Ma X, Cui H, Huang Y, Ma S, Chen H. Molecular detection and evolutionary analysis of porcine epidemic diarrhea virus in Henan and Shaanxi provinces in China. Arch Virol 2024; 170:20. [PMID: 39688728 DOI: 10.1007/s00705-024-06201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024]
Abstract
Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) is a highly contagious and devastating enteric disease of pigs characterized by diarrhea, dehydration and 80-100% mortality in piglets, leading to substantial economic losses in the global swine industry. To investigate the prevalence of PEDV in Henan and Shaanxi provinces of China from 2022 to 2023, a total of 87 clinical samples (including intestinal tissues and faeces) were collected from diseased piglets during outbreaks of diarrhea on pig farms. Of the 87 samples, 32 (36.7%) tested positive for PEDV by RT-PCR, and the complete S gene from nine positive samples and the ORF3 gene from 11 positive samples, all from different farms, were subsequently sequenced. Phylogenetic analysis based on S gene sequences showed that most of the nine PEDV isolates sequenced belonged to the G2a clade and were most closely related to variant strains of PEDV. However, two strains from Shaanxi (CH-SX1-2023 and CH-SX2-2023) belonged to the G2b subtype, and one strain from Henan (CH-HNC2-2023) belonged to the S-INDEL branch. Amino acid sequence comparisons showed that there were several amino acid substitutions and deletions in the S and ORF3 proteins of the PEDV strains from Henan and Shaanxi compared to the CV777 vaccine strain. Some of these mutations occurred in neutralizing epitopes, particularly COE and might therefore be associated with the ineffective protection provided by existing vaccines. These results will provide insights for better understanding of the epidemiological situation of PEDV in Henan and Shaanxi provinces between 2022 and 2023, and this information also contributes to the development of new strategies for the prevention and control of variant PEDV strains.
Collapse
Affiliation(s)
- Xiao Ma
- The College of Veterinary Medicine, Henan Agricultural University, 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, Henan Province, China
| | - Hongbo Cui
- The College of Veterinary Medicine, Henan Agricultural University, 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, Henan Province, China
| | - Yanfei Huang
- The College of Veterinary Medicine, Henan Agricultural University, 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, Henan Province, China
| | - Shijie Ma
- The College of Veterinary Medicine, Henan Agricultural University, 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, Henan Province, China.
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China.
| | - Hongying Chen
- The College of Veterinary Medicine, Henan Agricultural University, 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, Henan Province, China.
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Su M, Wang Y, Yan J, Xu X, Zheng H, Cheng J, Du X, Liu Y, Ying J, Zhao Y, Wang Z, Duan X, Yang Y, Cheng C, Ye Z, Sun J, Sun D, Song H. Isolation and characterization of a novel S1-gene insertion porcine epidemic diarrhea virus with low pathogenicity in newborn piglets. Virulence 2024; 15:2397512. [PMID: 39282989 PMCID: PMC11407387 DOI: 10.1080/21505594.2024.2397512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes diarrhea and vomiting in piglets, leading to a mortality rate of 100%. Due to the high frequency of mutation, it is important to monitor the evolution of PEDV and develop potential vaccine candidates. In this study, two PEDV strains (ZJ2022 and ZQ2022) were identified by PCR. These strains were subsequently isolated, and their genome sequences, growth characteristics, and pathogenicity were compared. Phylogenetic and recombination analyses revealed that both strains belonged to GIIa-subgroup, and ZQ2022 was identified as a recombinant strain derived from ZJ2022. Further sequence analysis showed that the ZJ2022 strain had a modified top region of the S1 protein due to a three amino acid insertion (T380_Y380insGGE) in the S1 gene. According to the virus growth curve, ZJ2022 exhibited better cellular adaptation than ZQ2022, with higher viral titers from 8 hpi to 24 hpi. Additionally, ZQ2022 exhibited a high level of pathogenicity, causing severe diarrhea in piglets at 36 hpi and a 100% mortality rate by 96 hpi. In contrast, ZJ2022 showed lower pathogenicity, inducing severe diarrhea in piglets at 60 hpi, with a mortality rate of 60% at 96 hpi and 100% at 120 hpi. In summary, our findings provided evidence of the undergoing mutations in Chinese PEDV strains. Furthermore, the S gene insertion strain ZJ2022 exhibited strong cellular adaptability and low pathogenicity, making it a potential candidate strain for vaccine development.
Collapse
Affiliation(s)
- Mingjun Su
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Ningbo Creator Animal Pharmaceutical Co. Ltd, Ningbo, Zhejiang Province, PR China
| | - Yutao Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Junfang Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xiangwen Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Huihua Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiongze Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xiaoxu Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yijia Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiale Ying
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yulin Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Ziqi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yang Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Zhihui Ye
- Ningbo Creator Animal Pharmaceutical Co. Ltd, Ningbo, Zhejiang Province, PR China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Liu X, Xie E, Wang J, Yan L, Tian T, You J, Lu L, Qian Z, Tan Z, Xiong J, Gong L, Zhang G, Luo H, Wang H. RpIFN-λ1 alleviates the clinical symptoms of porcine epidemic diarrhea. Int J Biol Macromol 2024; 282:136712. [PMID: 39442838 DOI: 10.1016/j.ijbiomac.2024.136712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Porcine epidemic diarrhea (PED), caused by the porcine epidemic diarrhea virus (PEDV), primarily affects the jejunum and ileum of pigs. Interferons, glycoproteins with high species specificity and potent antiviral activity, are crucial in defending against viral infections. Unlike other interferons, interferon-lambda (IFN-λ) mainly acts on mucosal epithelial cells and exhibits robust antiviral activity at mucosal surfaces. However, the high cost limits the use of naturally extracted interferons in farming. In this study, we expressed recombinant porcine interferon-lambda 1 (rpIFN-λ1) in eukaryotic cells, demonstrating effective antiviral activity against PEDV in Vero E6 and IPI-FX cells. In vivo, rpIFN-λ1 alleviated clinical symptoms and intestinal damage, enhanced antioxidant capacity, reduced inflammation, and significantly improved the survival rate of piglets following PEDV infection. Both in vitro and in vivo studies confirmed that rpIFN-λ1 upregulated interferon-stimulated genes (ISGs) via the JAK-STAT pathway, thereby exerting antiviral effects. In conclusion, rpIFN-λ1 significantly inhibited PEDV replication and alleviated clinical symptoms. The selectivity of rpIFN-λ1 for intestinal cells and its ability to reduce viral shedding suggest that this agent is a promising antiviral for enteric viruses such as PEDV. Our findings highlight rpIFN-λ1 as a cost-effective, efficient, and novel strategy for antiviral treatment of PEDV.
