1
|
Piva-Amaral R, Augusto Pires de Souza G, Carlos Vilela Vieira Júnior J, Fróes Goulart de Castro R, Permagnani Gozzi W, Pereira Lima Neto S, Cauvilla Dos Santos AL, Pavani Cassiano H, Christine Ferreira da Silva L, Dias Novaes R, Santos Abrahão J, Ervolino de Oliveira C, de Mello Silva B, de Paula Costa G, Cosme Cotta Malaquias L, Felipe Leomil Coelho L. Bovine serum albumin nanoparticles containing Poly (I:C) can enhance the neutralizing antibody response induced by envelope protein of Orthoflavivirus zikaense. Int Immunopharmacol 2024; 128:111523. [PMID: 38219440 DOI: 10.1016/j.intimp.2024.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Since the Orthoflavivirus zikaense (ZIKV) has been considered a risk for Zika congenital syndrome development, developing a safe and effective vaccine has become a high priority. Numerous research groups have developed strategies to prevent ZIKV infection and have identified the domain III of the ZIKV envelope protein (zEDIII) as a promising target. Subunit antigens are often poorly immunogenic, necessitating the use of adjuvants and/or delivery systems to induce optimal immune responses. The subject of nanotechnology has substantial expansion in recent years in terms of research and applications. Nanoparticles could be used as drug delivery systems and to increase the immunogenicity and stability of a given antigen. This work aims to characterize and validate the potential of a vaccine formulation composed of domain zEDIII and bovine serum albumin nanoparticles containing polyinosinic-polycytidylic acid (NPPI). NPPI were uptake in vitro by immature bone marrow dendritic cells and histological analysis of the skin of mice treated with NPPI showed an increase in cellularity. Immunization assay showed that mice immunized with zEDIII in the presence of NPPI produced neutralizing antibodies. Through the passive transfer of sera from immunized mice to ZIKV-infected neonatal mice, it was demonstrated that these antibodies provide protection, mitigating weight loss, clinical or neurological signs induced by infection, and significantly increased survival rates. Protection was further substantiated by the reduction in the number of viable infectious ZIKV, as well as a decrease in inflammatory cytokines and tissue alterations in the brains of infected mice. Taken together, data presented in this study shows that NPPI + zEDIII is a promising vaccine candidate for ZIKV.
Collapse
Affiliation(s)
- Raíne Piva-Amaral
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| | - Gabriel Augusto Pires de Souza
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil; Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - João Carlos Vilela Vieira Júnior
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Renato Fróes Goulart de Castro
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - William Permagnani Gozzi
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Sergio Pereira Lima Neto
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Ana Luisa Cauvilla Dos Santos
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Helena Pavani Cassiano
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | | | - Romulo Dias Novaes
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - Carine Ervolino de Oliveira
- Instituto de Ciências Biomédicas, Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Breno de Mello Silva
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Guilherme de Paula Costa
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Luiz Cosme Cotta Malaquias
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| |
Collapse
|
2
|
Benites BD, Costa-Lima C, Pinto FBR, da Costa VA, Duarte ADSS, Zangirolami AB, Amaro EC, Granja F, Proenca-Modena JL, Saad STO, Addas-Carvalho M. Selection of plasma donors for the production of anti-SARS-CoV-2 immunoglobulin-based therapies: Strategies for quantitative antibody measurements. Transfus Apher Sci 2022; 61:103513. [PMID: 35871137 PMCID: PMC9293395 DOI: 10.1016/j.transci.2022.103513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 01/04/2023]
Abstract
Even after two years of the pandemic, a completely effective treatment against SARS-CoV-2 has not yet been established. Considering this fact and the emergence of successive new viral variants, the development of therapies based on natural polyclonal antibodies recovered from convalescent plasma remains relevant. This study presents a comparison between different methods of screening antibodies in samples of 41 individuals previously diagnosed with COVID-19. We found a significant correlation between Abbot Architect anti-SARS-CoV-2 IgG and Abbott Allinity SARS-CoV-2 IgG II Quantitative assay intensity of reactivity and neutralizing antibody (nAb) titers. Thus, we propose an initial antibody screening with IgG anti-N Abbott Architect test, with an index of, for example, > 3.25 or SARS-CoV-2 IgG II Quantitative Abbott Allinity assay > 137.65 AU/mL as good predictors of Nab ≥ 1:80. For the quantitative method, this threshold demonstrated a 100 % sensitivity and 80 % specificity, with 97.3 % accuracy. An interesting observation was the increase in the neutralizing activity of the anti-SARS-CoV-2 antibodies with the longest interval between the end of the symptoms and the collection, demonstrating that the delay in plasma collection does not affect the achievement of adequate nAbs levels. These results demonstrate the possibility of using faster and more widely available commercial serological tests with a good correlation with viral neutralization tests in culture, allowing for optimized large-scale donor selection, which will be of utmost importance for the development of therapies such as hyperimmune immunoglobulin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fabiana Granja
