1
|
Al-Zebeeby A, Abbas AH, Alsaegh HA, Alaraji FS. The First Record of an Aggressive Form of Ocular Tumour Enhanced by Marek's Disease Virus Infection in Layer Flock in Al-Najaf, Iraq. Vet Med Int 2024; 2024:1793189. [PMID: 39376215 PMCID: PMC11458278 DOI: 10.1155/2024/1793189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
Marek's disease (MD) is a highly infectious poultry illness with a tendency to form tumours in peripheral nerves and internal organs of affected birds. Tumours accompany MD, mostly caused by oncogenic Gallid alpha herpesvirus 2 (MD Herpes virus serotype I). Studies on avian tumours associated with MD infection are limited in Iraq. In the presented study, the positive samples of ocular tumour were 168 out of 282 MD positive samples, which accomplished in farm suffered from an unexpectedly high mortality rate. We investigated a rapidly developed tumour mass that was observed in an MD-vaccinated layer flock that showed obvious clinical signs of MD, accompanied by forming a small lump in one eye at age 21 weeks, which developed to a big lump at week 28 of age, leading to death. The diagnosis MD infection was confirmed by a Polymerase Chain Reaction (PCR) amplification of a specific region of the target gene meq of the causative agent, followed by Sanger sequencing and BLASTn search of the sequence against the NCBI nucleic acid database, resulted in Gallid alpha herpes virus 2 strain, and according to the phylogenetic analysis, the sequence from this study was uniquely clustered in its own branch in the tree. Histopathological examination of the ocular tumour core revealed aggregation of neoplastic cells and haemorrhage that replaced the normal eye tissue, as well as early tumour formation in internal organs such as the lung and liver. In addition, abnormal lesions are susceptible to tumours in the gizzard and spleen. To our knowledge, this is the first record of an aggressive MD virus infection-mediated ocular tumour in a layer flock in Al-Najaf province, Iraq.
Collapse
Affiliation(s)
- Aoula Al-Zebeeby
- Department of Pathology and Poultry DiseasesFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| | - Ali Hadi Abbas
- Department of Veterinary MicrobiologyFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| | - Haider Abas Alsaegh
- Department of Pathology and Poultry DiseasesFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| | - Furkan Sabbar Alaraji
- Department of Pathology and Poultry DiseasesFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| |
Collapse
|
2
|
Cheng MC, Lai GH, Tsai YL, Lien YY. Circulating hypervirulent Marek's disease viruses in vaccinated chicken flocks in Taiwan by genetic analysis of meq oncogene. PLoS One 2024; 19:e0303371. [PMID: 38728352 PMCID: PMC11086920 DOI: 10.1371/journal.pone.0303371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Marek's disease (MD) is an important neoplastic disease caused by serotype 1 Marek's disease virus (MDV-1), which results in severe economic losses worldwide. Despite vaccination practices that have controlled the MD epidemic, current increasing MD-suspected cases indicate the persistent viral infections circulating among vaccinated chicken farms in many countries. However, the lack of available information about phylogeny and molecular characterization of circulating MDV-1 field strains in Taiwan reveals a potential risk in MD outbreaks. This study investigated the genetic characteristics of 18 MDV-1 strains obtained from 17 vaccinated chicken flocks in Taiwan between 2018 and 2020. Based on the sequences of the meq oncogene, the phylogenetic analysis demonstrated that the circulating Taiwanese MDV-1 field strains were predominantly in a single cluster that showed high similarity with strains from countries of the East Asian region. Because the strains were obtained from CVI988/Rispens vaccinated chicken flocks and the molecular characteristics of the Meq oncoprotein showed features like vvMDV and vv+MDV strains, the circulating Taiwanese MDV-1 field strains may have higher virulence compared with vvMDV pathotype. In conclusion, the data presented demonstrates the circulation of hypervirulent MDV-1 strains in Taiwan and highlights the importance of routine surveillance and precaution strategies in response to the emergence of enhanced virulent MDV-1.