Collapse
Affiliation(s)
- Xing Liu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Ermin Xie
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Jingyu Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Luling Yan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Tao Tian
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Jianyi You
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Lechen Lu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | | | - Zemin Tan
- Beijing VJTBio Co., Ltd., Beijing 100085, China
| | | | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Haoshu Luo
- Beijing VJTBio Co., Ltd., Beijing 100085, China.
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Zhang G, Peng Q, Liu S, Fan B, Wang C, Song X, Cao Q, Li C, Xu H, Lu H, Bao M, Yang S, Li Y, Wang J, Li B. The glycosylation sites in RBD of spike protein attenuate the immunogenicity of PEDV AH2012/12. Virus Res 2024; 345:199381. [PMID: 38679392 PMCID: PMC11070342 DOI: 10.1016/j.virusres.2024.199381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious swine intestinal disease caused by PED virus (PEDV). Vaccination is a promising strategy to prevent and control PED. Previous studies have confirmed that glycosylation could regulate the immunogenicity of viral antigens. In this study, we constructed three recombinant PEDVs which removed the glycosylation sites in RBD. Viral infection assays revealed that similar replication characteristics between the recombinant viruses and parental PEDV. Although animal challenging study demonstrated that the glycosylation sites in RBD do not affect the pathogenicity of PEDV, we found that removing the glycosylation sites on the RBD regions could promote the IgG and neutralization titer in vivo, suggesting deglycosylation in RBD could enhance the immunogenicity of PEDV. These findings demonstrated that removal of the glycosylation sites in RBD is a promising method to develop PEDV vaccines.
Collapse
Affiliation(s)
- Gege Zhang
- College of Animal Science, Yangtze University, Jingzhou 434025, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Qi Peng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Shiyu Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu 225300, China
| | - Chuanhong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Xu Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Qiuxia Cao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Chengcheng Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Hong Xu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Hongting Lu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Meiying Bao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Shanshan Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu 225300, China
| | - Yunchuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu 225300, China
| | - Jiaxiang Wang
- College of Animal Science, Yangtze University, Jingzhou 434025, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu 225300, China.
| |
Collapse
|
5
|
Park JE. Porcine Epidemic Diarrhea: Insights and Progress on Vaccines. Vaccines (Basel) 2024; 12:212. [PMID: 38400195 PMCID: PMC10892315 DOI: 10.3390/vaccines12020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhea (PED) is a swine-wasting disease caused by coronavirus infection. It causes great economic damage to the swine industry worldwide. Despite the continued use of vaccines, PED outbreaks continue, highlighting the need to review the effectiveness of current vaccines and develop additional vaccines based on new platforms. Here, we review existing vaccine technologies for preventing PED and highlight promising technologies that may help control PED virus in the future.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
6
|
Li X, Wu Y, Yan Z, Li G, Luo J, Huang S, Guo X. A Comprehensive View on the Protein Functions of Porcine Epidemic Diarrhea Virus. Genes (Basel) 2024; 15:165. [PMID: 38397155 PMCID: PMC10887554 DOI: 10.3390/genes15020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhea (PED) virus (PEDV) is one of the main pathogens causing diarrhea in piglets and fattening pigs. The clinical signs of PED are vomiting, acute diarrhea, dehydration, and mortality resulting in significant economic losses and becoming a major challenge in the pig industry. PEDV possesses various crucial structural and functional proteins, which play important roles in viral structure, infection, replication, assembly, and release, as well as in escaping host innate immunity. Over the past few years, there has been progress in the study of PEDV pathogenesis, revealing the crucial role of the interaction between PEDV viral proteins and host cytokines in PEDV infection. At present, the main control measure against PEDV is vaccine immunization of sows, but the protective effect for emerging virus strains is still insufficient, and there is no ideal safe and efficient vaccine. Although scientists have persistently delved their research into the intricate structure and functionalities of the PEDV genome and viral proteins for years, the pathogenic mechanism of PEDV remains incompletely elucidated. Here, we focus on reviewing the research progress of PEDV structural and nonstructural proteins to facilitate the understanding of biological processes such as PEDV infection and pathogenesis.
Collapse
Affiliation(s)
- Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Yiwan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Zhibin Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Gen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| |
Collapse
|
7
|
Si F, Song S, Yu R, Li Z, Wei W, Wu C. Coronavirus accessory protein ORF3 biology and its contribution to viral behavior and pathogenesis. iScience 2023; 26:106280. [PMID: 36945252 PMCID: PMC9972675 DOI: 10.1016/j.isci.2023.106280] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Coronavirus porcine epidemic diarrhea virus (PEDV) is classified in the genus Alphacoronavirus, family Coronaviridae that encodes the only accessory protein, ORF3 protein. However, how ORF3 contributes to viral pathogenicity, adaptability, and replication is obscure. In this review, we summarize current knowledge and identify gaps in many aspects of ORF3 protein in PEDV, with emphasis on its unique biological features, including membrane topology, Golgi retention mechanism, potential intrinsic disordered property, functional motifs, protein glycosylation, and codon usage phenotypes related to genetic evolution and gene expression. In addition, we propose intriguing questions related to ORF3 protein that we hope to stimulate further studies and encourage collaboration among virologists worldwide to provide constructive knowledge about the unique characteristics and biological functions of ORF3 protein, by which their potential role in clarifying viral behavior and pathogenesis can be possible.