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Brazil; Biodiversity Research Centre, Federal University of Roraima, Boa Vista, Brazil
| | - José Luiz Proenca-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Brazil
| | | | | |
Collapse
|
3
|
Yang SM, Lv S, Zhang W, Cui Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. SENSORS (BASEL, SWITZERLAND) 2022; 22:1620. [PMID: 35214519 PMCID: PMC8875995 DOI: 10.3390/s22041620] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
The early diagnosis of infectious diseases is critical because it can greatly increase recovery rates and prevent the spread of diseases such as COVID-19; however, in many areas with insufficient medical facilities, the timely detection of diseases is challenging. Conventional medical testing methods require specialized laboratory equipment and well-trained operators, limiting the applicability of these tests. Microfluidic point-of-care (POC) equipment can rapidly detect diseases at low cost. This technology could be used to detect diseases in underdeveloped areas to reduce the effects of disease and improve quality of life in these areas. This review details microfluidic POC equipment and its applications. First, the concept of microfluidic POC devices is discussed. We then describe applications of microfluidic POC devices for infectious diseases, cardiovascular diseases, tumors (cancer), and chronic diseases, and discuss the future incorporation of microfluidic POC devices into applications such as wearable devices and telemedicine. Finally, the review concludes by analyzing the present state of the microfluidic field, and suggestions are made. This review is intended to call attention to the status of disease treatment in underdeveloped areas and to encourage the researchers of microfluidics to develop standards for these devices.
Collapse
Grants
- BRA2017216, BE2018627,2020THRC-GD-7, D18003, LM201603, KFKT2018001 the 333 project of Jiangsu Province in 2017, the Primary Research & Development Plan of Jiangsu Province, the Taihu Lake talent plan, the Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Scien
- NSFC81971511 the National Natural Sciences Foundation of China
Collapse
Affiliation(s)
- Shih-Mo Yang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (S.-M.Y.); (S.L.)
| | - Shuangsong Lv
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (S.-M.Y.); (S.L.)
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada;
| | - Yubao Cui
- Clinical Research Center, The Affiliated Wuxi People’s Hospital, Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, China
| |
Collapse
|
4
|
Deshpande GR, Sapkal GN, Tilekar BN, Yadav PD, Gurav Y, Gaikwad S, Kaushal H, Deshpande KS, Kaduskar O, Sarkale P, Baradkar S, Suryawanshi A, Lakra R, Sugunan AP, Balakrishnan A, Abraham P, Salve P. Neutralizing antibody responses to SARS-CoV-2 in COVID-19 patients. Indian J Med Res 2020; 152:82-87. [PMID: 32859866 PMCID: PMC7853248 DOI: 10.4103/ijmr.ijmr_2382_20] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background & objectives: The global pandemic caused by SARS-CoV-2 virus has challenged public health system worldwide due to the unavailability of approved preventive and therapeutic options. Identification of neutralizing antibodies (NAb) and understanding their role is important. However, the data on kinetics of NAb response among COVID-19 patients are unclear. To understand the NAb response in COVID-19 patients, we compared the findings of microneutralization test (MNT) and plaque reduction neutralization test (PRNT) for the SARS-CoV-2. Further, the kinetics of NAb response among COVID-19 patients was assessed. Methods: A total of 343 blood samples (89 positive, 58 negative for SARS-CoV-2 and 17 cross-reactive and 179 serum from healthy individuals) were collected and tested by MNT and PRNT. SARS-CoV-2 virus was prepared by propagating the virus in Vero CCL-81 cells. The intra-class correlation was calculated to assess the correlation between MNT and PRNT. The neutralizing endpoint as the reduction in the number of plaque count by 90 per cent (PRNT90) was also calculated. Results: The analysis of MNT and PRNT quantitative results indicated that the intra-class correlation was 0.520. Of the 89 confirmed COVID-19 patients, 64 (71.9%) showed NAb response. Interpretation & conclusions: The results of MNT and PRNT were specific with no cross-reactivity. In the early stages of infection, the NAb response was observed with variable antibody kinetics. The neutralization assays can be used for titration of NAb in recovered/vaccinated or infected COVID-19 patients.
