1
|
Cui XY, Xia DS, Luo LZ, An TQ. Recombination of Porcine Reproductive and Respiratory Syndrome Virus: Features, Possible Mechanisms, and Future Directions. Viruses 2024; 16:929. [PMID: 38932221 PMCID: PMC11209122 DOI: 10.3390/v16060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Recombination is a pervasive phenomenon in RNA viruses and an important strategy for accelerating the evolution of RNA virus populations. Recombination in the porcine reproductive and respiratory syndrome virus (PRRSV) was first reported in 1999, and many case reports have been published in recent years. In this review, all the existing reports on PRRSV recombination events were collected, and the genotypes, parental strains, and locations of the recombination breakpoints have been summarized and analyzed. The results showed that the recombination pattern constantly changes; whether inter- or intra-lineage recombination, the recombination hotspots vary in different recombination patterns. The virulence of recombinant PRRSVs was higher than that of the parental strains, and the emergence of virulence reversion was caused by recombination after using MLV vaccines. This could be attributed to the enhanced adaptability of recombinant PRRSV for entry and replication, facilitating their rapid propagation. The aim of this paper was to identify common features of recombinant PRRSV strains, reduce the recombination risk, and provide a foundation for future research into the mechanism of PRRSV recombination.
Collapse
Affiliation(s)
- Xing-Yang Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Da-Song Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ling-Zhi Luo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
2
|
Lin Y, Zhou L, Xiao C, Li Z, Liu K, Li B, Shao D, Qiu Y, Ma Z, Wei J. Development and biological characterization of an infectious cDNA clone of NADC34-like PRRSV. Front Microbiol 2024; 15:1359970. [PMID: 38800747 PMCID: PMC11123230 DOI: 10.3389/fmicb.2024.1359970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Porcine Reproductive and Respiratory Syndrome virus (PRRSV) causes high abortion rates in gestating sows and stillbirths, as well as high piglet mortality, seriously jeopardizing the pig industry in China and worldwide. Methods In this study, an infectious clone containing the full-length genome of NADC34-like PRRSV was constructed for the first time using reverse genetic techniques. The gene was amplified segmentally onto a plasmid, transfected into BHK-21 cells, and the transfected supernatant was harvested and transfected into PAM cells, which showed classical cytopathic effects (CPE). Results The virus rJS-KS/2021 was successfully rescued which could be demonstrated by Western Blot and indirect immunofluorescence assays. Its growth curve was similar to the original strain. Replace the 5'UTR and 3'UTR of rJS-KS/2021 with 5'UTR and 3'UTR of HP-PRRSV (strain SH1) also failed to propagate on MARC-145. Discussion In this study, an infectious clone of NADC34-like was constructed by reverse genetics, replacing the UTR and changing the cellular tropism of the virus. These findings provide a solid foundation for studying the recombination of different PRRSVs and the adaption of PRRSVs on MARC-145 in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
3
|
Shen YF, Arruda AG, Koscielny MP, Cheng TY. Contrasting PRRSV temporal lineage patterns at the individual farm, production system, and regional levels in Ohio and neighboring states from 2017 to 2021. Prev Vet Med 2024; 226:106186. [PMID: 38518657 DOI: 10.1016/j.prevetmed.2024.106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/13/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Porcine reproductive and respiratory virus (PRRSV), one of the most significant viruses in the swine industry, has been challenging to control due to its high mutation and recombination rates and complexity. This retrospective study aimed to describe and compare the distribution of PRRSV lineages obtained at the individual farm, production system, and regional levels. PRRSV-2 (type 2) sequences (n = 482) identified between 2017 - 2021 were provided by a regional state laboratory (Ohio Department of Agriculture, Animal Disease Diagnostic Center (ODA-ADDL)) collected from swine farms in Ohio and neighboring states, including Indiana, Michigan, Pennsylvania, and West Virginia. Additional sequences (n = 138) were provided by one collaborating swine production system. The MUSCLE algorithm on Geneious Prime® was used to align the ORF5 region of PRRSV-2 sequences along with PRRSV live attenuated vaccine strains (n = 6) and lineage anchors (n = 169). Sequenced PRRSV-2 were assigned to the most identical lineage anchors/vaccine strains. Among all sequences (n = 620), 29.8% (185/620) were ≥ 98.0% identity with the vaccine strains, where 93.5% (173/185) and 6.5% (12/185) were identical with the L5 Ingelvac PRRS® MLV and L8 Fostera® PRRS vaccine strains, respectively, and excluded from the analysis. At the regional level across five years, the top five most identified lineages included L1A, L5, L1H, L1C, and L8. Among non-vaccine sequences with production system known, L1A sequences were mostly identified (64.3% - 100.0%) in five systems, followed by L1H (0.0% - 28.6%), L1C (0.0% - 10.5%), L5 (0.0% - 14.4%), L8 (0.0% - 1.3%), and L1F (0.0% - 0.5%). Furthermore, among non-vaccine sequences with the premise identification available (n = 262), the majority of sequences from five individual farms were either classified into L1A or L5. L1A and L5 sequences coexisted in three farms, while samples submitted by one farm contained L1A, L1H, and L5 sequences. Additionally, the lineage classification results of non-vaccine sequences were associated with their restriction fragment length polymorphism (RFLP) patterns (Fisher's exact test, p < 0.05). Overall, our results show that individual farm and production system-level PRRSV-2 lineage patterns do not necessarily correspond to regional-level patterns, highlighting the influence of individual farms and systems in shaping PRRSV occurrence within those levels, and highlighting the crucial goal of within-farm and system monitoring and early detection for accurate knowledge on PRRSV-2 lineage occurrence and emergence.