Collapse
Affiliation(s)
- Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, and Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangzhou 510640, P.R. China
| | - Ruisong Yu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Zhen Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Wenqiang Wei
- Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Chao Wu
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Yin D, Yin L, Guo H, Wang J, Shen X, Zhao R, Pan X, Dai Y. Visual detection and differentiation of porcine epidemic diarrhea virus wild−type strains and attenuated vaccine strains using CRISPR/Cas13a-based lateral flow strip. Front Cell Infect Microbiol 2022; 12:976137. [PMID: 36176580 PMCID: PMC9513176 DOI: 10.3389/fcimb.2022.976137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes acute watery diarrhea and vomiting in unweaned piglets. Infections result in high mortality and serious economic losses to the swine industry. PEDV attenuated vaccine does not completely protect against all mutant wild-type strains, and PEDV infection can periodically occur. A sensitive, accurate, and simple detection method for PEDV is needed to reduce the occurrence of the disease. In this study, the CRISPR/Cas13a system was combined with recombinase aided amplification to develop a rapid diagnostic method to distinguish PEDV wild-type strains from attenuated vaccine strains. The method is based on isothermal detection at 37°C. The results are used for visual readout. The assay had high sensitivity and specificity, with a detection limit of 101 copies/μL for the gene of interest, and no cross-reactivity with other pathogens. The Cas13a detection worked well with clinical samples. This visual, sensitive, and specific nucleic acid detection method based on CRISPR/Cas13a should be a powerful tool for detecting PEDV.
Collapse
Affiliation(s)
- Dongdong Yin
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Lei Yin
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Hao Guo
- Animal Health Supervision Institute, Feixi County Agricultural and Rural Bureau, Hefei, China
| | - Jieru Wang
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Xuehuai Shen
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Ruihong Zhao
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Xiaocheng Pan
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
- *Correspondence: Xiaocheng Pan, ; Yin Dai,
| | - Yin Dai
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
- *Correspondence: Xiaocheng Pan, ; Yin Dai,
| |
Collapse
|
9
|
Niu X, Wang Q. Prevention and Control of Porcine Epidemic Diarrhea: The Development of Recombination-Resistant Live Attenuated Vaccines. Viruses 2022; 14:v14061317. [PMID: 35746788 PMCID: PMC9227446 DOI: 10.3390/v14061317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022] Open
Abstract
Porcine epidemic diarrhea (PED), causing up to 100% mortality in neonatal pigs, is a highly contagious enteric disease caused by PED virus (PEDV). The highly virulent genogroup 2 (G2) PEDV emerged in 2010 and has caused huge economic losses to the pork industry globally. It was first reported in the US in 2013, caused country-wide outbreaks, and posed tremendous hardship for many pork producers in 2013–2014. Vaccination of pregnant sows/gilts with live attenuated vaccines (LAVs) is the most effective strategy to induce lactogenic immunity in the sows/gilts and provide a passive protection via the colostrum and milk to suckling piglets against PED. However, there are still no safe and effective vaccines available after about one decade of endeavor. One of the biggest concerns is the potential reversion to virulence of an LAV in the field. In this review, we summarize the status and the major obstacles in PEDV LAV development. We also discuss the function of the transcriptional regulatory sequences in PEDV transcription, contributing to recombination, and possible strategies to prevent the reversion of LAVs. This article provides insights into the rational design of a promising LAV without safety issues.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-330-263-3960
| |
Collapse
|
10
|
Li W, Zhu J, Lei L, Chen C, Liu X, Wang Y, Hong X, Yu L, Xu H, Zhu X. The Seasonal and Stage-Specific Expression Patterns of HMGB2 Suggest Its Key Role in Spermatogenesis in the Chinese Soft-Shelled Turtle (Pelodiscus sinensis). Biochem Genet 2022; 60:2489-2502. [PMID: 35554782 DOI: 10.1007/s10528-022-10229-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
HMGB2, a member of the high-mobility group (HMG) proteins, was identified as a male-biased gene and plays a crucial role in the germ cells differentiation of mammals. However, its role in spermatogenesis of turtle is still poorly understood. Here, we cloned the Pelodiscus sinensis HMGB2 and analyzed its expression profile in different tissues and in testis at different developmental ages. P. sinensis HMGB2 mRNA was highly expressed in the testis of 3-year-old turtles (P < 0.01), but was hardly detected in ovaries and other somatic tissues. The results of chemical in situ hybridization (CISH) showed that HMGB2 mRNA was specifically expressed in germ cells, where it was mainly distributed in round spermatids and sperm, but not detected in somatic cells, spermatogonia, primary spermatocytes, or secondary spermatocyte. The relative expression of HMGB2 also responded to seasonal changes in testis development in P. sinensis. In different seasons of the year, the relative expression of HMGB2 transcripts in the testis of 1 year and 2 year olds showed an overall upward trend, whereas, in the testis of 3 year old, it peaked in July and then declined in October. Moreover, in April and July, with an increase in ages, the expression of HMGB2 transcripts showed an upward trend. However, in January and October, there was a decline in expression in testis in 3-year-old turtles. These results showed that HMGB2 is closely related to spermatogenesis in P. sinensis.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Junxian Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, People's Republic of China
| | - Luo Lei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, People's Republic of China
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Xiaoyou Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China
| | - Hongyan Xu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China.
