1
|
Guo X, Hu J, Yin G, Cai Y, Gao Z, Liu Y, Zhong M, Wang R, Feng X. The Immunomodulatory Function of Assembled Composite Nanopolypeptide Containing Bursal-Derived BP7 (CNPB7) in Promoting the Mucosal Immune Response within Poultry Immunization. Vaccines (Basel) 2024; 12:834. [PMID: 39203960 PMCID: PMC11360326 DOI: 10.3390/vaccines12080834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Mucosal immunity is the main defense line against respiratory disease pathogens. Newcastle disease and avian infectious bronchitis are common respiratory diseases in poultry. However, the mucosal immune response is not sufficiently activated and thus fails to achieve the ideal immune protection. Therefore, it is important to develop a suitable mucosal immune adjuvant to enhance the immune response of live vaccines. Here, the bursal-derived peptide BP7, β-glucan, and hyaluronic acid were selected as the adjuvant to be assembled into the composite nanopolypeptide adjuvant (CNPB7) with ultrasonic dispersion technology. The results showed that after optimizing assembly conditions, the optimal average particle size of nanoparticle CNPB7 was 514.9 nm and PDI was 0.298. To evaluate the non-specific immune responses of nanoparticle CNPB7, the chickens were immunized only with nanoparticle CNPB7. It was confirmed that nanoparticle CNPB7 enhanced the expression of CD3, CD4, CD80, and CD86 factors in the spleen lymphocyte from the chicken immunized with nanoparticle CNPB7. To investigate the mucosal immune response of nanoparticle CNPB7, the chickens were orally immunized with Newcastle disease virus (NDV)-infectious bronchitis virus (IBV) dual vaccines and CNPB7. The results proved that the levels of immunoglobulin SIgA, IL-4, IFN-γ, and IL-13 in the mucus samples from the respiratory and digestive tract in chicken immunized with nanoparticle CNPB7 and vaccines were significantly increased, compared to that of vaccine control. Finally, it was observed that nanoparticle CNPB7 promoted specific increased antibody productions against NDV and IBV in the immunized chicken. These results proved that the assembled nanoparticle CNPB7 could enhance the vaccination efficacy in chicken, which provided the experimental basis for the development of new adjuvants, and offered technical support for preventing virus transmission of avian diseases.
Collapse
Affiliation(s)
- Xinyu Guo
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Hu
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guihu Yin
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zichen Gao
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Liu
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Zhong
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiying Wang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Murr M, Freuling C, Pérez-Bravo D, Grund C, Mettenleiter TC, Römer-Oberdörfer A, Müller T, Finke S. Immune response after oral immunization of goats and foxes with an NDV vectored rabies vaccine candidate. PLoS Negl Trop Dis 2024; 18:e0011639. [PMID: 38408125 PMCID: PMC10919857 DOI: 10.1371/journal.pntd.0011639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/07/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Vaccination of the reservoir species is a key component in the global fight against rabies. For wildlife reservoir species and hard to reach spillover species (e. g. ruminant farm animals), oral vaccination is the only solution. In search for a novel potent and safe oral rabies vaccine, we generated a recombinant vector virus based on lentogenic Newcastle disease virus (NDV) strain Clone 30 that expresses the glycoprotein G of rabies virus (RABV) vaccine strain SAD L16 (rNDV_GRABV). Transgene expression and virus replication was verified in avian and mammalian cells. To test immunogenicity and viral shedding, in a proof-of-concept study six goats and foxes, representing herbivore and carnivore species susceptible to rabies, each received a single dose of rNDV_GRABV (108.5 TCID50/animal) by direct oral application. For comparison, three animals received the similar dose of the empty viral vector (rNDV). All animals remained clinically inconspicuous during the trial. Viral RNA could be isolated from oral and nasal swabs until four (goats) or seven days (foxes) post vaccination, while infectious NDV could not be re-isolated. After four weeks, three out of six rNDV_GRABV vaccinated foxes developed RABV binding and virus neutralizing antibodies. Five out of six rNDV_GRABV vaccinated goats displayed RABV G specific antibodies either detected by ELISA or RFFIT. Additionally, NDV and RABV specific T cell activity was demonstrated in some of the vaccinated animals by detecting antigen specific interferon γ secretion in lymphocytes isolated from pharyngeal lymph nodes. In conclusion, the NDV vectored rabies vaccine rNDV_GRABV was safe and immunogenic after a single oral application in goats and foxes, and highlight the potential of NDV as vector for oral vaccines in mammals.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Conrad Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - David Pérez-Bravo