Collapse
Affiliation(s)
- Yi-Fan Shen
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Andréia G Arruda
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Zhu H, Wei L, Liu X, Liu S, Chen H, Chen P, Li X, Qian P. Pathogenicity Studies of NADC34-like Porcine Reproductive and Respiratory Syndrome Virus LNSY-GY and NADC30-like Porcine Reproductive and Respiratory Syndrome Virus GXGG-8011 in Piglets. Viruses 2023; 15:2247. [PMID: 38005924 PMCID: PMC10674415 DOI: 10.3390/v15112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) has caused significant economic losses to the swine industry. The U.S., China, and Peru have reported NADC30-like or NADC34-like PRRSV-infected piglets, which have been identified as the cause of a significant number of abortions in clinics. Although the pathogenicity of NADC30-like PRRSV and NADC34-like PRRSV in piglets exhibits significant variability globally, studies on their pathogenicity in China are limited. In this study, the animal experiments showed that within 8-14 days post-infection, both piglets infected with NADC30-like PRRSV GXGG-8011 and those infected with NADC34-like PRRSV LNSY-GY exhibited significant weight loss compared to the control piglets. Additionally, the viremia of the LNSY-GY persisted for 28 days, while the viremia of piglets infected with the GXGG-8011 lasted for 17 days. Similarly, the duration of viral shedding through the fecal-oral route after the LNSY-GY infection was longer than that observed after the GXGG-8011 infection. Furthermore, post-infection, both the LNSY-GY and GXGG-8011 led to pronounced histopathological lesions in the lungs of piglets, including interstitial pneumonia and notable viral colonization. However, the antibody production in the LNSY-GY-infected group occurred earlier than that in the GXGG-8011-infected group. Our research findings indicate that LNSY-GY is a mildly pathogenic strain in piglets, whereas we speculate that the GXGG-8011 might be a highly pathogenic strain.
Collapse
Affiliation(s)
- Hechao Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liuqing Wei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiangzu Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shudan Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Pin Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (L.W.); (X.L.); (S.L.); (H.C.); (X.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
5
|
Jakab S, Bali K, Freytag C, Pataki A, Fehér E, Halas M, Jerzsele Á, Szabó I, Szarka K, Bálint Á, Bányai K. Deep Sequencing of Porcine Reproductive and Respiratory Syndrome Virus ORF7: A Promising Tool for Diagnostics and Epidemiologic Surveillance. Animals (Basel) 2023; 13:3223. [PMID: 37893946 PMCID: PMC10603690 DOI: 10.3390/ani13203223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major concern worldwide. Control of PRRSV is a challenging task due to various factors, including the viral diversity and variability. In this study, we evaluated an amplicon library preparation protocol targeting the ORF7 region of both PRRSV species, Betaarterivirus suid 1 and Betaarterivirus suid 2. We designed tailed primers for a two-step PCR procedure that generates ORF7-specific amplicon libraries suitable for use on Illumina sequencers. We tested the method with serum samples containing common laboratory strains and with pooled serum samples (n = 15) collected from different pig farms during 2019-2021 in Hungary. Testing spiked serum samples showed that the newly designed method is highly sensitive and detects the viral RNA even at low copy numbers (corresponding to approx. Ct 35). The ORF7 sequences were easily assembled even from clinical samples. Two different sequence variants were identified in five samples, and the Porcilis MLV vaccine strain was identified as the minor variant in four samples. An in-depth analysis of the deep sequencing results revealed numerous polymorphic sites along the ORF7 gene in a total of eight samples, and some sites (positions 12, 165, 219, 225, 315, 345, and 351) were found to be common in several clinical specimens. We conclude that amplicon deep sequencing of a highly conserved region of the PRRSV genome could support both laboratory diagnosis and epidemiologic surveillance of the disease.
