1
|
Wu W, Ma F, Zhang X, Tan Y, Han T, Ding J, Wu J, Xing W, Wu B, Huang D, Zhang S, Xu Y, Song S. Research Progress on Viruses of Passiflora edulis. BIOLOGY 2024; 13:839. [PMID: 39452147 PMCID: PMC11506102 DOI: 10.3390/biology13100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Passiflora edulis, also known as passion fruit, is celebrated for its rich nutritional content, distinctive flavour, and significant medicinal benefits. At present, viral diseases pose a major challenge to the passion fruit industry, affecting both the production and quality of the fruit. These diseases impede the sustainable and healthy growth of the passion fruit sector. In recent years, with the expansion of P. edulis cultivation areas, virus mutations, and advances in virus detection technology, an increasing number of virus species infecting P. edulis have been discovered. To date, more than 40 different virus species have been identified; however, there are different strains within the same virus. This poses a challenge for the control and prevention of P. edulis virus disease. Therefore, this review discusses the different types of viruses and their characteristics, modes of transmission, and effects on the growth of the passion fruit plant, as well as the mechanisms of virus generation and preventive measures, with the hope that these discussions will provide a comprehensive understanding of and countermeasures for viruses in passion fruit.
Collapse
Affiliation(s)
- Wenhua Wu
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Funing Ma
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Xiaoyan Zhang
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
| | - Yuxin Tan
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Te Han
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Jing Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Juyou Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Wenting Xing
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Bin Wu
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Dongmei Huang
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Yi Xu
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572024, China
| | - Shun Song
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572024, China
| |
Collapse
|
2
|
Yang T, Li J, Mao Y, Wu H, Lin M, Chen L. The role of rhamnolipids in the growth and defense responses of passion fruit plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1659-1671. [PMID: 39506996 PMCID: PMC11534940 DOI: 10.1007/s12298-024-01511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 11/08/2024]
Abstract
Rhamnolipids (RLs) are bioactive compounds that have gained a lot of attention for their potential applications in agriculture. However, the exploration of RLs in passion fruit plants remains limited. This study aimed to investigate the role of RLs in passion fruit plants growth and defense responses. Firstly, the results demonstrated that RLs act as plant growth regulators, significantly enhancing the survival rate and root system development of passion fruit seedlings propagated by cutting. Further analyses suggested that RLs may enhance photosynthetic capacity and modulate the accumulation of indoleacetic acid (IAA) and cytokinin (CTK) in passion fruit cuttings, thereby promoting plant growth and development. Additionally, this study revealed that RLs effectively reduced susceptibility to viral pathogen telosma mosaic virus (TeMV) in passion fruit plants compared to distilled water-pretreated controls, resulting in alleviated disease symptoms. Significant up-regulation of antioxidative enzyme activities and reducing substances were observed in RL's-pretreated plants upon TeMV-inoculation compared to distilled water-pretreated ones. Moreover, RLs were found to promote other defense-related signaling pathways upon TeMV-inoculation in passion fruit plants, including salicylic acid (SA) accumulation and expression levels of defense-related genes such as pathogenesis-related gene (PR3), phenylalanine ammonia-lyase (PAL), transcription factors (TFs) WRKY and NAC. Collectively, these findings underscored the positive roles played by RLs both in promoting growth and eliciting defense responses within passion fruit plants. These results provided valuable insights for designing environment-friendly management strategies for cutting propagation as well as prevention and control measures against viral diseases in passion fruits. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01511-z.