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Chang Z, Dong X, Guan Z, Lu K, Chen X, Wei X, Guo H, Dang R, Wang J, Wang X, Xiao S, Yang Z, Liu H. Antigenic variation in hemagglutinin-neuraminidase of Newcastle disease virus isolated from Tibet, China. Vet Microbiol 2023; 285:109872. [PMID: 37690146 DOI: 10.1016/j.vetmic.2023.109872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Vaccines are widely used to prevent Newcastle disease virus (NDV). Under the pressure of immunization, NDVs with mutations among epitopes of F and HN protein were isolated, which indicates that the efficiency of vaccine may decrease in terms of preventing emerged NDV. However, the lack of evidences to support whether these mutations contribute to antigenic mutation and immune escape in NDV leading to the controversy that the matched vaccine is more effective than the mismatched vaccine. In this study, a genotype VII velogenic NDV strain (C22) was isolated from a vaccinated farm in Tibet, China. We found that this strain was close to NDV from east China, but it had a specific mutation (K138R) in one epitope (131DYIGGIGKE139) of HN protein. This mutation might change the interaction between amino acids in stalk-head link region of HN protein and then induce the specific antibody to worse recognize the C22 strain, but it did not alter viral virulence and growth ability. Then, the C22 strain was attenuated via modification of the F protein cleavage site to generate a matched vaccine. Comparing to a mismatched vaccine (LaSota), this matched vaccine showed advantages in inhibiting viral shedding and tissue damage. However, both vaccines induced chicken to generate similar level of neutralizing antibodies against C22, C22mut (R138K) and LaSota. These results suggest that the epitope mutation is insufficient to help NDV escaping neutralizing antibodies of vaccinated chicken, supporting that the merits of NDV matched vaccine are not totally related to humoral immunity.
Collapse
Affiliation(s)
- Zhengwu Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhao Guan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xi Chen
- College of Animal Husbandry and Veterinary Medicine, Southwest University for Nationalities, Chengdu 610041, China
| | - Xi Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hanwei Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruyi Dang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Kousar K, Naseer F, Abduh MS, Anjum S, Ahmad T. CD44 targeted delivery of oncolytic Newcastle disease virus encapsulated in thiolated chitosan for sustained release in cervical cancer: a targeted immunotherapy approach. Front Immunol 2023; 14:1175535. [PMID: 37283735 PMCID: PMC10239954 DOI: 10.3389/fimmu.2023.1175535] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Cervical cancer accounts for one of most common cancers among women of reproductive age. Oncolytic virotherapy has emerged as a promising immunotherapy modality but it comes with several drawbacks that include rapid clearance of virus from body due to immune-neutralization of virus in host. To overcome this, we encapsulated oncolytic Newcastle disease virus (NDV) in polymeric thiolated chitosan nanoparticles. For active targeting of virus loaded nanoformulation against CD44 (cluster of differentiation 44) receptors which are overly expressed on cancer cells, these nanoparticles were surface functionalized with hyaluronic acid (HA). Methods Using half dose of NDV (TCID50 (50% tissue culture infective dose) single dose 3 × 105), virus loaded nanoparticles were prepared by green synthesis approach through ionotropic gelation method. Zeta analysis was performed to analyse size and charge on nanoparticles. Nanoparticles (NPs) shape and size were analysed by SEM (scanning electron microscope) and TEM (transmission electron microscope) while functional group identification was done by FTIR (fourier transform infrared) and XRD (X-ray diffraction). Viral quantification was done by TCID50 and Multiplicity of infection (MOI) determination while oncolytic potential of NPs encapsulated virus was analysed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay and cell morphology analysis. Results Zeta analysis showed that average size of NDV loaded thiolated chitosan nanoparticles surface functionalized with HA (HA-ThCs-NDV) was 290.4nm with zeta potential of 22.3 mV and 0.265 PDI (polydispersity index). SEM and TEM analysis showed smooth surface and spherical features of nanoparticles. FTIR and XRD confirmed the presence of characteristic functional groups and successful encapsulation of the virus. In vitro release showed continuous but sustained release of NDV for up to 48 hours. TCID50 for HA-ThCs-NDV nanoparticles was 2.63x 106/mL titter and the nanoformulation exhibited high oncolytic potential in cell morphology analysis and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay as compared to naked virus, in dose dependent manner. Discussion These findings suggest that virus encapsulation in thiolated chitosan nanoparticles and surface functionalization with HA is not only helpful in achieving active targeting while masking virus from immune system but, it also gives sustained release of virus in tumor microenvironment for longer period of time that increases bioavailability of virus.