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou, 510380, People's Republic of China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, People's Republic of China.
| |
Collapse
|
11
|
Tran TX, Lien NTK, Thu HT, Duy ND, Duong BTT, Quyen DV. Changes in the spike and nucleocapsid protein of porcine epidemic diarrhea virus strain in Vietnam-a molecular potential for the vaccine development? PeerJ 2021; 9:e12329. [PMID: 34721997 PMCID: PMC8530102 DOI: 10.7717/peerj.12329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV) is a dangerous virus causing large piglet losses. PEDV spread rapidly between pig farms and caused the death of up to 90% of infected piglets. Current vaccines are only partially effective in providing immunity to suckling due to the rapid dissemination and ongoing evolution of PEDV. Methods In this study, the complete genome of a PEDV strain in Vietnam 2018 (IBT/VN/2018 strain) has been sequenced. The nucleotide sequence of each fragment was assembled to build a continuous complete sequence using the DNASTAR program. The complete nucleotide sequences and amino acid sequences of S, N, and ORF3 genes were aligned and analyzed to detect the mutations. Results The full-length genome was determined with 28,031 nucleotides in length which consisted of the 5'UTR, ORF1ab, S protein, ORF3, E protein, M protein, N protein, and 3'UTR region. The phylogenetic analysis showed that the IBT/VN/2018 strain was highly virulent belonged to the G2b subgroup along with the Northern American and Asian S-INDEL strains. Multiple sequence alignment of deduced amino acids revealed numerous mutations in the S, N, and ORF3 regions including one substitution 766P > L766 in the epitope SS6; two in the S0subdomain (135DN136 > 135SI136 and N144> D144); two in subdomain SHR1 at aa 1009L > M1009 and 1089S > L1089; one at aa 1279P > S1279 in subdomain SHR2 of the S protein; two at aa 364N > I364 and 378N > S378 in the N protein; four at aa 25L > S25, 70I > V70, 107C > F107, and 168D > N168 in the ORF3 protein. We identified two insertions (at aa 59NQGV62 and aa 145N) and one deletion (at aa 168DI169) in S protein. Remarkable, eight amino acid substitutions (294I > M294, 318A > S318, 335V > I335, 361A > T361, 497R > T497, 501SH502 > 501IY502, 506I > T506, 682V > I682, and 777P > L777) were found in SA subdomain. Besides, N- and O-glycosylation analysis of S, N, and ORF3 protein reveals three known sites (25G+, 123N+, and 62V+) and three novel sites (144D+, 1009M+, and 1279L+) in the IBT/VN/2018 strain compared with the vaccine strains. Taken together, the results showed that mutations in the S, N, and ORF3 genes can affect receptor specificity, viral pathogenicity, and the ability to evade the host immune system of the IBT/VN/2018 strain. Our results highlight the importance of molecular characterization of field strains of PEDV for the development of an effective vaccine to control PEDV infections in Vietnam.
Collapse
Affiliation(s)
- Thach Xuan Tran
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Nguyen T K Lien
- Functional of Genomics Lab, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha T Thu
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Nguyen Dinh Duy
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Bui T T Duong
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Dong Van Quyen
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam.,University of Science and Technology of Ha Noi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
12
|
Yang K, Liang Y, Li Y, Liu Q, Zhang W, Yin D, Song X, Shao Y, Tu J, Qi K. Reverse transcription-enzymatic recombinase amplification coupled with CRISPR-Cas12a for rapid detection and differentiation of PEDV wild-type strains and attenuated vaccine strains. Anal Bioanal Chem 2021; 413:7521-7529. [PMID: 34686895 PMCID: PMC8536470 DOI: 10.1007/s00216-021-03716-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes acute watery diarrhea and vomiting in unweaned piglets, and is associated with high mortality, thus causing severe economic losses in the pig industry. Currently, although attenuated vaccines are commonly used in commercial pig farms in China, they do not completely protect against all mutated wild-type strains. Existing nucleic acid assays have high sensitivity and specificity, but the complexity of the assay process and expensive instrumentation hinder disease detection. Here, reverse transcription–enzymatic recombinase amplification (RT-ERA) was combined with the CRISPR-Cas12a system to develop a rapid diagnostic method to distinguish PEDV wild-type strains from attenuated vaccine strains. The protocol used crRNA and RT-ERA amplification primers against open reading frame 3 (ORF3), followed by Cas12a/crRNA complex detection of predefined target sequences at 37 °C for 30 min, thus producing results visible to the naked eye under LED blue light. The assay is highly sensitive and specific, detecting as few as two copies of the target gene per test and showing no cross-reactivity with other porcine pathogens. Overall, this integrated RT-ERA pre-amplification and Cas12a/crRNA cleavage assay is a practical tool for reliable and rapid detection of PEDV for diagnostic differentiation.
Collapse
Affiliation(s)
- Kankan Yang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yueqiao Liang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yanan Li
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qi Liu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Wuyin Zhang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Dongdong Yin
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiangjun Song
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Ying Shao
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jian Tu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China. .,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Kezong Qi
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China. .,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
13
|
Immunogenicity of Recombinant-Deficient Lactobacillus casei with Complementary Plasmid Expressing Alanine Racemase Gene and Core Neutralizing Epitope Antigen against Porcine Epidemic Diarrhea Virus. Vaccines (Basel) 2021; 9:vaccines9101084. [PMID: 34696192 PMCID: PMC8537014 DOI: 10.3390/vaccines9101084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/16/2023] Open
Abstract
Porcine epidemic diarrhea (PED), which is caused by the porcine epidemic diarrhea virus (PEDV), has occurred worldwide and poses a serious threat to the pig industry. Intestine is the main function site of PEDV; therefore, it is important to develop an oral mucosal immunity vaccine against this virus infection. Most traditional plasmid delivery vectors use antibiotic genes as a selective marker, easily leading to antibiotic accumulation and gene contamination. In this study, to explore whether the alanine racemase gene (Alr) could be used as a screening marker and develop an efficient oral vaccine against PEDV infection, a recombinant strain was constructed using Lactobacillus casei with Alr deletion (L. casei ΔAlr W56) to deliver the Alr gene and a core-neutralizing epitope (COE) antigen. This recombinant bacterium efficiently induced secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses via oral vaccination in mice. Compared to the other strains, the recombinant bacteria were able to grow without the addition of D-alanine, revealing that Alr in the plasmid could function normally in defective bacteria. This oral mucosal vaccine would provide a useful strategy to substitute the application of antibiotics in the future and induce efficient immune responses against PEDV infection.