Collapse
Affiliation(s)
- Szilvia Jakab
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
| | - Krisztina Bali
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
| | - Csongor Freytag
- Department of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary; (C.F.); (K.S.)
| | - Anna Pataki
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
| | - Enikő Fehér
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
| | | | - Ákos Jerzsele
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István u 2, H-1078 Budapest, Hungary;
| | - István Szabó
- National PRRS Eradication Committee, Keleti Károly u. 24., H-1024 Budapest, Hungary;
| | - Krisztina Szarka
- Department of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary; (C.F.); (K.S.)
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143 Budapest, Hungary;
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István u 2, H-1078 Budapest, Hungary;
| |
Collapse
|
6
|
Cha SH, Hyun BH, Lee HS, Kang SJ, You SH, Jeong J, Park CJ, Lee MS, Park C. A novel chimeric vaccine candidate for porcine reproductive and respiratory syndrome virus (PRRSV) I and II elicits neutralizing antibodies against both types. J Gen Virol 2023; 104. [PMID: 37650730 DOI: 10.1099/jgv.0.001889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important virus within the swine industry. The virus causes respiratory disease and reproductive failure. Two species of PRRSV-I and II are co-dominant, yet no effective vaccination strategy has been developed to protect against these two types. With an aim to develop a chimeric vaccine strain to protect against both types, in this study, a chimeric porcine reproductive and respiratory syndrome virus (PRRSV) type I and II was rescued using reverse genetics for the first time. Four chimeric infectious clones were designed based on the genomic arrangement of the structural proteins. However, only the clone carrying the transcriptional regulatory sequence (TRS) and ORF6 of a PRRSV-I and ORF6 of a PRRSV-II generated a viable recombinant virus, suggesting that concurrent expression of ORF6 from both parental viruses is essential for the recovery of type I and II chimeric PRRSV. The chimeric virus showed significantly lower replication ability than its parental strains in vitro, which was improved by serial passaging. In vivo, groups of pigs were inoculated with either the chimeric virus, one of the parental strains, or PBS. The chimeric virus replicated in pig tissue and was detected in serum 7 days post-inoculation. Serum neutralization tests indicated that pigs inoculated with the chimeric virus elicited neutralizing antibodies that inhibited infection with strains of both species and with greater coverage than the parental viruses. In conclusion, the application of this technique to construct a chimeric PRRSV holds promise for the development of a highly effective modified live vaccine candidate. This is particularly significant since there are currently no approved commercial divalent vaccines available to combat PRRSV-I and II co-infections.
Collapse
Affiliation(s)
- Sang-Ho Cha
- PRRS Research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Bang-Hun Hyun
- PRRS Research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Hyang-Sim Lee
- PRRS Research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Seok-Jin Kang
- PRRS Research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Su-Hwa You
- PRRS Research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Jiwoon Jeong
- Division of Animal Care, Yonam College, 313, Yeonam-ro, Seonghwan-eup, Seobuk-gu, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Chang-Joo Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Yongdu-dong, Jung-gu, Daejeon, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Yongdu-dong, Jung-gu, Daejeon, Republic of Korea
| | - Changhoon Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Yongdu-dong, Jung-gu, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Lee MA, Jayaramaiah U, You SH, Shin EG, Song SM, Ju L, Kang SJ, Hyun BH, Lee HS. Molecular Characterization of Porcine Reproductive and Respiratory Syndrome Virus in Korea from 2018 to 2022. Pathogens 2023; 12:757. [PMID: 37375447 DOI: 10.3390/pathogens12060757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease in the Republic of Korea. Surveillance of PRRS virus (PRRSV) types is critical to tailor control measures. This study collected 5062 serum and tissue samples between 2018 and 2022. Open reading frame 5 (ORF5) sequences suggest that subgroup A (42%) was predominant, followed by lineage 1 (21%), lineage 5 (14%), lineage Korea C (LKC) (9%), lineage Korea B (LKB) (6%), and subtype 1C (5%). Highly virulent lineages 1 (NADC30/34/MN184) and 8 were also detected. These viruses typically mutate or recombine with other viruses. ORF5 and non-structural protein 2 (NSP2) deletion patterns were less variable in the PRRSV-1. Several strains belonging to PRRSV-2 showed differences in NSP2 deletion and ORF5 sequences. Similar vaccine-like isolates to the PRRSV-1 subtype 1C and PRRSV-2 lineage 5 were also found. The virus is evolving independently in the field and has eluded vaccine protection. The current vaccine that is used in Korea offers only modest or limited heterologous protection. Ongoing surveillance to identify the current virus strain in circulation is necessary to design a vaccine. A systemic immunization program with region-specific vaccinations and stringent biosecurity measures is required to reduce PRRSV infections in the Republic of Korea.