Collapse
Affiliation(s)
- Gururaj Rao Deshpande
- Diagnostic Virology Group, Pimpri Chinchwad Municipal Corporation, Pune, Maharashtra, India
| | - Gajanan N Sapkal
- Diagnostic Virology Group, Pimpri Chinchwad Municipal Corporation, Pune, Maharashtra, India
| | - Bipin N Tilekar
- Diagnostic Virology Group, Pimpri Chinchwad Municipal Corporation, Pune, Maharashtra, India
| | - Pragya D Yadav
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Yogesh Gurav
- Epidemiology Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Shivshankar Gaikwad
- Diagnostic Virology Group, Pimpri Chinchwad Municipal Corporation, Pune, Maharashtra, India
| | - Himanshu Kaushal
- Influenza Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ketki S Deshpande
- Diagnostic Virology Group, Pimpri Chinchwad Municipal Corporation, Pune, Maharashtra, India
| | - Ojas Kaduskar
- Diagnostic Virology Group, Pimpri Chinchwad Municipal Corporation, Pune, Maharashtra, India
| | - Prasad Sarkale
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Srikant Baradkar
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Annasaheb Suryawanshi
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Rajen Lakra
- Maximum Containment Facility, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - A P Sugunan
- ICMR-National Institute of Virology, Kerala Unit, Alappuzha, Kerala, India
| | | | - Priya Abraham
- Diagnostic Virology Group, Pimpri Chinchwad Municipal Corporation, Pune, Maharashtra, India
| | - Pavan Salve
- Medical Department, Pimpri Chinchwad Municipal Corporation, Pune, Maharashtra, India
| |
Collapse
|
5
|
Sharun K, Tiwari R, Iqbal Yatoo M, Patel SK, Natesan S, Dhama J, Malik YS, Harapan H, Singh RK, Dhama K. Antibody-based immunotherapeutics and use of convalescent plasma to counter COVID-19: advances and prospects. Expert Opin Biol Ther 2020; 20:1033-1046. [PMID: 32744917 DOI: 10.1080/14712598.2020.1796963] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) has spread to several countries globally. Currently, there is no specific drug or vaccine available for managing COVID-19. Antibody-based immunotherapeutic strategies using convalescent plasma, monoclonal antibodies (mAbs), neutralizing antibodies (NAbs), and intravenous immunoglobulins have therapeutic potential. AREAS COVERED This review provides the current status of the development of various antibody-based immunotherapeutics such as convalescent plasma, mAbs, NAbs, and intravenous immunoglobulins against COVID-19. The review also highlights their advantages, disadvantages, and clinical utility for the treatment of COVID-19 patients. EXPERT OPINION In a pandemic situation such as COVID-19, the development of new drugs should focus on and expedite the strategies where safety and efficacy are proven. Antibody-based immunotherapeutic approaches such as convalescent plasma, intravenous immunoglobulins, and mAbs have a proven record of safety and efficacy and are in use for decades. Some of them are already being used to manage COVID-19 patients and found to be useful. However, the mAbs with virus neutralization potential is the need of the hour during this COVID-19 pandemic to be more specific and virus targeted. The research and investment need to be accelerated to bring them into clinical use for prophylactic and therapeutic purposes against COVID-19.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute , Izatnagar, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College Of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura, Uttar Pradesh, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir , Srinagar, Jammu and Kashmir, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Izatnagar, Uttar Pradesh, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar , Gandhinagar, Gujarat, India
| | - Jaideep Dhama
- Department of Ophthalmology, Tara Hospital , New Delhi, India
| | - Yashpal S Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute , Izatnagar, Uttar Pradesh, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala , Banda Aceh, Indonesia.,Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala , Banda Aceh, Indonesia.,Department of Microbiology, School of Medicine, Universitas Syiah Kuala , Banda Aceh, Indonesia
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute , Izatnagar, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Izatnagar, Uttar Pradesh, India
| |
Collapse
|
6
|
Lindholm PF, Ramsey G, Kwaan HC. Passive Immunity for Coronavirus Disease 2019: A Commentary on Therapeutic Aspects Including Convalescent Plasma. Semin Thromb Hemost 2020; 46:796-803. [PMID: 32526774 PMCID: PMC7645821 DOI: 10.1055/s-0040-1712157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the ongoing pandemic of coronavirus disease 2019 (COVID-19), the novel virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is infecting a naïve population. The innate immunity of the infected patient is unable to mount an effective defense, resulting in a severe illness with substantial morbidity and mortality. As most treatment modalities including antivirals and anti-inflammatory agents are mostly ineffective, an immunological approach is needed. The mechanism of innate immunity to this viral illness is not fully understood. Passive immunity becomes an important avenue for the management of these patients. In this article, the immune responses of COVID-19 patients are reviewed. As SARS-CoV-2 has many characteristics in common with two other viruses, SARS-CoV that cause severe acute respiratory syndrome (SARS) and MERS-CoV (Middle East respiratory syndrome coronavirus) that causes Middle East respiratory syndrome (MERS), the experiences learned from the use of passive immunity in treatment can be applied to COVID-19. The immune response includes the appearance of immunoglobulin M followed by immunoglobulin G and neutralizing antibodies. Convalescent plasma obtained from patients recovered from the illness with high titers of neutralizing antibodies was successful in treating many COVID-19 patients. The factors that determine responses as compared with those seen in SARS and MERS are also reviewed. As there are no approved vaccines against all three viruses, it remains a challenge in the ongoing development for an effective vaccine for COVID-19.
Collapse
Affiliation(s)
- Paul F Lindholm
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Glenn Ramsey
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hau C Kwaan
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|