Collapse
|
14
|
Li D, Li Y, Liu Y, Chen Y, Jiao W, Feng H, Wei Q, Wang J, Zhang Y, Zhang G. Isolation and Identification of a Recombinant Porcine Epidemic Diarrhea Virus With a Novel Insertion in S1 Domain. Front Microbiol 2021; 12:667084. [PMID: 33959119 PMCID: PMC8093569 DOI: 10.3389/fmicb.2021.667084] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the major pathogen that causes diarrhea and high mortality in newborn piglets with devastating impact to the pig industry. Recombination and mutation are the main driving forces of viral evolution and genetic diversity of PEDV. In 2016, an outbreak of diarrhea in piglets occurred in an intensive pig farm in Central China. A novel PEDV isolate (called HNAY) was successfully isolated from clinical samples. Sequence analysis and alignment showed that HNAY possessed 21-nucleotide (nt) insertion in its S1 gene, which has never been reported in other PEDV isolates. Moreover, the sequence of the insertion was identical with the sequence fragment in PEDV N gene. Notably, the HNAY strain exhibited two unique mutations (T500A and L521Y) in the neutralizing epitopes of the S1 protein that were different from those of other PEDV variant strains and CV777-based vaccine strains. Additionally, PEDV HNAY might be derived from a natural recombination between two Chinese variant PEDV strains. Animal experiments demonstrated that HNAY displayed higher pathogenicity compared with two other clinical isolates. This study lays the foundation for better understanding of the genetic evolution and molecular pathogenesis of PEDV.
Collapse
Affiliation(s)
- Dongliang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenqiang Jiao
- Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jucai Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yuhang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Cui JT, Qiao H, Hou CY, Zheng HH, Li XS, Zheng LL, Chen HY. Characteristics of the spike and ORF3 genes of porcine epidemic diarrhea virus in Henan and Shanxi provinces of China. Arch Virol 2020; 165:2323-2333. [PMID: 32715325 PMCID: PMC7382918 DOI: 10.1007/s00705-020-04744-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
To investigate the epidemic characteristics of porcine epidemic diarrhea virus (PEDV), 135 clinical samples (including intestinal tissues and feces) were collected from diseased piglets during outbreaks of diarrhea from 2015 to 2019 on farms in Henan and Shanxi provinces of China where swine had been immunized with attenuated PEDV (CV777). A total of 86 clinical samples (86/135, 63.7%) were positive for PEDV by RT-PCR, and subsequently, the complete spike (S) and ORF3 genes of 32 PEDV samples were sequenced. Phylogenetic analysis showed that the 32 PEDV strains obtained in this study belonged to group 2 (pandemic variant strains) and had a close relationship to 17 Chinese strains after 2010, two South Korean strains (KNU-1305 and KNU-1807), three American strains (PC22A-P140.BI, USA/Colorado/2013, and USA/OK10240-6/2017) and a Mexican strain (PEDV/MEX/QRO/02/2017), but differed genetically from a South Korean strain (SM98), a European strain (Br1/87), a Chinese strain (LZC), and a vaccine strain (CV777). G2-a subgroup strains were the dominant pandemic variant strains circulating in Henan and Shanxi provinces of China. Furthermore, a cross-recombination event was identified in the S region of the SX/TY2/2017 strain, and the putative parental strains were the epidemic strains CH/GDGZ/2012 and CH/YZ1/2015, identified in China in 2012 and 2015, respectively. These results provide further information about PEDV evolution, which could improve our understanding of the circulation of PEDV in Henan and Shanxi provinces. This information will also be helpful for developing new strategies for prevention and control of variant strains.
Collapse
Affiliation(s)
- Jian-Tao Cui
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengdong New District, Longzi Lake #15, Zhengzhou, 450046, Henan, People's Republic of China
| | - Han Qiao
- College of Life Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Cheng-Yao Hou
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengdong New District, Longzi Lake #15, Zhengzhou, 450046, Henan, People's Republic of China
| | - Hui-Hua Zheng
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengdong New District, Longzi Lake #15, Zhengzhou, 450046, Henan, People's Republic of China
| | - Xin-Sheng Li
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengdong New District, Longzi Lake #15, Zhengzhou, 450046, Henan, People's Republic of China
| | - Lan-Lan Zheng
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengdong New District, Longzi Lake #15, Zhengzhou, 450046, Henan, People's Republic of China.
| | - Hong-Ying Chen
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengdong New District, Longzi Lake #15, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
16
|
Lu Y, Su X, Du C, Mo L, Ke P, Wang R, Zhong L, Yang C, Chen Y, Wei Z, Huang W, Liao Y, Ouyang K. Genetic Diversity of Porcine Epidemic Diarrhea Virus With a Naturally Occurring Truncated ORF3 Gene Found in Guangxi, China. Front Vet Sci 2020; 7:435. [PMID: 32793651 PMCID: PMC7393948 DOI: 10.3389/fvets.2020.00435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/16/2020] [Indexed: 11/13/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is one of the major enteric pathogens, causing severe enteric disease, resulting in enormous economic losses. The ORF3 gene encodes an accessory protein which is related to the infectivity and virulence of PEDV. In this study, 33 PEDV positive field samples were collected from Guangxi, from 2017 to 2019, and the genetic diversity of ORF3 was investigated. Thirty-eight strains of ORF3 were obtained, and these were composed of five strains of ORF3 named Guangxi naturally truncated strains that were 293 bp in length, with continuous deletions from 172 to 554 bp. The Guangxi naturally truncated strains encoded a truncated protein of 89 amino acids, which had clustered into a new group referred to as Group 3, and these might be involved in the variations of virulence. Three genotypes (G1-1 subgroup, G1-3 subgroup, and Group 3) existed simultaneously in Guangxi based on the genetic and evolutionary analysis of the ORF3 gene. The sequence information in the current study will hopefully facilitate the establishment of a diagnostic method that can differentiate the PEDV field stains. Continued surveillance will be useful for monitoring PEDV transmission. Differentiation of the ORF3 genes in PEDV field strains can help us to choose an appropriate PEDV vaccine candidate in the future and prevent outbreaks of PED more effectively.
