1
|
Williams RAJ, Sánchez-Llatas CJ, Doménech A, Madrid R, Fandiño S, Cea-Callejo P, Gomez-Lucia E, Benítez L. Emerging and Novel Viruses in Passerine Birds. Microorganisms 2023; 11:2355. [PMID: 37764199 PMCID: PMC10536639 DOI: 10.3390/microorganisms11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
There is growing interest in emerging viruses that can cause serious or lethal disease in humans and animals. The proliferation of cloacal virome studies, mainly focused on poultry and other domestic birds, reveals a wide variety of viruses, although their pathogenic significance is currently uncertain. Analysis of viruses detected in wild birds is complex and often biased towards waterfowl because of the obvious interest in avian influenza or other zoonotic viruses. Less is known about the viruses present in the order Passeriformes, which comprises approximately 60% of extant bird species. This review aims to compile the most significant contributions on the DNA/RNA viruses affecting passerines, from traditional and metagenomic studies. It highlights that most passerine species have never been sampled. Especially the RNA viruses from Flaviviridae, Orthomyxoviridae and Togaviridae are considered emerging because of increased incidence or avian mortality/morbidity, spread to new geographical areas or hosts and their zoonotic risk. Arguably poxvirus, and perhaps other virus groups, could also be considered "emerging viruses". However, many of these viruses have only recently been described in passerines using metagenomics and their role in the ecosystem is unknown. Finally, it is noteworthy that only one third of the viruses affecting passerines have been officially recognized.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
| | - Ana Doménech
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Ricardo Madrid
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Sergio Fandiño
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo Cea-Callejo
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Esperanza Gomez-Lucia
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| |
Collapse
|
2
|
POECIVIRUS IS PRESENT IN INDIVIDUALS WITH BEAK DEFORMITIES IN SEVEN SPECIES OF NORTH AMERICAN BIRDS. J Wildl Dis 2021; 57:273-281. [PMID: 33822149 DOI: 10.7589/jwd-d-20-00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/08/2020] [Indexed: 11/20/2022]
Abstract
Avian keratin disorder (AKD), a disease of unknown etiology characterized by debilitating beak overgrowth, has increasingly affected wild bird populations since the 1990s. A novel picornavirus, poecivirus, is closely correlated with disease status in Black-capped Chickadees (Poecile atricapillus) in Alaska, US. However, our knowledge of the relationship between poecivirus and beak deformities in other species and other geographic areas remains limited. The growing geographic scope and number of species affected by AKD-like beak deformities require a better understanding of the causative agent to evaluate the population-level impacts of this epizootic. Here, we tested eight individuals from six avian species with AKD-consistent deformities for the presence of poecivirus: Mew Gull (Larus canus), Hairy Woodpecker (Picoides villosus), Black-billed Magpie (Pica hudsonia), American Crow (Corvus brachyrhynchos), Red-breasted Nuthatch (Sitta canadensis), and Blackpoll Warbler (Setophaga striata). The birds were sampled in Alaska and Maine (1999-2016). We used targeted PCR followed by Sanger sequencing to test for the presence of poecivirus in each specimen and to obtain viral genome sequence from virus-positive host individuals. We detected poecivirus in all individuals tested, but not in negative controls (water and tissue samples). Furthermore, we used unbiased metagenomic sequencing to test for the presence of other pathogens in six of these specimens (Hairy Woodpecker, two American Crows, two Red-breasted Nuthatches, Blackpoll Warbler). This analysis yielded additional viral sequences from several specimens, including the complete coding region of poecivirus from one Red-breasted Nuthatch, which we confirmed via targeted PCR followed by Sanger sequencing. This study demonstrates that poecivirus is present in individuals with AKD-consistent deformities from six avian species other than Black-capped Chickadee. While further investigation will be required to explore whether there exists a causal link between this virus and AKD, this study demonstrates that poecivirus is not geographically restricted to Alaska, but rather occurs elsewhere in North America.
Collapse
|
3
|
Hayer J, Wille M, Font A, González-Aravena M, Norder H, Malmberg M. Four novel picornaviruses detected in Magellanic Penguins (Spheniscus magellanicus) in Chile. Virology 2021; 560:116-123. [PMID: 34058706 DOI: 10.1016/j.virol.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Members of the Picornaviridae family comprise a significant burden on the poultry industry, causing diseases such as gastroenteritis and hepatitis. However, with the advent of metagenomics, a number of picornaviruses have now been revealed in apparently healthy wild birds. In this study, we identified four novel viruses belonging to the family Picornaviridae in healthy Magellanic penguins, a near threatened species. All samples were subsequently screened by RT-PCR for these new viruses, and approximately 20% of the penguins were infected with at least one of these viruses. The viruses were distantly related to members of the genera Hepatovirus, Tremovirus, Gruhelivirus and Crahelvirus. Further, they had more than 60% amino acid divergence from other picornaviruses, and therefore likely constitute novel genera. Our results demonstrate the vast undersampling of wild birds for viruses, and we expect the discovery of numerous avian viruses that are related to hepatoviruses and tremoviruses in the future.
Collapse
Affiliation(s)
- Juliette Hayer
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Michelle Wille
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia; Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Alejandro Font
- nstituto Antártico Chileno, Plaza Muñoz Gamero, 1055, Punta Arenas, Chile
| | | | - Helene Norder
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Microbiology, Gothenburg, Sweden
| | - Maja Malmberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|