Collapse
Affiliation(s)
- Kousain Kousar
- Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Naseer
- Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sadia Anjum
- Department of Biology, University of Hail, Hail, Saudi Arabia
| | - Tahir Ahmad
- Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
5
|
Amaya M, Yin R, Yan L, Borisevich V, Adhikari BN, Bennett A, Malagon F, Cer RZ, Bishop-Lilly KA, Dimitrov AS, Cross RW, Geisbert TW, Broder CC. A Recombinant Chimeric Cedar Virus-Based Surrogate Neutralization Assay Platform for Pathogenic Henipaviruses. Viruses 2023; 15:1077. [PMID: 37243163 PMCID: PMC10223282 DOI: 10.3390/v15051077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The henipaviruses, Nipah virus (NiV), and Hendra virus (HeV) can cause fatal diseases in humans and animals, whereas Cedar virus is a nonpathogenic henipavirus. Here, using a recombinant Cedar virus (rCedV) reverse genetics platform, the fusion (F) and attachment (G) glycoprotein genes of rCedV were replaced with those of NiV-Bangladesh (NiV-B) or HeV, generating replication-competent chimeric viruses (rCedV-NiV-B and rCedV-HeV), both with and without green fluorescent protein (GFP) or luciferase protein genes. The rCedV chimeras induced a Type I interferon response and utilized only ephrin-B2 and ephrin-B3 as entry receptors compared to rCedV. The neutralizing potencies of well-characterized cross-reactive NiV/HeV F and G specific monoclonal antibodies against rCedV-NiV-B-GFP and rCedV-HeV-GFP highly correlated with measurements obtained using authentic NiV-B and HeV when tested in parallel by plaque reduction neutralization tests (PRNT). A rapid, high-throughput, and quantitative fluorescence reduction neutralization test (FRNT) using the GFP-encoding chimeras was established, and monoclonal antibody neutralization data derived by FRNT highly correlated with data derived by PRNT. The FRNT assay could also measure serum neutralization titers from henipavirus G glycoprotein immunized animals. These rCedV chimeras are an authentic henipavirus-based surrogate neutralization assay that is rapid, cost-effective, and can be utilized outside high containment.
Collapse
Affiliation(s)
- Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bishwo N. Adhikari
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Andrew Bennett
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
- Leidos, Inc., Reston, VA 20190, USA
| | - Francisco Malagon
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
- Leidos, Inc., Reston, VA 20190, USA
| | - Regina Z. Cer
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Kimberly A. Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Antony S. Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Robert W. Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Lee KM, Kim DH, Kim KH. Development of rapid neutralization assay of viral hemorrhagic septicemia virus (VHSV) based on chimeric rhabdovirus expressing heterologous glycoprotein. J Virol Methods 2023; 311:114639. [PMID: 36309206 DOI: 10.1016/j.jviromet.2022.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/29/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022]
Abstract
The titer of neutralizing antibodies (NAbs) against viral hemorrhagic septicemia virus (VHSV) has been determined by conventional neutralization assay based on the observation of cytopathic effect (CPE) and plaque formation in cultured cells. However, this method requires several days for the determination and can be affected by operator bias. To develop a rapid and high-throughput neutralization assay against VHSV, we rescued a surrogate chimeric snakehead rhabdovirus, rSHRV-Gvhsv-eGFP, which has the enhanced green fluorescent protein (eGFP) gene between N and P genes and has VHSV G gene instead of SHRV G gene in the genome. The efficacy of rSHRV-Gvhsv-eGFP to determine serum neutralization activity was evaluated using various serum samples derived from New Zealand white rabbits and olive flounder (Paralichthys oliavaceus). Although neutralization titers analyzed using rSHRV-Gvhsv-eGFP were similar to the titers measured using rVHSV-A-eGFP, the time needed for the determination of neutralization titer was much shortened (24 h for rSHRV-Gvhsv-eGFP and 48 h for rVHSV-A-eGFP), proving the usefulness of rSHRV-Gvhsv-eGFP for the neutralization assay against VHSV. In addition, as the neutralization activities using rSHRV-Gvhsv-eGFP could be well-observed without adding fresh serum as a complement source, no preparation is required for the optimization of control fresh serum from naïve fish. The present results suggest that the rapid neutralization assay using rSHRV-Gvhsv-eGFP can be used to investigate neutralization activities against VHSV.