Collapse
Affiliation(s)
- Ying Lu
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xueli Su
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Chen Du
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Liyuan Mo
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Purui Ke
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ruomu Wang
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lian Zhong
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Cui Yang
- Laboratory of Poultry, Guangxi Institute of Animal Science, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weijian Huang
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuying Liao
- Laboratory of Poultry, Guangxi Institute of Animal Science, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
17
|
Molecular Characterization of Porcine Epidemic Diarrhea Virus and Its New Genetic Classification Based on the Nucleocapsid Gene. Viruses 2020; 12:v12080790. [PMID: 32717934 PMCID: PMC7472284 DOI: 10.3390/v12080790] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes continuous, significant damage to the swine industry worldwide. By RT-PCR-based methods, this study demonstrated the ongoing presence of PEDV in pigs of all ages in Korea at the average detection rate of 9.92%. By the application of Bayesian phylogenetic analysis, it was found that the nucleocapsid (N) gene of PEDV could evolve at similar rates to the spike (S) gene at the order of 10-4 substitutions/site/year. Based on branching patterns of PEDV strains, three main N gene-base genogroups (N1, N2, and N3) and two sub-genogroups (N3a, N3b) were proposed in this study. By analyzing the antigenic index, possible antigenic differences also emerged in both the spike and nucleocapsid proteins between the three genogroups. The antigenic indexes of genogroup N3 strains were significantly lower compared with those of genogroups N1 and N2 strains in the B-cell epitope of the nucleocapsid protein. Similarly, significantly lower antigenic indexes in some parts of the B-cell epitope sequences of the spike protein (COE, S1D, and 2C10) were also identified. PEDV mutants derived from genetic mutations of the S and N genes may cause severe damage to swine farms by evading established host immunities.
Collapse
|
18
|
Tan L, Li Y, He J, Hu Y, Cai X, Liu W, Liu T, Wang J, Li Z, Yuan X, Zhan Y, Yang L, Deng Z, Wang N, Yang Y, Wang A. Epidemic and genetic characterization of porcine epidemic diarrhea virus strains circulating in the regions around Hunan, China, during 2017-2018. Arch Virol 2020; 165:877-889. [PMID: 32056002 PMCID: PMC7223731 DOI: 10.1007/s00705-020-04532-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
Outbreaks of porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) infection have caused high mortality of piglets and significant economic losses to the Chinese swine industry. In the current study, 184 specimens from pigs with or without signs of diarrhea were collected from 39 farms across eight provinces, mainly around Hunan, People's Republic of China, in 2017 to 2018 in order to obtain epidemiological information on PEDV infections in these regions. The results indicated an average PEDV-positive rate of 38.04% (70/184) and more-pronounced disease severity in diarrheic pigs (48.76%; 59/121) than in non-diarrheic pigs (17.46%; 11/63). Phylogenetic and sequence analysis demonstrated that 14 representative PEDV strains from 14 swine farms belonged to the G2 group (G2-a and G2-b subgroups) and displayed a high degree of genetic variation. In particular, two out of the 14 PEDV strains were found to have unique indels in the S1 gene. The strain HN-SY-2017-Oct had a 9-nucleotide (T1152GAAGCCAAT1160T) insertion, and the strain ZJ-2018-May had a 3-nucleotide (AAA) deletion at position 1126 in the S1 gene. A three-dimensional structural prediction revealed that these unique insertions might lengthen the loop on the surface or increase the likelihood of the surface protein being phosphorylated at 388Y, thereby affecting the virulence or pathogenicity of PEDV. Collectively, the data show that PED remains a severe threat to the pig industry and that variant PEDV stains are circulating in China. The updated PEDV epidemiological data will facilitate the design of PEDV vaccines and the application of effective measures for PED prevention.
Collapse
Affiliation(s)
- Lei Tan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Yalan Li
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Jiayi He
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Yi Hu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China
| | - Wei Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Tanbing Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Jiaoshun Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Zhoumian Li
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Xiaoming Yuan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Yang Zhan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Lingchen Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Zhibang Deng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Naidong Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Yi Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Aibing Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China. .,PCB Biotechnology LLC, Rockville, MD, 20852, USA.
| |
Collapse
|
19
|
Qin S, Hu C, Yang D, Wu J, Yue H, Tang C, Zhang B. Emergence of porcine epidemic diarrhea viruses with the novel S genes in Tibetan pigs in the Qinghai-Tibetan plateau in China. Virus Res 2019; 270:197652. [PMID: 31301333 DOI: 10.1016/j.virusres.2019.197652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/29/2019] [Accepted: 07/06/2019] [Indexed: 12/31/2022]
Abstract
The purpose of present study was to investigate the prevalence and genetic variation of porcine epidemic diarrhea virus (PEDV) in Tibetan pigs on the Qinghai-Tibetan Plateau in 2018. The PCR yielded a significantly high detection rate (38.34%, 95%CI=31.5-45.6%) for PEDV from 193 fecal samples from Tibetan pigs. The novel PEDVs were discovered in Tibetan pigs and seven complete S genes were obtained and analyzed. The unique multiple mutations were detected in S genes of PEDV from Tibetan pigs, one of which led to a new amino acid substitution of a neutralizing epitope. Phylogenetic analysis showed that seven S genes had significant genetic distance to other PEDV. Specially, two S genes formed a novel subgroup on the genogroup 2 (G2) branch, of which same recombination event occurred between different strains from genotype G2. The remaining five S genes formed a new subgroup on the G1 branch, among which distinct recombination events occurred between genotypes G1 and G2 strains. The result indicated that the new recombination events were detected in the S genes of PEDV from Tibetan pigs, which could be circulating in the Qinghai-Tibetan Plateau. Notably, the four complete PEDV genomes obtained in this study had an identical recombination region spanning S2, ORF3 and E genes. This is the first report of the crossover regional recombination event in PEDV genome. Our findings not only augmented current understanding of the genetic evolution of PEDV, but also indicated that new variants of PEDV strains have been emerging in Tibetan pigs.
