1
|
Yu L, Yongbo W, Shengjun Y, Jia T, Ya X, Guoyang L, Linna M. Research of recombinant influenza A virus as a vector for Mycoplasma pneumoniae P1a and P30a. Immun Inflamm Dis 2024; 12:e70021. [PMID: 39291404 PMCID: PMC11408921 DOI: 10.1002/iid3.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Mycoplasma pneumoniae (MP) is a common respiratory pathogen affecting the longevity of the elderly and the health of children. However, the human vaccine against MP has not been successfully developed till now due to the poor immunogenicity and side effects of MP inactivated or attenuated vaccine. Therefore, it is necessary to develop a MP genetic engineering vaccine with influenza virus strain as vector. METHODS In this study, the major antigen genes P1a of MP adhesion factor P1(3862-4554 bases) and P30a of P30(49-822 bases) were inserted into the nonstructural protein (NS) gene of Influenza A virus strain A/Puerto Rio/8/34(H1N1), PR8 for short, to construct the recombinant vectors NS-P1a or NS-P30a. The recombinant pHW2000 plasmids containing NS-P1a or NS-P30a were cotransfected with the rest 7 fragments of PR8 into HEK293T cells. After inoculating chicken embryos, the recombinant influenza viruses rFLU-P1a and rFLU-P30a were rescued. RT-PCR and sequencing were used to identify the recombinant viruses. The hemagglutination titers of rFLU-P1a and rFLU-P30a were determined after five successive generations in chicken embryos so as to indicate the genetic stability of the recombinant viruses. The morphology of recombinant influenza viruses was observed under electron microscopy. RESULTS P1a or P30a was designed to be inserted into the modified NS gene sequence separately and synthesized successfully. RT-PCR identification of the recombinant viruses rFLU-P1a and rFLU-P30a showed that P1a (693 bp), P30a (774 bp), NS-P1a (1992bp) and NS-P30a (2073 bp) bands were found, and the sequencing results were correct. After five successive generations, each virus generation has a certain hemagglutination titer (from 1:32 to 1:64), and the band of P1a or P30a can be seen in the corresponding positions. The virus particles under the electron microscope appeared as spheres or long strips connected by several particles, revealing a complete viral membrane structure composed of virus lipid bilayer, hemagglutinin, neuraminidase, and matrix proteins. CONCLUSION The recombinant viruses rFLU-P1a and rFLU-P30a which carried the advantaged immune regions of the P1 and P30 genes in MP were successfully constructed and identified. And the genetic stability of rFLU-P1a or rFLU-P30a was relatively high. The typical and complete morphology of influenza virus was observed under the electron microscope. Our research provided a foundation for the further development of MP vaccines for human.
Collapse
Affiliation(s)
- Liang Yu
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Wang Yongbo
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Yang Shengjun
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Tan Jia
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Xu Ya
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Liao Guoyang
- The Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
| | - Ma Linna
- Department of Medical Laboratory TechniqueKunming Medical University Haiyuan CollegeKunmingChina
| |
Collapse
|
2
|
Su BM, Shi YB, Lin W, Xu L, Xu XQ, Lin J. A chemoenzymatic process for preparation of highly purified dehydroepiandrosterone in high space-time yield. Bioorg Chem 2023; 133:106391. [PMID: 36739685 DOI: 10.1016/j.bioorg.2023.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Dehydroepiandrosterone (DHEA) is an important neurosteroid hormone to keep human hormonal balance and reproductive health. However, DHEA was always produced with impurities either by chemical or biological method and required high-cost purification before the medical use. To address this issue, a novel chemoenzymatic process was proposed and implemented to produce DHEA. An acetoxylated derivate of 4-androstene-3,17-dione (4-AD) was generated by chemical reaction and converted into DHEA by an enzyme cascade reaction combining a hydrolysis reaction with a reduction reaction. The hydrolysis reaction was catalyzed by a commercial esterase Z03 while the reduction reaction was catalyzed by E. coli cells co-expressing a 3β-hydroxysteroid dehydrogenase SfSDR and a glucose dehydrogenase BtGDH. After the condition optimization, DHEA was synthesized at a 100 mL scale under 100 mM of substrate loading and purified as white powder with the highest space-time yield (4.80 g/L/h) and purity (99 %) in the biosynthesis of DHEA. The successful attempt in this study provides a new approach for green synthesis of highly purified DHEA in the pharmaceutical industry.