Collapse
Affiliation(s)
- Kyung Min Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Do Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
7
|
Lu S, Ma B, Zhou H, Li Y, Qiao Z, Xiao T, Li H, Wang B, Cui M, Zhang S, Chang J, Du T, Liu J, Wang H. Smartphone recognition-based immune microparticles for rapid on-site visual data-sharing detection of Newcastle disease virus. Talanta 2023; 252:123845. [DOI: 10.1016/j.talanta.2022.123845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
|
8
|
Mao Q, Ma S, Schrickel PL, Zhao P, Wang J, Zhang Y, Li S, Wang C. Review detection of Newcastle disease virus. Front Vet Sci 2022; 9:936251. [PMID: 35982920 PMCID: PMC9378970 DOI: 10.3389/fvets.2022.936251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Newcastle disease (ND) is an acute and highly contagious disease caused by the Newcastle disease virus (NDV) infecting poultry, which has caused great harm to the poultry industry around the world. Rapid diagnosis of NDV is important to early treatment and early institution of control measures. In this review, we comprehensively summarize the most recent research into NDV, including historical overview, molecular structure, and infection mechanism. We then focus on detection strategies for NDV, including virus isolation, serological assays (such as hemagglutination and hemagglutination-inhibition tests, enzyme linked immunosorbent assay, reporter virus neutralization test, Immunofluorescence assay, and Immune colloidal gold technique), molecular assays (such as reverse transcription polymerase chain reaction, real-time quantitative PCR, and loop-mediated isothermal amplification) and other assays. The performance of the different serological and molecular biology assays currently available was also analyzed. To conclude, we examine the limitations of currently available strategies for the detection of NDV to lay the groundwork for new detection assays.
Collapse
Affiliation(s)
- Qian Mao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Shengming Ma
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Philip Luke Schrickel
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Pengwei Zhao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Jingya Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Yuhua Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Shuangyu Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- *Correspondence: Chengbao Wang
| |
Collapse
|
9
|
Intranasal vaccination of hamsters with a Newcastle disease virus vector expressing the S1 subunit protects animals against SARS-CoV-2 disease. Sci Rep 2022; 12:10359. [PMID: 35725862 PMCID: PMC9208357 DOI: 10.1038/s41598-022-13560-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2022] [Indexed: 12/31/2022] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic has already claimed millions of lives and remains one of the major catastrophes in the recorded history. While mitigation and control strategies provide short term solutions, vaccines play critical roles in long term control of the disease. Recent emergence of potentially vaccine-resistant and novel variants necessitated testing and deployment of novel technologies that are safe, effective, stable, easy to administer, and inexpensive to produce. Here we developed three recombinant Newcastle disease virus (rNDV) vectored vaccines and assessed their immunogenicity, safety, and protective efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice and hamsters. Intranasal administration of rNDV-based vaccine candidates elicited high levels of neutralizing antibodies. Importantly, the nasally administrated vaccine prevented lung damage, and significantly reduced viral load in the respiratory tract of vaccinated animal which was compounded by profound humoral immune responses. Taken together, the presented NDV-based vaccine candidates fully protected animals against SARS-CoV-2 challenge and warrants evaluation in a Phase I human clinical trial as a promising tool in the fight against COVID-19.
Collapse
|
10
|
Boroujeni NA, Khatouni SB, Motamedi MJ, Afraz S, Jafari M, Salmanian AH. Root-preferential expression of Newcastle virus glycoproteins driven by NtREL1 promoter in tobacco hairy roots and evaluation of oral delivery in mice. Transgenic Res 2022; 31:201-213. [PMID: 35006541 DOI: 10.1007/s11248-021-00295-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
Newcastle disease virus (NDV) is a lethal virus in avian species with a disastrous effect on the poultry industry. NDV is enveloped by a host-derived membrane with two glycosylated haemagglutinin-neuraminidase (HN) and Fusion (F) proteins. NDV infection usually leads to death within 2-6 days, so the preexisting antibodies provide the most critical protection for this infection. The HN and F glycoproteins are considered the main targets of the immune system. In the present study, two constructs harboring the HN or F epitopes are sub-cloned separately under the control of a root-specific promoter NtREL1 or CaMV35S (35S Cauliflower Mosaic Virus promoter) as a constitutive promoter. The recombinant vectors were transformed into the Agrobacterium tumefaciens strain LBA4404 and then introduced to tobacco (Nicotiana tabacum L.) leaf disk explants. PCR with specific primers was performed to confirm the presence of the hn and f genes in the genome of the regenerated plants. Then, the positive lines were transformed via non-recombinant A. rhizogenes (strain ATCC15834) to develop hairy roots.HN and F were expressed at 0.37% and 0.33% of TSP using the CaMV35S promoter and at 0.75% and 0.54% of TSP using the NtREL1 promoter, respectively. Furthermore, the mice fed transgenic hairy roots showed a high level of antibody responses (IgG and IgA) against rHN and rF proteins.