Collapse
Affiliation(s)
- Ting Yang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong People’s Republic of China
| | - Jihu Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong People’s Republic of China
| | - Yongkai Mao
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong People’s Republic of China
| | - Han Wu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong People’s Republic of China
| | - Mingjiang Lin
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong People’s Republic of China
| | - Lijuan Chen
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong People’s Republic of China
| |
Collapse
|
3
|
Iglesias D, Stevens K, Sharma A, Diaz-Lara A. A Novel Cryptic Virus Isolated from Galphimia spp. in Mexico. Pathogens 2024; 13:504. [PMID: 38921801 PMCID: PMC11207071 DOI: 10.3390/pathogens13060504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Galphimia spp. is a plant employed in traditional medicine in Mexico because of its anxiolytic and sedative effects. Viruses have been associated with different alterations in plants, although asymptomatic agents (i.e., cryptic viruses) are also known. High-throughput sequencing (HTS) allows for the detection of pathogenic and non-pathogenic viral agents in plants, including potential novel viruses. The aim of this study was to investigate the presence of viral agents in two populations of Galphimia spp. by HTS. Sequencing was conducted on an Illumina NextSeq 550 platform, and a putative novel virus was identified. Two contigs showed homology to partitiviruses, and these encoded the RNA-dependent RNA polymerase and coat protein. These proteins showed the highest identities with orthologs in the recently discovered Vitis cryptic virus. A phylogenetic analysis of both RNAs showed that the new virus clusters into the monophyletic genus Deltapartitivirus along with other plant-infecting viruses. The result of the HTS analysis was validated by conventional RT-PCR and Sanger sequencing. A novel virus was discovered in a symptomless Galphimia spp. plant and tentatively named the Galphimia cryptic virus (GCV). This is the first virus discovered in medicinal plants in Mexico.
Collapse
Affiliation(s)
- Dianella Iglesias
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Queretaro 76130, Mexico;
| | - Kristian Stevens
- Departments of Computer Science and Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA;
| | - Ashutosh Sharma
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Queretaro 76130, Mexico;
| | - Alfredo Diaz-Lara
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Queretaro 76130, Mexico;
| |
Collapse
|
4
|
Fu X, Jiang J, Yang Q, Niu L, Wang Y, Long X, Malichan S, Xie X. Occurrence and Distribution of Major Viruses Infecting Passion Fruit in Guizhou Province, China, and Molecular Characterization of Two Potyviruses. PLANT DISEASE 2023; 107:2307-2312. [PMID: 36548918 DOI: 10.1094/pdis-09-22-2167-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The planting of passion fruit (Passiflora edulis) in Guizhou Province has gradually increased, and the area under cultivation ranks third in China. However, the cultivation and production of passion fruit is severely affected by viral diseases. In 2021 and 2022, we investigated the occurrence of multiple viral diseases in major cultivation areas, identified the main viruses and conducted field surveys in different growing areas of passion fruit in Guizhou Province, China. In total, 308 samples were randomly collected from 10 different passion fruit cultivation areas, and seven viral diseases were identified using electron microscopy, small RNA sequencing, and reverse-transcription polymerase chain reaction. Among them, the infection rate of Telosma mosaic virus (TeMV) was the highest (50%), followed by East Asian Passiflora virus (EAPV) (19%), and cucumber mosaic virus (CMV) (15%). The detection rates of the other four viruses were lower: Passiflora latent virus (PLV) (1%), turnip mosaic virus (TuMV) (0.6%), Passiflora virus Y (PaVY) (0.3%), and Euphorbia leaf curl virus (ELCV) (6%). In addition, high rates of mixed TeMV + CMV + EAPV infections were found in the province. Notably, 79% of EAPV-infected plants were also infected with TeMV. Finally, the molecular characteristics of the two highly detected potyviruses, TeMV and EAPV, were analyzed. To our knowledge, this study is the first systematic survey of viral diseases of passion fruit in Guizhou Province, China.