Collapse
Affiliation(s)
- Ming-Chu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center of Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Guan-Hua Lai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center of Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yi-Lun Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yi-Yang Lien
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center of Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
3
|
Motai Y, Murata S, Sato J, Nishi A, Maekawa N, Okagawa T, Konnai S, Ohashi K. Characterization of a Very Short Meq Protein Isoform in a Marek's Disease Virus Strain in Japan. Vet Sci 2024; 11:43. [PMID: 38275925 PMCID: PMC10818563 DOI: 10.3390/vetsci11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Marek's disease virus (MDV) causes malignant lymphoma (Marek's disease; MD) in chickens. The Meq protein is essential for tumorigenesis since it regulates the expression of host and viral genes. Previously, we reported that the deletion of the short isoform of Meq (S-Meq) decreases the pathogenicity of MDV. Recently, we identified a further short isoform of Meq (very short isoform of Meq, VS-Meq) in chickens with MD in Japan. A 64-amino-acid deletion was confirmed at the C-terminus of VS-Meq. We measured the transcriptional regulation by VS-Meq in three gene promoters to investigate the effect of VS-Meq on protein function. Wild-type VS-Meq decreased the transrepression of the pp38 promoter but did not alter the transactivation activity of the Meq and Bcl-2 promoters. The deletion in VS-Meq did not affect the activity of the pp38 promoter but enhanced the transactivation activities of the Meq and Bcl-2 promoters. Collectively, the deletion of VS-Meq potentially enhanced the activity of the Meq promoter, while other amino acid sequences in wild-type VS-Meq seemed to affect the weak transrepression of the pp38 promoter. Further investigation is required to clarify the effects of these changes on pathogenicity.
Collapse
Affiliation(s)
- Yoshinosuke Motai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Shiro Murata
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Jumpei Sato
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Akihito Nishi
- Chuo Livestock Hygiene Service Center, Agriculture Promotion Department, Kochi Prefecture, 3229 Otsu, Takaoka-cho, Tosa 781-1102, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
4
|
Li W, Meng H, Liang X, Peng J, Irwin DM, Shen X, Shen Y. The genome evolution of Marek's disease viruses in chickens and turkeys in China. Virus Genes 2023; 59:845-851. [PMID: 37851282 DOI: 10.1007/s11262-023-02034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
The virus that causes Marek's disease (MD) is globally ubiquitous in chickens, continuously evolving, and poses a significant threat to the poultry industry. Although vaccines are extensively used, MD still occurs frequently and the virus has evolved increased virulence in China. Here, we report an outbreak of MD in vaccinated chickens and unvaccinated turkeys in a backyard farm in Guangdong province, China, in 2018. Phylogenetic analysis revealed two lineages of MDVs at this farm, with one lineage, containing isolates from two turkeys and five chickens, clustering with virulent Chinese strains and displays a relatively high genetic divergence from the vaccine strains. These new isolates appear to have broken through vaccine immunity, yielding this outbreak of MD in chickens and turkeys. The second lineage included four chicken isolates that clustered with the CVI988 and 814 vaccine strains. The large diversity of MDVs in this single outbreak reveals a complex circulation of MDVs in China. Poor breeding conditions and the weak application of disease prevention and control measures make backyard farms a hotbed for the evolution of viruses that cause infectious diseases. This is especially important in MDV as the MD vaccines do not provide sterilizing immunity, which allows the replication and shedding of virulent field viruses by vaccinated individuals and supporting the continuous evolution of MDVs. Hence, constant monitoring of the evolution of MDVs is necessary to understand the evolution of these field viruses and potential expansions of their host range.
Collapse
Affiliation(s)
- Wen Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Huifang Meng
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xianghui Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jinyu Peng
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xuejuan Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yongyi Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
5
|
Kim T, Hearn CJ, Mays J, Velez-Irizarry D, Reddy SM, Spatz SJ, Cheng HH, Dunn JR. Phenotypic Characterization of Recombinant Marek's Disease Virus in Live Birds Validates Polymorphisms Associated with Virulence. Viruses 2023; 15:2263. [PMID: 38005939 PMCID: PMC10674313 DOI: 10.3390/v15112263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Marek's disease (MD) is a highly infectious lymphoproliferative disease in chickens with a significant economic impact. Mardivirus gallidalpha 2, also known as Marek's disease virus (MDV), is the causative pathogen and has been categorized based on its virulence rank into four pathotypes: mild (m), virulent (v), very virulent (vv), and very virulent plus (vv+). A prior comparative genomics study suggested that several single-nucleotide polymorphisms (SNPs) and genes in the MDV genome are associated with virulence, including nonsynonymous (ns) SNPs in eight open reading frames (ORF): UL22, UL36, UL37, UL41, UL43, R-LORF8, R-LORF7, and ICP4. To validate the contribution of these nsSNPs to virulence, the vv+MDV strain 686 genome was modified by replacing nucleotides with those observed in the vMDV strains. Pathogenicity studies indicated that these substitutions reduced the MD incidence and increased the survival of challenged birds. Furthermore, using the best-fit pathotyping method to rank the virulence, the modified vv+MDV 686 viruses resulted in a pathotype similar to the vvMDV Md5 strain. Thus, these results support our hypothesis that SNPs in one or more of these ORFs are associated with virulence but, as a group, are not sufficient to result in a vMDV pathotype, suggesting that there are additional variants in the MDV genome associated with virulence, which is not surprising given this complex phenotype and our previous finding of additional variants and SNPs associated with virulence.