Collapse
Affiliation(s)
- Min-A Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Usharani Jayaramaiah
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Su-Hwa You
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Eun-Gyeong Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Seung-Min Song
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Lanjeong Ju
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Seok-Jin Kang
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Hyang-Sim Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
8
|
Lee MA, You SH, Jayaramaiah U, Shin EG, Song SM, Ju L, Kang SJ, Cho SH, Hyun BH, Lee HS. Evaluation and Determination of a Suitable Passage Number of Codon Pair Deoptimized PRRSV-1 Vaccine Candidate in Pigs. Viruses 2023; 15:v15051071. [PMID: 37243157 DOI: 10.3390/v15051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is major economic problem given its effects on swine health and productivity. Therefore, we evaluated the genetic stability of a codon pair de-optimized (CPD) PRRSV, E38-ORF7 CPD, as well as the master seed passage threshold that elicited an effective immune response in pigs against heterologous virus challenge. The genetic stability and immune response of every 10th passage (out of 40) of E38-ORF7 CPD was analyzed through whole genome sequencing and inoculation in 3-week-old pigs. E38-ORF7 CPD passages were limited to 20 based on the full-length mutation analysis and animal test results. After 20 passages, the virus could not induce antibodies to provide effective immunity and mutations accumulated in the gene, which differed from the CPD gene, presenting a reason for low infectivity. Conclusively, the optimal passage number of E38-ORF7 CPD is 20. As a vaccine, this may help overcome the highly diverse PRRSV infection with substantially enhanced genetic stability.
Collapse
Affiliation(s)
- Min-A Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Su-Hwa You
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Usharani Jayaramaiah
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Eun-Gyeong Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Seung-Min Song
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Lanjeong Ju
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Seok-Jin Kang
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Sun-Hee Cho
- Department of Animal Veterinary Development, BioPOA, Hwaseong-si 18469, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| | - Hyang-Sim Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
9
|
Kim JH, Kim SC, Kim HJ, Jeong CG, Park GS, Choi JS, Kim WI. Insight into the Economic Effects of a Severe Korean PRRSV1 Outbreak in a Farrow-to-Nursery Farm. Animals (Basel) 2022; 12:ani12213024. [PMID: 36359148 PMCID: PMC9656131 DOI: 10.3390/ani12213024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a disease that has inflicted economic losses in the swine industry. The causative agent, porcine reproductive and respiratory syndrome virus (PRRSV), is known to have a high genetic diversity which leads to heterogeneous pathogenicity. To date, the impact of PRRS outbreaks on swine production and the economy of the swine industry in South Korea has been rarely reported. In this study, we compare the reproductive performance in the breeding-farrowing phase and growth performance in the nursery phase, in two 27-week periods, one before and one after a PRRSV1 outbreak on a 650-sow farrow-to-nursery farm caused by a Korean PRRSV1 isolate which was genetically distinct from vaccine strains or other global strains. The reproductive performance of sows and the growth performance of nursery pigs were compared using row data consisting of 1907 mating records, 1648 farrowing records, and 17,129 weaning records from 32 breeding batches. The following variables were significantly different between the pre-PRRS outbreak period and the post-PRRS outbreak period: the farrowing rate (−7.1%, p < 0.0001), the abortion rate (+3.9%, p < 0.0001), the return rate (+2.9%, p = 0.0250), weaning to estrus interval days (+1.9 days, p < 0.0001), total piglets born (−1.2 pigs/litter, p < 0.0001), piglets born alive (−2.2 pigs/litter, p < 0.0001), weaned piglets (−2.7 pigs/litter, p < 0.0001), pre-weaning mortality (+7.4%, p < 0.0001), weaning weight (−0.9 kg/pig, p = 0.0015), the mortality rate (+2.8%, p < 0.0001), average daily gain (−69.8 g/d, p < 0.0001), and the feed conversion ratio (+0.26, p = 0.0036). Economic losses for a period of 27 weeks after a PRRS outbreak were calculated at KRW 99,378 (USD 82.8) per mated female for the breeding-farrowing phase, KRW 8,968 (USD 7.5) per pig for the nursery growth phase, and KRW 245,174 (USD 204.3) per sow in the post-outbreak period. In conclusion, the farrow-to-nursery farm in our study suffered extensive production and economic losses as a result of a PRRSV1 outbreak.