Collapse
Affiliation(s)
- Bing-Mei Su
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yi-Bing Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Wei Lin
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Lian Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xin-Qi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
3
|
Malik T, Klenow L, Karyolaimos A, Gier JWD, Daniels R. Silencing Transcription from an Influenza Reverse Genetics Plasmid in E. coli Enhances Gene Stability. ACS Synth Biol 2023; 12:432-445. [PMID: 36716395 PMCID: PMC9942234 DOI: 10.1021/acssynbio.2c00358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Reverse genetics (RG) systems have been instrumental for determining the molecular aspects of viral replication, pathogenesis, and for the development of therapeutics. Here, we demonstrate that genes encoding the influenza surface antigens hemagglutinin and neuraminidase have varying stability when cloned into a common RG plasmid and transformed into Escherichia coli. Using GFP as a reporter, we demonstrate that E. coli expresses the target genes in the RG plasmid at low levels. Incorporating lac operators or a transcriptional terminator into the plasmid reduced expression and stabilized the viral genes to varying degrees. Sandwiching the viral gene between two lac operators provided the largest contribution to stability and we confirmed the stabilization is Lac repressor-dependent and crucial for subsequent plasmid propagations in E. coli. Viruses rescued from the lac operator-stabilized plasmid displayed similar kinetics and titers to the original plasmid in two different viral backbones. Together, these results indicate that silencing transcription from the plasmid in E. coli helps to maintain the correct influenza gene sequence and that the lac operator addition does not impair virus production. It is envisaged that sandwiching DNA segments between lac operators can be used for reducing DNA segment instability in any plasmid that is propagated in E. coli which express the Lac repressor.
Collapse
Affiliation(s)
- Tahir Malik
- Division
of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Laura Klenow
- Division
of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Alexandros Karyolaimos
- Department
of Biochemistry and Biophysics, Stockholm
University, 10691 Stockholm, Sweden
| | - Jan-Willem de Gier
- Department
of Biochemistry and Biophysics, Stockholm
University, 10691 Stockholm, Sweden
| | - Robert Daniels
- Division
of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States,
| |
Collapse
|
4
|
The Origin of Internal Genes Contributes to the Replication and Transmission Fitness of H7N9 Avian Influenza Virus. J Virol 2022; 96:e0129022. [PMID: 36342296 PMCID: PMC9683025 DOI: 10.1128/jvi.01290-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
H9N2 avian influenza viruses (AIVs) have donated internal gene segments during the emergence of zoonotic AIVs, including H7N9. We used reverse genetics to generate A/Anhui/1/13 (H7N9) and three reassortant viruses (2:6 H7N9) which contained the hemagglutinin and neuraminidase from Anhui/13 (H7N9) and the six internal gene segments from H9N2 AIVs belonging to (i) G1 subgroup 2, (ii) G1 subgroup 3, or (iii) BJ94 lineages, enzootic in different regions throughout Asia. Infection of chickens with the 2:6 H7N9 containing G1-like H9N2 internal genes conferred attenuation in vivo, with reduced shedding and transmission to contact chickens. However, possession of BJ94-like H9N2 internal genes resulted in more rapid transmission and significantly elevated cloacal shedding compared to the parental Anhui/13 H7N9. In vitro analysis showed that the 2:6 H7N9 with BJ94-like internal genes had significantly increased replication compared to the Anhui/13 H7N9 in chicken cells. In vivo coinfection experiments followed, where chickens were coinfected with pairs of Anhui/13 H7N9 and a 2:6 H7N9 reassortant. During ensuing transmission events, the Anhui/13 H7N9 virus outcompeted 2:6 H7N9 AIVs with internal gene segments of BJ94-like or G1-like H9N2 viruses. Coinfection did lead to the emergence of novel reassortant genotypes that were transmitted to contact chickens. Some of the reassortant viruses had a greater replication in chicken and human cells compared to the progenitors. We demonstrated that the internal gene cassette determines the transmission fitness of H7N9 viruses in chickens, and the reassortment events can generate novel H7N9 genotypes with increased virulence in chickens and enhanced zoonotic potential. IMPORTANCE H9N2 avian influenza viruses (AIVs) are enzootic in poultry in different geographical regions. The internal genes of these viruses can be exchanged with other zoonotic AIVs, most notably the A/Anhui/1/2013-lineage H7N9, which can give rise to new virus genotypes with increased veterinary, economic and public health threats to both poultry and humans. We investigated the propensity of the internal genes of H9N2 viruses (G1 or BJ94) in the generation of novel reassortant H7N9 AIVs. We observed that the internal genes of H7N9 which were derivative of BJ94-like H9N2 virus have a fitness advantage compared to those from the G1-like H9N2 viruses for efficient transmission among chickens. We also observed the generation of novel reassortant viruses during chicken transmission which infected and replicated efficiently in human cells. Therefore, such emergent reassortant genotypes may pose an elevated zoonotic threat.