Collapse
Affiliation(s)
- Xiaodong Fu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Junmei Jiang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Qian Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Lili Niu
- Anshun Agricultural Sciences Academy, Anshun, Guizhou 561000, P.R. China
| | - Ye Wang
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang 550001, P.R. China
| | - Xiuqin Long
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang 550001, P.R. China
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| |
Collapse
|
5
|
A Zinc Finger Motif in the P1 N Terminus, Highly Conserved in a Subset of Potyviruses, Is Associated with the Host Range and Fitness of Telosma Mosaic Virus. J Virol 2023; 97:e0144422. [PMID: 36688651 PMCID: PMC9972955 DOI: 10.1128/jvi.01444-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
P1 is the first protein translated from the genomes of most viruses in the family Potyviridae, and it contains a C-terminal serine-protease domain that cis-cleaves the junction between P1 and HCPro in most cases. Intriguingly, P1 is the most divergent among all mature viral factors, and its roles during viral infection are still far from understood. In this study, we found that telosma mosaic virus (TelMV, genus Potyvirus) in passion fruit, unlike TelMV isolates present in other hosts, has two stretches at the P1 N terminus, named N1 and N2, with N1 harboring a Zn finger motif. Further analysis revealed that at least 14 different potyviruses, mostly belonging to the bean common mosaic virus subgroup, encode a domain equivalent to N1. Using the newly developed TelMV infectious cDNA clones from passion fruit, we demonstrated that N1, but not N2, is crucial for viral infection in both Nicotiana benthamiana and passion fruit. The regulatory effects of N1 domain on P1 cis cleavage, as well as the accumulation and RNA silencing suppression (RSS) activity of its cognate HCPro, were comprehensively investigated. We found that N1 deletion decreases HCPro abundance at the posttranslational level, likely by impairing P1 cis cleavage, thus reducing HCPro-mediated RSS activity. Remarkably, disruption of the Zn finger motif in N1 did not impair P1 cis cleavage and HCPro accumulation but severely debilitated TelMV fitness. Therefore, our results suggest that the Zn finger motif in P1s plays a critical role in viral infection that is independent of P1 protease activity and self-release, as well as HCPro accumulation and silencing suppression. IMPORTANCE Viruses belonging to the family Potyviridae represent the largest group of plant-infecting RNA viruses, including a variety of agriculturally and economically important viral pathogens. Like all picorna-like viruses, potyvirids employ polyprotein processing as the gene expression strategy. P1, the first protein translated from most potyvirid genomes, is the most variable viral factor and has attracted great scientific interest. Here, we defined a Zn finger motif-encompassing domain (N1) at the N terminus of P1 among diverse potyviruses phylogenetically related to bean common mosaic virus. Using TelMV as a model virus, we demonstrated that the N1 domain is key for viral infection, as it is involved both in regulating the abundance of its cognate HCPro and in an as-yet-undefined key function unrelated to protease processing and RNA silencing suppression. These results advance our knowledge of the hypervariable potyvirid P1s and highlight the importance for infection of a previously unstudied Zn finger domain at the P1 N terminus.
Collapse
|
6
|
Production and Functionalities of Specialized Metabolites from Different Organic Sources. Metabolites 2022; 12:metabo12060534. [PMID: 35736468 PMCID: PMC9228302 DOI: 10.3390/metabo12060534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Medicinal plants are rich sources of specialized metabolites that are of great importance to plants, animals, and humans. The usefulness of active biological compounds cuts across different fields, such as agriculture, forestry, food processing and packaging, biofuels, biocatalysts, and environmental remediation. In recent years, research has shifted toward the use of microbes, especially endophytes (bacteria, fungi, and viruses), and the combination of these organisms with other alternatives to optimize the production and regulation of these compounds. This review reinforces the production of specialized metabolites, especially by plants and microorganisms, and the effectiveness of microorganisms in increasing the production/concentration of these compounds in plants. The study also highlights the functions of these compounds in plants and their applications in various fields. New research areas that should be explored to produce and regulate these compounds, especially in plants and microbes, have been identified. Methods involving molecular studies are yet to be fully explored, and next-generation sequencing possesses an interesting and reliable approach.