Collapse
Affiliation(s)
- Taejoong Kim
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; (S.J.S.); (J.R.D.)
| | - Cari J. Hearn
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 4279 E. Mount Hope Road, East Lansing, MI 48823, USA; (C.J.H.); (J.M.); (D.V.-I.); (H.H.C.)
| | - Jody Mays
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 4279 E. Mount Hope Road, East Lansing, MI 48823, USA; (C.J.H.); (J.M.); (D.V.-I.); (H.H.C.)
| | - Deborah Velez-Irizarry
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 4279 E. Mount Hope Road, East Lansing, MI 48823, USA; (C.J.H.); (J.M.); (D.V.-I.); (H.H.C.)
| | - Sanjay M. Reddy
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA;
| | - Stephen J. Spatz
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; (S.J.S.); (J.R.D.)
| | - Hans H. Cheng
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 4279 E. Mount Hope Road, East Lansing, MI 48823, USA; (C.J.H.); (J.M.); (D.V.-I.); (H.H.C.)
| | - John R. Dunn
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; (S.J.S.); (J.R.D.)
| |
Collapse
|
6
|
Sato J, Murata S, Yang Z, Kaufer BB, Fujisawa S, Seo H, Maekawa N, Okagawa T, Konnai S, Osterrieder N, Parcells MS, Ohashi K. Effect of Insertion and Deletion in the Meq Protein Encoded by Highly Oncogenic Marek’s Disease Virus on Transactivation Activity and Virulence. Viruses 2022; 14:v14020382. [PMID: 35215975 PMCID: PMC8876991 DOI: 10.3390/v14020382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Marek’s disease virus (MDV) causes malignant lymphoma in chickens (Marek’s disease, MD). Although MD is currently controlled by vaccination, MDV strains have continuously increased in virulence over the recent decades. Polymorphisms in Meq, an MDV-encoded oncoprotein that serves as a transcription factor, have been associated with the enhanced virulence of the virus. In addition, insertions and deletions in Meq have been observed in MDV strains of higher virulence, but their contribution to said virulence remains elusive. In this study, we investigated the contribution of an insertion (L-Meq) and a deletion in the Meq gene (S-Meq) to its functions and MDV pathogenicity. Reporter assays revealed that both insertion and deletion enhanced the transactivation potential of Meq. Additionally, we generated RB-1B-based recombinant MDVs (rMDVs) encoding each Meq isoform and analyzed their pathogenic potential. rMDV encoding L-Meq indueced the highest mortality and tumor incidence in infected animals, whereas the rMDV encoding S-Meq exhibited the lowest pathogenicity. Thus, insertion enhanced the transactivation activity of Meq and MDV pathogenicity, whereas deletion reduced pathogenicity despite having increased transactivation activity. These data suggest that other functions of Meq affect MDV virulence. These data improve our understanding of the mechanisms underlying the evolution of MDV virulence.
Collapse
Affiliation(s)
- Jumpei Sato
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (J.S.); (Z.Y.); (S.F.); (H.S.); (S.K.); (K.O.)
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (J.S.); (Z.Y.); (S.F.); (H.S.); (S.K.); (K.O.)
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
- Correspondence: ; Tel.: +81-11-706-5274; Fax: +81-11-706-5217
| | - Zhiyuan Yang
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (J.S.); (Z.Y.); (S.F.); (H.S.); (S.K.); (K.O.)