Collapse
|
5
|
Gbala ID, Macharia RW, Bargul JL, Magoma G. Membrane Permeabilization and Antimicrobial Activity of Recombinant Defensin-d2 and Actifensin against Multidrug-Resistant Pseudomonas aeruginosa and Candida albicans. Molecules 2022; 27:molecules27144325. [PMID: 35889198 PMCID: PMC9317813 DOI: 10.3390/molecules27144325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Antimicrobial resistance requires urgent efforts towards the discovery of active antimicrobials, and the development of strategies to sustainably produce them. Defensin and defensin-like antimicrobial peptides (AMPs) are increasingly gaining pharmacological interest because of their potency against pathogens. In this study, we expressed two AMPs: defensin-d2 derived from spinach, and defensin-like actifensin from Actinomyces ruminicola. Recombinant pTXB1 plasmids carrying the target genes encoding defensin-d2 and actifensin were generated by the MEGAWHOP cloning strategy. Each AMP was first expressed as a fusion protein in Escherichia coli, purified by affinity chromatography, and was thereafter assayed for antimicrobial activity against multidrug-resistant (MDR) pathogens. Approximately 985 µg/mL and 2895 µg/mL of recombinant defensin-d2 and actifensin, respectively, were recovered with high purity. An analysis by MALDI-TOF MS showed distinct peaks corresponding to molecular weights of approximately 4.1 kDa for actifensin and 5.8 kDa for defensin-d2. An in vitro antimicrobial assay showed that MDR Pseudomonas aeruginosa and Candida albicans were inhibited at minimum concentrations of 7.5 µg/mL and 23 µg/mL for recombinant defensin-d2 and actifensin, respectively. The inhibitory kinetics of the peptides revealed cidal activity within 4 h of the contact time. Furthermore, both peptides exhibited an antagonistic interaction, which could be attributed to their affinities for similar ligands, as deduced by peptide–ligand profiling. Moreover, both peptides inhibited biofilm formation, and they exhibited no resistance potential and low hemolytic activity. The peptides also possess the ability to permeate and disrupt the cell membranes of MDR P. aeruginosa and C. albicans. Therefore, recombinant actifensin and defensin-d2 exhibit broad-spectrum antimicrobial activity and have the potential to be used as therapy against MDR pathogens.
Collapse
Affiliation(s)
- Ifeoluwa D. Gbala
- Molecular Biology and Biotechnology, Institute for Basic Sciences, Technology and Innovation, Pan African University, Nairobi P.O. Box 62000-00200, Kenya;
- Correspondence:
| | - Rosaline W. Macharia
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Joel L. Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
| | - Gabriel Magoma
- Molecular Biology and Biotechnology, Institute for Basic Sciences, Technology and Innovation, Pan African University, Nairobi P.O. Box 62000-00200, Kenya;
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
| |
Collapse
|
6
|
Alqazlan N, Astill J, Raj S, Sharif S. Strategies for enhancing immunity against avian influenza virus in chickens: A review. Avian Pathol 2022; 51:211-235. [PMID: 35297706 DOI: 10.1080/03079457.2022.2054309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Poultry infection with avian influenza viruses (AIV) is a continuous source of concern for poultry production and human health. Uncontrolled infection and transmission of AIV in poultry increases the potential for viral mutation and reassortment, possibly resulting in the emergence of zoonotic viruses. To this end, implementing strategies to disrupt the transmission of AIVs in poultry, including a wide array of traditional and novel methods, is much needed. Vaccination of poultry is a targeted approach to reduce clinical signs and shedding in infected birds. Strategies aimed at enhancing the effectiveness of AIV vaccines are multi-pronged and include methods directed towards eliciting immune responses in poultry. Strategies include producing vaccines of greater immunogenicity via vaccine type and adjuvant application and increasing bird responsiveness to vaccines by modification of the gastrointestinal tract (GIT) microbiome and dietary interventions. This review provides an in-depth discussion of recent findings surrounding novel AIV vaccines for poultry, including reverse genetics vaccines, vectors, protein vaccines and virus like particles, highlighting their experimental efficacy among other factors such as safety and potential for use in the field. In addition to the type of vaccine employed, vaccine adjuvants also provide an effective way to enhance AIV vaccine efficacy, therefore, research on different types of vaccine adjuvants and vaccine adjuvant delivery strategies is discussed. Finally, the poultry gastrointestinal microbiome is emerging as an important factor in the effectiveness of prophylactic treatments. In this regard, current findings on the effects of the chicken GIT microbiome on AIV vaccine efficacy are summarized here.