Collapse
|
7
|
Di Silvestre D, Passignani G, Rossi R, Ciuffo M, Turina M, Vigani G, Mauri PL. Presence of a Mitovirus Is Associated with Alteration of the Mitochondrial Proteome, as Revealed by Protein–Protein Interaction (PPI) and Co-Expression Network Models in Chenopodium quinoa Plants. BIOLOGY 2022; 11:biology11010095. [PMID: 35053093 PMCID: PMC8773257 DOI: 10.3390/biology11010095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Plants often harbor persistent plant virus infection transmitted only vertically through seeds, resulting in no obvious symptoms (cryptic infections). Several studies have shown that such cryptic infections provide resilience against abiotic (and biotic) stress. We have recently discovered a new group of cryptic plant viruses infecting mitochondria (plant mitovirus). Mitochondria are cellular organelles displaying a pivotal role in protecting cells from the stress of nature . Here, we look at the proteomic alterations caused by the mitovirus cryptic infection of Chenopodium quinoa by Systems Biology approaches allowing one to evaluate data at holistic level. Quinoa is a domesticated plant species with many exciting features of abiotic stress resistance, and it is distinguished by its exceptional nutritional characteristics, such as the content and quality of proteins, minerals, lipids, and tocopherols. These features determined the growing interest for the quinoa crop by the scientific community and international organizations since they provide opportunities to produce high-value grains in arid, high-salt and high-UV agroecological environments. We discovered that quinoa lines hosting mitovirus activate some metabolic processes that might help them face drought. These findings present a new perspective for breeding crop plants through the augmented genome provided by accessory cryptic viruses to be investigated in the future. Abstract Plant mitoviruses belong to Mitoviridae family and consist of positive single-stranded RNA genomes replicating exclusively in host mitochondria. We previously reported the biological characterization of a replicating plant mitovirus, designated Chenopodium quinoa mitovirus 1 (CqMV1), in some Chenopodium quinoa accessions. In this study, we analyzed the mitochondrial proteome from leaves of quinoa, infected and not infected by CqMV1. Furthermore, by protein–protein interaction and co-expression network models, we provided a system perspective of how CqMV1 affects mitochondrial functionality. We found that CqMV1 is associated with changes in mitochondrial protein expression in a mild but well-defined way. In quinoa-infected plants, we observed up-regulation of functional modules involved in amino acid catabolism, mitochondrial respiratory chain, proteolysis, folding/stress response and redox homeostasis. In this context, some proteins, including BCE2 (lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex), DELTA-OAT (ornithine aminotransferase) and GR-RBP2 (glycine-rich RNA-binding protein 2) were interesting because all up-regulated and network hubs in infected plants; together with other hubs, including CAT (catalase) and APX3 (L-ascorbate peroxidase 3), they play a role in stress response and redox homeostasis. These proteins could be related to the higher tolerance degree to drought we observed in CqMV1-infected plants. Although a specific causative link could not be established by our experimental approach at this stage, the results suggest a new mechanistic hypothesis that demands further in-depth functional studies.
Collapse
Affiliation(s)
- Dario Di Silvestre
- Laboratory of Proteomics and Metabolomics, Institute for Biomedical Technologies (ITB), Department of Biomedical Sciences, National Research Council (CNR), 20054 Milan, Italy; (G.P.); (R.R.); (P.L.M.)
- Correspondence: (D.D.S.); (G.V.)
| | - Giulia Passignani
- Laboratory of Proteomics and Metabolomics, Institute for Biomedical Technologies (ITB), Department of Biomedical Sciences, National Research Council (CNR), 20054 Milan, Italy; (G.P.); (R.R.); (P.L.M.)
| | - Rossana Rossi
- Laboratory of Proteomics and Metabolomics, Institute for Biomedical Technologies (ITB), Department of Biomedical Sciences, National Research Council (CNR), 20054 Milan, Italy; (G.P.); (R.R.); (P.L.M.)
| | - Marina Ciuffo
- Institute for Sustainable Plant Protection, Department of Bio-Food Sciences, National Research Council (CNR), 10135 Turin, Italy; (M.C.); (M.T.)
| | - Massimo Turina
- Institute for Sustainable Plant Protection, Department of Bio-Food Sciences, National Research Council (CNR), 10135 Turin, Italy; (M.C.); (M.T.)
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, 10135 Turin, Italy
- Correspondence: (D.D.S.); (G.V.)
| | - Pier Luigi Mauri
- Laboratory of Proteomics and Metabolomics, Institute for Biomedical Technologies (ITB), Department of Biomedical Sciences, National Research Council (CNR), 20054 Milan, Italy; (G.P.); (R.R.); (P.L.M.)
| |
Collapse
|
8
|
Chen B, Wu D, Zheng H, Li G, Cao Y, Chen J, Yan F, Song X, Lin L. Complete genome sequence of passiflora virus Y infecting passion fruit in China. Arch Virol 2021; 166:1489-1493. [PMID: 33635433 DOI: 10.1007/s00705-021-05013-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
The complete genome sequence of passiflora virus Y (PaVY) from passion fruit growing in Guangdong province, China, was determined. The entire positive single-strand RNA genome comprises 9681 nucleotides (nt) excluding the poly(A) tail and encodes a polyprotein of 3084 amino acids flanked by 5' and 3' untranslated regions of 169 and 257 nt, respectively. In sequence comparisons and phylogenetic analysis, PaVY appears to represent a new species in the bean common mosaic virus subgroup of the genus Potyvirus. This is the first report of the complete genome sequence of PaVY and the first report of this virus in China.