Collapse
Affiliation(s)
- Sinan Qin
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Chengzhe Hu
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Danjiao Yang
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China; Institute of Animal Science of Ganzi Tibetan Autonomous Prefecture of Sichuan Province, Kangding 626000, China
| | - Jianping Wu
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China; Institute of Animal Science of Ganzi Tibetan Autonomous Prefecture of Sichuan Province, Kangding 626000, China
| | - Hua Yue
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China; Animal Disease Prevention and Control Innovation Team in the Qinghai-Tibetan Plateau of State Ethnic Affairs Commission, Chengdu 610041, China
| | - Cheng Tang
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China; Animal Disease Prevention and Control Innovation Team in the Qinghai-Tibetan Plateau of State Ethnic Affairs Commission, Chengdu 610041, China.
| | - Bin Zhang
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China; Animal Disease Prevention and Control Innovation Team in the Qinghai-Tibetan Plateau of State Ethnic Affairs Commission, Chengdu 610041, China.
| |
Collapse
|
20
|
Zou D, Xu J, Duan X, Xu X, Li P, Cheng L, Zheng L, Li X, Zhang Y, Wang X, Wu X, Shen Y, Yao X, Wei J, Yao L, Li L, Song B, Ma J, Liu X, Wu Z, Zhang H, Cao H. Porcine epidemic diarrhea virus ORF3 protein causes endoplasmic reticulum stress to facilitate autophagy. Vet Microbiol 2019; 235:209-219. [PMID: 31383304 PMCID: PMC7117398 DOI: 10.1016/j.vetmic.2019.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV), the causative agent of PED, is an enveloped, positive-stranded RNA virus in the genus Alphacoronavirus, family Coronaviridae, order Nidovirales. PEDV non-structural accessory protein ORF3 is an ion channel related to viral infectivity and pathogenicity. Our previous study showed that PEDV ORF3 has expression characteristic of aggregation in cytoplasm, but its biological function remains elusive. Thus in this study, we initiated the construction of various vectors to express ORF3, and found ORF3 localized in the cytoplasm in the aggregation manner. Subsequently, confocal microscopy analysis showed that the aggregated ORF3 localized in endoplasmic reticulum (ER) to trigger ER stress response via up-regulation of GRP78 protein expression and activation of PERK-eIF2α signaling pathway. In addition, our results showed that PEDV ORF3 could induce the autophagy through inducing conversion of LC3-I to LC3-II, but couldn't influence the apoptosis. In contrast, conversion of LC3-I/LC3-II could be significantly inhibited by 4-PBA, an ER stress inhibitor, indicating that ORF3-induced autophagy is dependent on ER stress response. This work not only provides some new findings for the biological function of the PEDV ORF3 protein, but also help us for the further understanding the molecular interaction between PEDV ORF3 protein and cells.
Collapse
Affiliation(s)
- Dehua Zou
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Jiaxin Xu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xulai Duan
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xin Xu
- Branch of Animal Husbandry and Veterinary of HeiLongJiang Academy of Agricultural Sciences, Qiqihar, 161005, China
| | - Pengfei Li
- Department of Nephrology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing 163319, China
| | - Lixin Cheng
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Liang Zheng
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xingzhi Li
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Yating Zhang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xianhe Wang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xuening Wu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Yujiang Shen
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xiangyu Yao
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Jiaqi Wei
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Lili Yao
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Liyang Li
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Baifen Song
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Jinzhu Ma
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xinyang Liu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Zhijun Wu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Hua Zhang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China.
| | - Hongwei Cao
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Biotechnology Center, HeiLongJiang BaYi Agricultural University, Daqing 163319, China.
| |
Collapse
|
21
|
Wang P, Zhu J, Liu X, Guo J, Gu X, Ruan W. Isolation and recombinant analysis of variants of porcine epidemic diarrhea virus strains from Beijing, China. Virusdisease 2019; 30:294-301. [PMID: 31179369 PMCID: PMC6531531 DOI: 10.1007/s13337-019-00513-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly infectious virus infecting pigs with high morbidity, especially for newborn piglets. Several PEDV strains were isolated from the intestinal tracts of diarrheic piglets from the Beijing area, China. Sequencing of the whole-genome of the PEDV isolates (GenBank numbers MG546687-MG546690) yielded sequences of 28033-28038 nt. The phylogenetic tree revealed that these strains from the Beijing area belonged to group II, while the vaccine strain, CV777, belonged to group I. We also determined the genetic correlation between these strains and CV777 strain. However, it showed that these strains in the Beijing area had unique mutations. The sequence identity of PEDV strains showed that these strains are most similar to these strains LZW, CH/JX-1/2013, USAIllinois972013, USAKansas1252014, CH/GDZQ/2014, SHQPYM2013, AJ1102, CHZMDZY11, KoreaK14JB01, and CHYJ130330, respectively. The possible recombination events indicate that PEDV in this studies were possibly recombinant strain formed by parent strains USAIllinois972013, KoreaK14JB01, CHYJ130330, and CHZMDZY11. These PEDV strains has been genetic recombination and mutations. The variant strains characterized in this study help to the evolutionary analysis of PEDV.