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, 14163 Berlin, Germany; (B.B.K.); (N.O.)
| | - Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (J.S.); (Z.Y.); (S.F.); (H.S.); (S.K.); (K.O.)
| | - Hikari Seo
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (J.S.); (Z.Y.); (S.F.); (H.S.); (S.K.); (K.O.)
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (J.S.); (Z.Y.); (S.F.); (H.S.); (S.K.); (K.O.)
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
| | - Nikolaus Osterrieder
- Institut für Virologie, Freie Universität Berlin, 14163 Berlin, Germany; (B.B.K.); (N.O.)
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Mark S. Parcells
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (J.S.); (Z.Y.); (S.F.); (H.S.); (S.K.); (K.O.)
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
| |
Collapse
|
7
|
Li H, Ge Z, Luo Q, Fu Q, Chen R. A highly pathogenic Marek's disease virus isolate from chickens immunized with a bivalent vaccine in China. Arch Virol 2022; 167:861-870. [PMID: 35129660 DOI: 10.1007/s00705-021-05355-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 11/02/2022]
Abstract
Marek's disease virus (MDV) is an important oncogenic poultry pathogen that can generally be controlled by vaccination. However, MDV infections still occur occasionally on vaccinated farms, possibly due to genetic variation among MDV strains or management-related issues. In this study, a novel MDV strain, designated LZ1309, was isolated from a poultry flock that had been vaccinated with the HVT and CVI988 vaccine strains. Animal experiments showed that LZ1309 infection led to high morbidity (100%) and mortality (90%). Moreover, existing vaccines provided only partial protection against LZ1309, with protection rates of 68.4%, 85%, and 90% for HVT, CVI988, and HVT plus CVI988, respectively. This study demonstrates the presence of a more virulent strain of MDV in vaccinated chickens in China that poses a new potential threat to poultry farms. In future studies, the development of new treatment strategies should be of high priority.
Collapse
Affiliation(s)
- Huimin Li
- Medical College, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Zengxu Ge
- Medical College, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Qiong Luo
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, 510642, Guangdong, China.,Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, China
| | - Qiang Fu
- Medical College, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, 510642, Guangdong, China. .,Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, China.
| |
Collapse
|
8
|
Molouki A, Ghalyanchilangeroudi A, Abdoshah M, Shoushtari A, Abtin A, Eshtartabadi F, Mahmoudzadeh Akhijahani M, Ziafatikafi Z, Babaeimarzango SS, Allahyari E, Ahmadzadeh L, Fallah Mehrabadi MH, Lim SHE, Rouhani K, Hosseini H, Nair V. Report of a new meq gene size: The first study on genetic characterisation of Marek's disease viruses circulating in Iranian commercial layer and backyard chicken. Br Poult Sci 2021; 63:142-149. [PMID: 34423692 DOI: 10.1080/00071668.2021.1963677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. In recent months, several outbreaks with clinical signs of MDV-1 were reported in Iranian parent and laying hen farms, in addition to backyard chickens. Several meq gene sequences from these outbreaks were amplified and molecularly characterised.2. The meq protein sequences revealed three different sizes, namely the standard 339 aa, a shorter form of 338 aa lacking a proline residue at position 191, and a very short (vs) size of 265 aa. Based on sequence and size, the 265 aa meq has never been reported from international research groups before. The protein has only one PPPP repeat motif suggesting it belongs to a highly virulent strain.3. The standard meq sequences showed 100% BLAST identity to the vv+ isolate Polen5. However, the 338 aa form clustered to the clade usually reported from North America.4. This is the first report on genetic analysis of MDV-1 from Iran, but further study is required to obtain a better picture of the diversity and prevalence of different MDV-1 strains circulating in the country's farms, backyard poultry and other bird species.
Collapse
Affiliation(s)
- A Molouki
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M Abdoshah
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A Shoushtari
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A Abtin
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - F Eshtartabadi
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - M Mahmoudzadeh Akhijahani
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Z Ziafatikafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - E Allahyari
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - L Ahmadzadeh
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - M H Fallah Mehrabadi
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research, Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - S H E Lim
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - K Rouhani
- Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - H Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - V Nair
- Viral Oncogenesis Group & OIE Marek's Disease Virus Reference Laboratory, Pirbright Institute, Surrey, UK
| |
Collapse
|