Collapse
Affiliation(s)
- Binghua Chen
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Dali Wu
- Shenzhen Noposion Agrochemical Co., Ltd, Shenzhen, 518102, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Guangze Li
- Shenzhen Noposion Agrochemical Co., Ltd, Shenzhen, 518102, China
| | - Yuhao Cao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xuemei Song
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
9
|
Transcriptome analysis of yellow passion fruit in response to cucumber mosaic virus infection. PLoS One 2021; 16:e0247127. [PMID: 33626083 PMCID: PMC7904197 DOI: 10.1371/journal.pone.0247127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/02/2021] [Indexed: 01/19/2023] Open
Abstract
The cultivation and production of passion fruit (Passiflora edulis) are severely affected by viral disease. Yet there have been few studies of the molecular response of passion fruit to virus attack. In the present study, RNA-based transcriptional profiling (RNA-seq) was used to identify the gene expression profiles in yellow passion fruit (Passiflora edulis f. flavicarpa) leaves following inoculation with cucumber mosaic virus (CMV). Six RNA-seq libraries were constructed comprising a total of 42.23 Gb clean data. 1,545 differentially expressed genes (DEGs) were obtained (701 upregulated and 884 downregulated). Gene annotation analyses revealed that genes associated with plant hormone signal transduction, transcription factors, protein ubiquitination, detoxification, phenylpropanoid biosynthesis, photosynthesis and chlorophyll metabolism were significantly affected by CMV infection. The represented genes activated by CMV infection corresponded to transcription factors WRKY family, NAC family, protein ubiquitination and peroxidase. Several DEGs encoding protein TIFY, pathogenesis-related proteins, and RNA-dependent RNA polymerases also were upregualted by CMV infection. Overall, the information obtained in this study enriched the resources available for research into the molecular-genetic mechanisms of the passion fruit/CMV interaction, and might provide a theoretical basis for the prevention and management of passion fruit viral disease in the field.
Collapse
|
10
|
Lan HH, Lu LM. Characterization of Hibiscus Latent Fort Pierce Virus-Derived siRNAs in Infected Hibiscus rosa-sinensis in China. THE PLANT PATHOLOGY JOURNAL 2020; 36:618-627. [PMID: 33312097 PMCID: PMC7721542 DOI: 10.5423/ppj.oa.09.2020.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/27/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Although limited progress have been made about pathogen system of Hibiscus rosa-sinensis and Hibiscus latent Fort Pierce virus (HLFPV), interaction between plant host and pathogen remain largely unknown, which led to deficiency of effective measures to control disease of hibiscus plants caused by HLFPV. In this study, infection of HLFPV in Hibiscus rosa-sinensis was firstly confirmed for the first time by traditional electron microscopy, modern reverse transcription polymerase chain reaction and RNA-seq methods in China (HLFPV-Ch). Sequence properties analyzing suggested that the full-length sequences (6,465 nt) of HLFPV-Ch had a high sequence identity and a similar genomic structure with other tobamoviruses. It includes a 5'-terminal untranslated region (UTR), followed by four open reading frames encoding for a 128.5-kDa replicase, a 186.5-kDa polymerase, a 31-kDa movement protein, 17.6-kDa coat protein, and the last a 3'-terminal UTR. Furthermore, HLFPV-Ch-derived virus-derived siRNAs (vsiRNAs) ant its putative target genes, reported also for the first time, were identified and characterized from disease Hibiscus rosa-sinensis through sRNA-seq and Patmatch server to investigate the interaction in this pathogen systems. HLFPV-Ch-derived vsiRNAs demonstrated several general and specific characteristics. Gene Ontology classification revealed predicted target genes by vsiRNAs are involved in abroad range of cellular component, molecular function and biological processes. Taken together, for first time, our results certified the HLFPV infection in China and provide an insight into interaction between HLFPV and Hibiscus rosa-sinensis.