Collapse
Affiliation(s)
- Peng Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Jinyan Zhu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Xinze Liu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Jiaojiao Guo
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Xuejia Gu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Wenke Ruan
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| |
Collapse
|
22
|
Single Chain Fragment Variable (scFv) Antibodies Targeting the Spike Protein of Porcine Epidemic Diarrhea Virus Provide Protection against Viral Infection in Piglets. Viruses 2019; 11:v11010058. [PMID: 30646521 PMCID: PMC6356844 DOI: 10.3390/v11010058] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe diarrhea and death in neonatal piglets. Passive immunization with neutralizing antibodies against PEDV is an effective prevention measure. In this study, single chain fragment variable (scFv) antibodies against PEDV were screened from the porcine scFv phage display library. After four rounds of biopanning, scFvs that showed higher affinity to the PEDV antigen were selected for further study. The scFv genes were cloned into the expression plasmid for recombinant protein expression. These scFvs were shown to inhibit PEDV infectivity by the plaque reduction neutralization assay. Immunofluorescence assay (IFA) revealed that the epitopes recognized by these scFvs were in the S1 region of the spike protein. The potential of scFvs to provide prevention against PEDV infections in piglets was further investigated. Piglets orally administered scFvs showed no to mild clinical symptoms, significantly less viral shedding, no mortality and no intestinal lesions. The field application also revealed that the survival rate of piglets was significantly increased by oral administration of scFvs. Our data support the potential role of scFvs in the prevention and treatment of PEDV infection.
Collapse
|
23
|
Yu J, Chai X, Cheng Y, Xing G, Liao A, Du L, Wang Y, Lei J, Gu J, Zhou J. Molecular characteristics of the spike gene of porcine epidemic diarrhoea virus strains in Eastern China in 2016. Virus Res 2018; 247:47-54. [DOI: 10.1016/j.virusres.2018.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
|
24
|
Zhang H, Liu Q, Su W, Wang J, Sun Y, Zhang J, Shang K, Chen Z, Cheng S, Wu H. Genome-wide analysis of differentially expressed genes and the modulation of PEDV infection in Vero E6 cells. Microb Pathog 2018; 117:247-254. [PMID: 29408315 PMCID: PMC7125602 DOI: 10.1016/j.micpath.2018.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Abstract
PEDV remains one of the most important swine diseases that infects pigs of all ages. It causes devastating viral enteric disease in piglets with a high mortality rate, leading to significant threats and huge economic loss to the pork industry. In this study, a transcriptomic shotgun sequencing (RNA-Seq) procedure was used to study gene responses against PEDV infection. Genome-wide analysis of differentially expressed genes (DEGs) was performed in Vero E6 cells post-PEDV infection. mTOR signaling pathway activator-MHY1485, and inhibitor-PP242 were used to study the antiviral function. Results revealed that the IRF3 was significantly up-regulated post-PEDV infection. Although most of the IFN-regulatory and –related genes evaluated in this study were either down-regulated or remained unchanged, IL11 behaved significantly up-regulated, with the peak at 16 hpi. Nearly 90% of PEDV infections were suppressed in the PP242 pretreated cells whereas the reverse effect was observed in the MYH1485 pretreated cells. Results indicated that the mTOR signaling pathway played a vital role in the PEDV antiviral regulation in the Vero E6 cells. Future studies will contribute to better understand the cellular antiviral mechanism against PEDV. RNA-Seq was used to study gene responses against PEDV infection. Genome-wide analysis of DEGs was performed in Vero E6 cells post-PEDV infection. The mTOR signaling pathway activator and inhibitor can affect the PEDV infection rate.
Collapse
Affiliation(s)
- Hewei Zhang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Qinfang Liu
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Weiwei Su
- Sinovet (Jiangsu) Biopharmaceuticals Co., Ltd, Taizhou, Jiangsu, China
| | - Jianke Wang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yaru Sun
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Junfeng Zhang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Chonbuk National University, South Korea
| | - Ke Shang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Chonbuk National University, South Korea
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Shipeng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.
| | - Hua Wu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.
| |
Collapse
|
25
|
Su Y, Liu Y, Chen Y, Xing G, Hao H, Wei Q, Liang Y, Xie W, Li D, Huang H, Deng R, Zhang G. A novel duplex TaqMan probe-based real-time RT-qPCR for detecting and differentiating classical and variant porcine epidemic diarrhea viruses. Mol Cell Probes 2017; 37:6-11. [PMID: 29104088 DOI: 10.1016/j.mcp.2017.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/11/2017] [Accepted: 10/30/2017] [Indexed: 02/01/2023]
Abstract
Two different genotypes of porcine epidemic diarrhea virus (PEDV), the classical and variant strains, are classified by multiple insertions and deletions in their S genes. It is critical to detect and differentiate two genotypes in the pork industry to prevent PEDV outbreaks. In the present study, a novel duplex TaqMan RT-PCR was developed for detecting and differentiating PEDV strains in China. There was no cross-amplification between the two probes when using standard recombinant plasmids, and the specificity was further confirmed by using other seven non-PEDV swine pathogens. The minimum copies required for the detection of both classical and variant PEDV were 4.8 × 102 DNA copies/reaction. The repeatability of TaqMan RT-PCR was evaluated using standard recombinant plasmids and gave coefficients of variation 0.19-4.93. In recent 5 years, 79 clinical samples were collected from piglets with severe diarrhea in the Central China. Among these clinical samples, 51 were confirmed as PEDV positive by conventional RT-PCR, whereas 63 variant PEDV, 3 co-infections and 1 classical PEDV were confirmed by this duplex TaqMan RT-PCR, with viral loads of 102-108, 102-103, and 104 copies/reaction, respectively. Therefore, the duplex TaqMan RT-PCR could be a useful method for detecting and differentiating variant and classical PEDV strains. The results showed that variant PEDV was prevalent in clinical samples in central China. Moreover, in this study, co-infection by PEDV strains was detected for the first time and might help explain the emergence of the novel recombinant PEDV in recent years.
Collapse
Affiliation(s)
- Yunfang Su
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yumei Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Huifang Hao
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yue Liang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Weitao Xie
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Dongliang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China
| | - Huimin Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225000, China.
| |
Collapse
|