Collapse
Affiliation(s)
- Nadiyah Alqazlan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jake Astill
- Artemis Technologies Inc., Guelph, ON, N1L 1E3, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
7
|
Coinfection of Chickens with H9N2 and H7N9 Avian Influenza Viruses Leads to Emergence of Reassortant H9N9 Virus with Increased Fitness for Poultry and a Zoonotic Potential. J Virol 2022; 96:e0185621. [PMID: 35019727 PMCID: PMC8906417 DOI: 10.1128/jvi.01856-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in China. This virus causes inapparent clinical disease in chickens, but zoonotic transmission results in severe and fatal disease in humans. To examine a natural reassortment scenario between H7N9 and G1 lineage H9N2 viruses predominant in the Indian subcontinent, we performed an experimental coinfection of chickens with A/Anhui/1/2013/H7N9 (Anhui/13) virus and A/Chicken/Pakistan/UDL-01/2008/H9N2 (UDL/08) virus. Plaque purification and genotyping of the reassortant viruses shed via the oropharynx of contact chickens showed H9N2 and H9N9 as predominant subtypes. The reassortant viruses shed by contact chickens also showed selective enrichment of polymerase genes from H9N2 virus. The viable "6+2" reassortant H9N9 (having nucleoprotein [NP] and neuraminidase [NA] from H7N9 and the remaining genes from H9N2) was successfully shed from the oropharynx of contact chickens, plus it showed an increased replication rate in human A549 cells and a significantly higher receptor binding to α2,6 and α2,3 sialoglycans compared to H9N2. The reassortant H9N9 virus also had a lower fusion pH, replicated in directly infected ferrets at similar levels compared to H7N9 and transmitted via direct contact. Ferrets exposed to H9N9 via aerosol contact were also found to be seropositive, compared to H7N9 aerosol contact ferrets. To the best of our knowledge, this is the first study demonstrating that cocirculation of H7N9 and G1 lineage H9N2 viruses could represent a threat for the generation of novel reassortant H9N9 viruses with greater virulence in poultry and a zoonotic potential. IMPORTANCE We evaluated the consequences of reassortment between the H7N9 and the contemporary H9N2 viruses of the G1 lineage that are enzootic in poultry across the Indian subcontinent and the Middle East. Coinfection of chickens with these viruses resulted in the emergence of novel reassortant H9N9 viruses with genes derived from both H9N2 and H7N9 viruses. The "6+2" reassortant H9N9 (having NP and NA from H7N9) virus was shed from contact chickens in a significantly higher proportion compared to most of the reassortant viruses, showed significantly increased replication fitness in human A549 cells, receptor binding toward human (α2,6) and avian (α2,3) sialic acid receptor analogues, and the potential to transmit via contact among ferrets. This study demonstrated the ability of viruses that already exist in nature to exchange genetic material, highlighting the potential emergence of viruses from these subtypes with zoonotic potential.
Collapse
|
8
|
Zhao HR, Su BM, Shi YB, Lin J. Construction of Efficient Enzyme Systems for Preparing Chiral Ethyl 3-hydroxy-3-phenylpropionate. Enzyme Microb Technol 2022; 157:110033. [DOI: 10.1016/j.enzmictec.2022.110033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/03/2022]
|
9
|
Prizad H, Sheikholeslami F, Mahmoudi M, Fazeli M, Fadajan Z. The role of assaying recombinant Beclin1 by in vitro and in vivo tests. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|