Collapse
Affiliation(s)
- Han-hong Lan
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Luan-mei Lu
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
11
|
Effect of virus infection on the secondary metabolite production and phytohormone biosynthesis in plants. 3 Biotech 2020; 10:547. [PMID: 33269181 DOI: 10.1007/s13205-020-02541-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
Plants have evolved according to their environmental conditions and continuously interact with different biological entities. These interactions induce many positive and negative effects on plant metabolism. Many viruses also associate with various plant species and alter their metabolism. Further, virus-plant interaction also alters the expression of many plant hormones. To overcome the biotic stress imposed by the virus's infestation, plants produce different kinds of secondary metabolites that play a significant role in plant defense against the viral infection. In this review, we briefly highlight the mechanism of virus infection, their influence on the plant secondary metabolites and phytohormone biosynthesis in response to the virus-plant interactions.
Collapse
|
12
|
Xie L, Gao F, Shen J, Zhang X, Zheng S, Zhang L, Li T. Molecular characterization of two recombinant isolates of telosma mosaic virus infecting Passiflora edulis from Fujian Province in China. PeerJ 2020; 8:e8576. [PMID: 32123643 PMCID: PMC7039140 DOI: 10.7717/peerj.8576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Telosma mosaic virus (TeMV) is an important plant virus causing considerable economic losses to passion fruit (Passiflora edulis) production worldwide, including China. In this study, the complete genome sequence (excluding the poly (A) tail) of two TeMV isolates, Fuzhou and Wuyishan, were determined to be 10,050 and 10,057 nucleotides, respectively. Sequence analysis indicated that Fuzhou and Wuyishan isolates share 78-98% nucleotide and 83-99% amino acid sequence identities with two TeMV isolates of Hanoi and GX, and a proposed new potyvirus, tentatively named PasFru. Phylogenetic analysis indicated that these TeMV isolates and PasFru were clustered into a monophyletic clade with high confidences. This indicated that PasFru and the four TeMV isolates should be considered as one potyvirus species. Two recombination breakpoints were identified within the CI and NIb genes of the Fuzhou isolate, and also within the P1 gene of the Wuyishan isolate. To the best of our knowledge, this is the first report of TeMV recombinants worldwide.
Collapse
Affiliation(s)
- Lixue Xie
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Fangluan Gao
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianguo Shen
- Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Center of Fuzhou Customs District, Fuzhou, China
| | - Xiaoyan Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shan Zheng
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Lijie Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Tao Li
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
13
|
Lan H, Lai B, Zhao P, Dong X, Wei W, Ye Y, Wu Z. Cucumber mosaic virus infection modulated the phytochemical contents of Passiflora edulis. Microb Pathog 2019; 138:103828. [PMID: 31682997 DOI: 10.1016/j.micpath.2019.103828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/02/2023]
Abstract
Cucumber mosaic virus (CMV) caused huge agricultural impact on Passiflora edulis. However, the interactions between CMV and P. edulis are poorly unknown, which lead to lack of prevention and control measures. In this study, we identified the infection of CMV in P. edulis through modern small RNA sequencing (sRNA-seq) technology combined with traditional electron microscope and polymerase chain reaction (PCR) methods. We also confirmed CMV infection adversely affected or modulated the contents of phytochemicals and further injured the development of P. edulis; inversely, P. edulis modulated its resistance to CMV stress by increasing the levels of secondary metabolites and the activities of antioxidant enzymes components. This is of significant importance to understand the interaction between virus infection and plant host.
Collapse
Affiliation(s)
- Hanhong Lan
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China.
| | - Baochun Lai
- Zhangzhou Institute of Agricultural Science of Fujian, 363000, PR China
| | - Peng Zhao
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China
| | - Xu Dong
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China
| | - Wanting Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China
| | - Yanjie Ye
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, PR China
| | - Zujian Wu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| |
Collapse
|