Collapse
Affiliation(s)
- Narges Arkian Boroujeni
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrake- Pajoohesh Blvd., 15th Km, Tehran-Karaj Highway, P.O. Box 14965-161, Tehran, Iran
| | - Somayeh Behjat Khatouni
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrake- Pajoohesh Blvd., 15th Km, Tehran-Karaj Highway, P.O. Box 14965-161, Tehran, Iran
| | - Mohammad Javad Motamedi
- Department of Molecular Biology and Genetic Engineering, Stem Cell Research Center, Tehran, Iran
| | - Shaghayegh Afraz
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrake- Pajoohesh Blvd., 15th Km, Tehran-Karaj Highway, P.O. Box 14965-161, Tehran, Iran
| | - Mahyat Jafari
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrake- Pajoohesh Blvd., 15th Km, Tehran-Karaj Highway, P.O. Box 14965-161, Tehran, Iran
| | - Ali-Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrake- Pajoohesh Blvd., 15th Km, Tehran-Karaj Highway, P.O. Box 14965-161, Tehran, Iran.
| |
Collapse
|
11
|
Motamedi MJ, Ebrahimi MM, Shahsavandi S, Amani J, Kazemi R, Jafari M, Salmanian AH. The Immunogenicity of a Novel Chimeric Hemagglutinin-Neuraminidase-Fusion Antigen from Newcastle Disease Virus by Oral Delivery of Transgenic Canola Seeds to Chickens. Mol Biotechnol 2020; 62:344-354. [PMID: 32246385 DOI: 10.1007/s12033-020-00254-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Newcastle disease (ND) is considered as one of the most devastating infectious diseases targeting domestic birds and has considerable threat to the commercial poultry production. Two surface glycoproteins, hemagglutinin-neuraminidase (HN) and fusion (F), act as antigens in the virus structure and also play important roles in infecting host cells. In the current study, the expression of the chimeric HN-F protein in canola seeds and its immunogenicity in chickens were investigated. The HN-F gene was cloned downstream of the fatty acid elongase 1 (FAE1) promoter in the binary expression vector, pBI1400-HN-F, and introduced into rapeseed (Brassica napus L.) using Agrobacterium-mediated transformation. The amount of the HN-F glycoprotein was estimated up to 0.18% and 0.11% of the total soluble protein (TSP) in transgenic seeds and leaves of canola, respectively. Confirmatory analyses of 36 transgenic lines revealed that the HN-F gene was integrated into the genome. Subsequently, HN-F protein could be expressed and accumulated in the seed tissue. Specific pathogen-free (SPF) chickens immunized orally with recombinant HN-F showed a significant rise in specific and hemagglutination inhibition (HI) antibodies 35 to 42 days post the first administration. The results implied the potential of transgenic canola seed-based expression for oral delivery of NDV immunogenic glycoproteins.
Collapse
Affiliation(s)
- Mohammad Javad Motamedi
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrake- Pajoohesh Blvd. 15th Km, Tehran-Karaj Highway, P.O. Box 14965-161, Tehran, Iran
| | - Mohammad Majid Ebrahimi
- Agricultural Research Education and Extension Organization, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Shahla Shahsavandi
- Agricultural Research Education and Extension Organization, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rouhollah Kazemi
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrake- Pajoohesh Blvd. 15th Km, Tehran-Karaj Highway, P.O. Box 14965-161, Tehran, Iran
| | - Mahyat Jafari
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrake- Pajoohesh Blvd. 15th Km, Tehran-Karaj Highway, P.O. Box 14965-161, Tehran, Iran
| | - Ali-Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrake- Pajoohesh Blvd. 15th Km, Tehran-Karaj Highway, P.O. Box 14965-161, Tehran, Iran.
| |
Collapse
|
12
|
Ruan B, Liu Q, Chen Y, Niu X, Wang X, Zhang C, Guo M, Zhang X, Cao Y, Wu Y. Generation and evaluation of a vaccine candidate of attenuated and heat-resistant genotype VIII Newcastle disease virus. Poult Sci 2020; 99:3437-3444. [PMID: 32616237 PMCID: PMC7597857 DOI: 10.1016/j.psj.2020.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 02/03/2023] Open
Abstract
Newcastle disease, which is a highly contagious and fatal disease caused by the Newcastle disease virus (NDV), has harmed the poultry industry for decades. The administration of effective vaccines can control most outbreaks and epidemics of Newcastle disease in the world. However, vaccination failures of live attenuated vaccines becasue of storage and transportation problems have been reported. Hence, thermostable live vaccine strains, such as V4 and I-2 strains, are being used and welcomed in tropical regions such as Africa and Southeast Asia. In this study, a thermostable, attenuated vaccine candidate strain NDV/rHR09 was generated using the genotype VIII heat-resistant virulent NDV strain HR09 by the reverse genetics system. The results of the determination of the mean death time and intracerebral pathogenicity index indicated that NDV/rHR09 is lentogenic even after 15 serial passages in embryonated chicken eggs. The thermostability assessment showed that the NDV/rHR09 strain exhibited hemagglutination activity and infectivity when exposed to 56°C for 60 min. Compared with the commercially available La Sota and V4 vaccines, the NDV/rHR09 induced higher antibody titers in specific pathogen-free chickens. In addition, NDV/rHR09 conferred complete protection against virulent genotype VII NDV challenge and virus shedding from vaccinated chickens. These results suggest that NDV/rHR09 is a promising thermostable vaccine candidate strain.