Collapse
Affiliation(s)
- Jung-Hee Kim
- Department of Veterinary Clinic, Dodram Pig Farmers Cooperative, Daejeon 35377, Korea
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Seung-Chai Kim
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Hwan-Ju Kim
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Chang-Gi Jeong
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Gyeong-Seo Park
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Jong-San Choi
- Department of Agri-Food Marketing, Jeonbuk National Univeristy, Jeonju 54896, Korea
| | - Won-Il Kim
- Department of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
- Correspondence: ; Tel.: +82-63-270-3981
| |
Collapse
|
10
|
Zhou L, Yang Y, Xia Q, Guan Z, Zhang J, Li B, Qiu Y, Liu K, Shao D, Ma Z, Wang X, Wei J. Genetic characterization of porcine reproductive and respiratory syndrome virus from Eastern China during 2017-2022. Front Microbiol 2022; 13:971817. [PMID: 36312912 PMCID: PMC9606797 DOI: 10.3389/fmicb.2022.971817] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/21/2022] [Indexed: 07/30/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive disease caused by PRSS virus (PRRSV). PRRSV mainly causes reproductive disorders in pregnant sows and respiratory diseases in piglets. Recently, it has emerged as one of the most important diseases of the pig industry across the globe. In this study, we have collected 231 samples from differently sized pig farms in Eastern China from 2017 to 2022 to investigate the epidemic characteristics of the disease. All samples were screened by RT-PCR and analyzed further using Nsp2 and ORF5 genes. The result showed that the positive rate of PRRSV was 24% (54/231). Phylogenetic analysis (13 positive samples) revealed that all isolates belonged to genotype 2, and they were mainly distributed in four lineages (i.e., lineage 1, 3, 5, and 8). Nsp2 is the most variable protein among all PRRSV NSPs, several isolates from this study had amino acid deletions within Nsp2 compared to that of strain VR-2332. The major structural protein glycoprotein (GP5) protein is encoded by ORF5. Epitope analysis of the 13 isolated strains and additional reference strains revealed that all 13 strains had some mutations on the decoy epitope, the primary neutralizing epitope, T cell epitopes, and B cell epitopes. This study showed that the prevalent PRRSV strain in Eastern China was still HP-PRRSV, while the proportion of NADC30-like and NADC34-like strains have increased. This study further enriches the epidemiological data of PRRS in Eastern China and provides a theoretical basis for vaccine development and prevention and control of the disease across the region.
Collapse
Affiliation(s)
- Lujia Zhou
- College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China
| | - Yang Yang
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China
| | - Qiqi Xia
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China
| | - Zhixin Guan
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China
| | - Junjie Zhang
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China
| | - Beibei Li
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China
| | - Yafeng Qiu
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China
| | - Ke Liu
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China
| | - Donghua Shao
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China
| | - Zhiyong Ma
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China
| | - Xiaodu Wang
- College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jianchao Wei
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China
| |
Collapse
|
11
|
Zhao HZ, Wang FX, Han XY, Guo H, Liu CY, Hou LN, Wang YX, Zheng H, Wang L, Wen YJ. Recent advances in the study of NADC34-like porcine reproductive and respiratory syndrome virus in China. Front Microbiol 2022; 13:950402. [PMID: 35935186 PMCID: PMC9354828 DOI: 10.3389/fmicb.2022.950402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Since porcine reproductive and respiratory syndrome virus (PRRSV) was first described in China in 1996, several genetically distinct strains of PRRSV have emerged with varying pathogenicity and severity, thereby making the prevention and control of PRRS more difficult in China and worldwide. Between 2017 and 2021, the detection rate of NADC34-like strain in China increased. To date, NADC34-like strains have spread to 10 Chinese provinces and have thus developed different degrees of pathogenicity and mortality. In this review, we summarize the history of NADC34-like strains in China and clarify the prevalence, genomic characteristics, restriction fragment length polymorphisms, recombination, pathogenicity, and vaccine status of this strain in China. In so doing, this study aims to provide a basis for the further development of prevention and control measures targeting the NADC34-like strain.