Collapse
Affiliation(s)
- Baoyang Ruan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qian Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yin Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaosai Niu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xuefeng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Chengcheng Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Mengjiao Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaorong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yongzhong Cao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Yantao Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
13
|
Wang W, Wang C, Bai Y, Zhang P, Yao S, Liu J, Zhang T. Establishment of reverse transcription recombinase-aided amplification-lateral-flow dipstick and real-time fluorescence-based reverse transcription recombinase-aided amplification methods for detection of the Newcastle disease virus in chickens. Poult Sci 2020; 99:3393-3401. [PMID: 32616233 PMCID: PMC7597694 DOI: 10.1016/j.psj.2020.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/25/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Newcastle disease is an acute and highly contagious disease of poultry caused by Newcastle disease virus infection, which does great harm to the poultry industry all over the world. To diagnose the disease simply and quickly, 2 detection methods were established based on reverse transcription recombinase-aided amplification (RT-RAA) technology. One is reverse transcription recombinase-aided amplification-lateral flow dipstick (RT-RAA-LFD) that is to combine RT-RAA with lateral flow dipstick; the other is real-time fluorescence-based reverse transcription recombinase-aided amplification (RF-RT-RAA) that is the combination of RT-RAA and exo probe. In this study, the reaction conditions such as reaction temperature and reaction time of the 2 methods were optimized, and their specificity and sensitivity were tested. The results showed that the RT-RAA-LFD method could be used to complete reaction within 23 min, and its lowest detectable limit was 102 copies/μL, 10 times higher than that of the conventional PCR method (103 copies/μL); the RF-RT-RAA method could be used to complete reaction within 26 min, and its lowest detectable limit was 10 copies/μL, 100 times higher than that of conventional PCR method (103 copies/μL), and it was as sensitive as real-time fluorescence-based quantitative PCR (10 copies/μL). The 2 methods had no cross reaction to the nucleic acid of other avian pathogens and showed good specificity. A total of 86 clinical samples suspected of the Newcastle disease virus were tested by conventional PCR, real-time fluorescence-based quantitative PCR, RT-RAA-LFD, and RF-RT-RAA. Based on the commonly used conventional PCR method, the other 3 detection methods had a coincidence rate of higher than 93%. In summary, RT-RAA-LFD and RF-RT-RAA had high specificity, sensitivity, and efficiency, which were suitable for clinical and laboratory diagnosis, respectively, and provided technical support for the prevention and control of Newcastle disease.
Collapse
Affiliation(s)
- Wenjing Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Chunguang Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yun Bai
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Peng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Shanshan Yao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Jingru Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Tie Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
14
|
Izquierdo-Lara R, Chumbe A, Calderón K, Fernández-Díaz M, Vakharia VN. Genotype-matched Newcastle disease virus vaccine confers improved protection against genotype XII challenge: The importance of cytoplasmic tails in viral replication and vaccine design. PLoS One 2019; 14:e0209539. [PMID: 31725727 PMCID: PMC6855454 DOI: 10.1371/journal.pone.0209539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 10/27/2019] [Indexed: 11/19/2022] Open
Abstract
Although typical Newcastle disease virus (NDV) vaccines can prevent mortality, they are not effective in preventing viral shedding. To overcome this, genotype-matched vaccines have been proposed. To date, this approach has never been tested against genotype XII strains. In this study, we generated and assessed the protection against genotype XII challenge of two chimeric NDV vaccine strains (rLS1-XII-1 and rLS1-XII-2). The rLS1-XII-1 virus has the complete fusion protein (F) and the hemagglutinin-neuraminidase (HN) open reading frames replaced with those from genotype XII strain NDV/peacock/Peru/2011 (PP2011) in a recombinant LaSota (rLS1) backbone. In rLS1-XII-2 virus, cytoplasmic tails of F and HN proteins were restored to those of rLS1. In vitro evaluation showed that rLS1-XII-2 and the parental rLS1 strains replicate at higher efficiencies than rLS1-XII-1. In the first vaccine/challenge experiment, SPF chickens vaccinated with rLS1-XII-1 virus showed only 71.3% protection, whereas, rLS1 and rLS1-XII-2 vaccinated chickens were fully protected. In a second experiment, both rLS1-XII-2 and the commercial vaccine strain LaSota induced 100% protection. However, rLS1-XII-2 virus significantly reduced viral shedding, both in the number of shedding birds and in quantity of shed virus. In conclusion, we have developed a vaccine candidate capable of fully protecting chickens against genotype XII challenges. Furthermore, we have shown the importance of cytoplasmic tails in virus replication and vaccine competence.
Collapse
Affiliation(s)
- Ray Izquierdo-Lara
- FARVET S.A.C., Chincha Alta, Ica, Peru
- Universidad Nacional Mayor de San Marcos, School of Veterinary Medicine, San Borja, Lima, Peru
- * E-mail:
| | - Ana Chumbe
- FARVET S.A.C., Chincha Alta, Ica, Peru
- Universidad Nacional Mayor de San Marcos, School of Veterinary Medicine, San Borja, Lima, Peru
| | | | | | - Vikram N. Vakharia
- Institute of Marine & Environmental Technology, University of Maryland—Baltimore County, Baltimore, MD, United States of America
| |
Collapse
|
15
|
Wang H, Cong F, Guan J, Xiao L, Zhu Y, Lian Y, Huang R, Chen M, Guo P. Establishment of xMAP for the simultaneous detection of antibodies to Newcastle disease virus and avian influenza virus. Poult Sci 2019; 98:1494-1499. [PMID: 30476286 DOI: 10.3382/ps/pey510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/31/2018] [Indexed: 11/20/2022] Open
Abstract
Using Luminex xMAP (x = analyte, MAP = multi-analyte profiling) technology, a serological method for the simultaneous detection of antibodies to Newcastle disease virus (NDV) and avian influenza virus (AIV) was established. Nano-magnetic beads coated with purified NDV protein and AIV nucleoprotein were incubated with serum samples. Using biotinylated rabbit anti-chicken IgY and streptavidin-R-phycoerythrin, the optical signals measured by a Luminex 200 detection system indicated the quantification of NDV or AIV antibodies in the serum. Specific pathogen-free (SPF) chicken serum was used as a negative control. The Luminex xMAP assay developed in this study demonstrated high specificity as there was no cross-reaction with antibodies to infectious laryngotracheitis virus, infectious bronchitis virus, infectious bursal disease virus, avian leukosis virus, and Marek's disease virus. The results from reproducibility experiments showed that intra-coefficients of variation were 3.36 and 9.23% and inter-coefficients of variation were 6.50 and 7.66% for NDV and AIV, respectively. The results also indicated that the Luminex xMAP assay was 16 times more sensitive for NDV antibody detection and 1,024 times more sensitive for AIV antibody detection compared to the enzyme-linked immunosorbent assay (ELISA). A total of 300 chicken serum samples were subjected to both Luminex xMAP assay and ELISA, showing the coincidence rates of 98.67 and 98% for NDV and AIV antibody detection, respectively. This study provides a new method for the simultaneous detection NDV and AIV antibodies in the serum with high specificity and sensitivity.
Collapse
Affiliation(s)
- Huanan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510640, China
| | - Jianchi Guan
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510640, China
| | - Li Xiao
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510640, China
| | - Yujun Zhu
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510640, China
| | - Yuexiao Lian
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510640, China
| | - Ren Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou 510640, China
| | - Meili Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510640, China
| | - Pengju Guo
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510640, China
| |
Collapse
|
16
|
Morales Ruiz S, Bendezu J, Choque Guevara R, Montesinos R, Requena D, Choque Moreau L, Montalván Ávalos Á, Fernández-Díaz M. Development of a lateral flow test for the rapid detection of Avibacterium paragallinarum in chickens suspected of having infectious coryza. BMC Vet Res 2018; 14:411. [PMID: 30567563 PMCID: PMC6300026 DOI: 10.1186/s12917-018-1729-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/30/2018] [Indexed: 11/12/2022] Open
Abstract
Background Infectious coryza (IC) is an acute respiratory disease of growing chickens and layers caused by Avibacterium paragallinarum. The development of tools that allow rapid pathogen detection is necessary in order to avoid disease dissemination and economic losses in poultry. An Av. paragallinarum-specific Ma-4 epitope of the TonB-dependent transporter (TBDT) was selected using bioinformatic tools in order to immunize a BalbC mouse and to produce monoclonal antibodies to be used in a lateral flow test (LFT) developed for Av. paragallinarum detection in chicken nasal mucus samples. Results The 1G7G8 monoclonal antibody was able to detect TBDT in Av. paragallinarum cultures (serogroups: A, B and C) by Western blot and indirect ELISA assay. Consequently, we developed a self-pairing prototype LFT. The limit of detection of the prototype LFT using Av. paragallinarum cultures was 1 × 104 colony-forming units (CFU)/mL. Thirty-five nasal mucus samples from chickens suspected of having infectious coryza were evaluated for the LFT detection capacity and compared with bacterial isolation (B.I) and polymerase chain reaction (PCR). Comparative indicators such as sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive values (NPV) and the kappa index (K) were obtained. The values were 100.0% Se, 50% Sp, 65.4% PPV, 100% NPV, and 0.49 K and 83.9% Se, 100% Sp, 100% PPV, 44.4% NPV, and 0.54 K for the comparison of the LFT with B.I and PCR, respectively. Additionally, the LFT allowed the detection of Av. paragallinarum from coinfection cases of Av. paragallinarum with Gallibacterium anatis. Conclusions The results indicate that the self-pairing prototype LFT is suitable for the detection of TBDT in Av. paragallinarum cultures as well as in field samples such as nasal mucus from Av. paragallinarum-infected chickens. Therefore, this prototype LFT could be considered a rapid and promising tool to be used in farm conditions for Av. paragallinarum diagnosis.
Collapse
Affiliation(s)
- Sandra Morales Ruiz
- Laboratorios de Investigación y Desarrollo, FARVET SAC, Carretera Panamericana Sur Nº766 Km 198.5, Chincha Alta, 11702, Ica, Peru.
| | - Jorge Bendezu
- Laboratorios de Investigación y Desarrollo, FARVET SAC, Carretera Panamericana Sur Nº766 Km 198.5, Chincha Alta, 11702, Ica, Peru.
| | - Ricardo Choque Guevara
- Laboratorios de Investigación y Desarrollo, FARVET SAC, Carretera Panamericana Sur Nº766 Km 198.5, Chincha Alta, 11702, Ica, Peru
| | - Ricardo Montesinos
- Laboratorios de Investigación y Desarrollo, FARVET SAC, Carretera Panamericana Sur Nº766 Km 198.5, Chincha Alta, 11702, Ica, Peru
| | - David Requena
- Laboratorios de Investigación y Desarrollo, FARVET SAC, Carretera Panamericana Sur Nº766 Km 198.5, Chincha Alta, 11702, Ica, Peru.,Laboratorio de Bioinformática y Biología Molecular, Laboratorio de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430 San Martín de Porres, Lima, Lima, Peru
| | - Luz Choque Moreau
- Laboratorios de Investigación y Desarrollo, FARVET SAC, Carretera Panamericana Sur Nº766 Km 198.5, Chincha Alta, 11702, Ica, Peru
| | - Ángela Montalván Ávalos
- Laboratorios de Investigación y Desarrollo, FARVET SAC, Carretera Panamericana Sur Nº766 Km 198.5, Chincha Alta, 11702, Ica, Peru
| | - Manolo Fernández-Díaz
- Laboratorios de Investigación y Desarrollo, FARVET SAC, Carretera Panamericana Sur Nº766 Km 198.5, Chincha Alta, 11702, Ica, Peru.,FARVET SPF SAC, Carretera Panamerica Sur Nº766 Km 198.5, Chincha Alta, 11702, Ica, Peru
| |
Collapse
|
17
|
Diagnostic and Vaccination Approaches for Newcastle Disease Virus in Poultry: The Current and Emerging Perspectives. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7278459. [PMID: 30175140 PMCID: PMC6098882 DOI: 10.1155/2018/7278459] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
Abstract
Newcastle disease (ND) is one of the most devastating diseases that considerably cripple the global poultry industry. Because of its enormous socioeconomic importance and potential to rapidly spread to naïve birds in the vicinity, ND is included among the list of avian diseases that must be notified to the OIE immediately upon recognition. Currently, virus isolation followed by its serological or molecular identification is regarded as the gold standard method of ND diagnosis. However, this method is generally slow and requires specialised laboratory with biosafety containment facilities, making it of little relevance under epidemic situations where rapid diagnosis is seriously needed. Thus, molecular based diagnostics have evolved to overcome some of these difficulties, but the extensive genetic diversity of the virus ensures that isolates with mutations at the primer/probe binding sites escape detection using these assays. This diagnostic dilemma leads to the emergence of cutting-edge technologies such as next-generation sequencing (NGS) which have so far proven to be promising in terms of rapid, sensitive, and accurate recognition of virulent Newcastle disease virus (NDV) isolates even in mixed infections. As regards disease control strategies, conventional ND vaccines have stood the test of time by demonstrating track record of protective efficacy in the last 60 years. However, these vaccines are unable to block the replication and shedding of most of the currently circulating phylogenetically divergent virulent NDV isolates. Hence, rationally designed vaccines targeting the prevailing genotypes, the so-called genotype-matched vaccines, are highly needed to overcome these vaccination related challenges. Among the recently evolving technologies for the development of genotype-matched vaccines, reverse genetics-based live attenuated vaccines obviously appeared to be the most promising candidates. In this review, a comprehensive description of the current and emerging trends in the detection, identification, and control of ND in poultry are provided. The strengths and weaknesses of each of those techniques are also emphasised.
Collapse
|