Collapse
|
12
|
Xu H, Xiang L, Tang YD, Li C, Zhao J, Gong B, Sun Q, Leng C, Peng J, Wang Q, Zhou G, An T, Cai X, Tian ZJ, Zhang H, Song M. Genome-Wide Characterization of QYYZ-Like PRRSV During 2018–2021. Front Vet Sci 2022; 9:945381. [PMID: 35847645 PMCID: PMC9280713 DOI: 10.3389/fvets.2022.945381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the last decade, the emergence of QYYZ-like porcine reproductive and respiratory syndrome virus (PRRSV) has attracted increasing attention due to the high incidence of PRRSV mutation and recombination. However, the endemic status and genomic characteristics of the QYYZ-like strains are unclear. From 2018 to October 2021, 24 QYYZ-like PRRSV isolates were obtained from 787 PRRSV-positive clinical samples. Only one QYYZ-like positive sample was from a northern province, and the rest were from central and southern provinces. We selected 9 samples for whole-genome sequencing, revealing genome lengths of 15,008–15,316 nt. We retrieved all the available whole-genome sequences of QYYZ-like PRRSVs isolated in China from 2010 to 2021 (n = 28) from GenBank and analyzed them together with the new whole-genome sequences (n = 9). Phylogenetic tree analysis based on the ORF5 gene showed that all QYYZ-like PRRSV strains belonged to sublineage 3.5 but were clustered into three lineages (sublineage 1.8, sublineage 3.5, and sublineage 8.7) based on whole-genome sequences. Genomic sequence alignment showed that QYYZ-like strains, have characteristic amino acids insertions or deletions in the Nsp2 region (same as NADC30, JXA1 and QYYZ) and that thirteen strains also had additional amino acid deletions, mostly between 468 and 518 aa. Moreover, QYYZ-like strains (sublineage 3.5) have seven identical characteristic amino acid mutations in ORF5. Recombination analysis revealed that almost all QYYZ-like complete genome sequences (36/37) were products of recombination and mainly provided structural protein fragments (GP2-N) for the recombinant strains. Overall, QYYZ-like strains were mainly prevalent in central and southern China from 2018 to 2021, and these strains provided recombinant fragments in the PRRSV epidemic in China.
Collapse
Affiliation(s)
- Hu Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lirun Xiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insect Bioreactors, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohui Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Hongliang Zhang
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- *Correspondence: Mingxin Song
| |
Collapse
|
13
|
Abstract
NADC34-like porcine reproductive and respiratory syndrome virus (PRRSV) has been reported to be prevalent in China since 2018 and became one of the main epidemic strains in some areas of China. Yet, the pathogenicity of NADC34-like PRRSV tested by experimental infection has seldomly been investigated. In this study, we infected pigs with JS2021NADC34 PRRSV, a Chinese NADC34-like PRRSV isolated in Jiangsu province in 2021, to study the pathogenicity of this virus strain. Pigs infected with this virus had lasting fever and reduced body weight with high morbidity and mortality. Histopathological changes, including interstitial pneumonia, lymphocyte depletion, acute hemorrhage, and infiltration of neutrophils in the lymphoid tissues, were observed with the viral proteins detected by immunohistochemistry staining using PRRSV-specific antibody. These results suggested that JS2021NADC34 PRRSV is highly pathogenic to pigs. As it is the latest emerging PRRSV strain in China, the prevalence and pathogenicity of NADC34-like PRRSV need to be further investigated. IMPORTANCE NADC34 PRRSV was initially reported in the United States in 2018. Subsequently, this virus strain spread to other countries, including Peru, South Korea, and China. The virus was first found circulating in Northeast China and then spread to more than 10 provinces in China. NADC34 PRRSV causes severe abortion of sows and high mortality of piglets, which lead to huge economic losses to the Chinese pig industry. However, the pathogenicity of NADC34 PRRSV was rarely experimentally evaluated on pigs. In this study, pigs were infected with JS2021NADC34 PRRSV, a Chinese NADC34-like PRRSV isolated in Jiangsu province in 2021. The infected pigs had lasting fever and reduced body weight with high morbidity and mortality. Interstitial pneumonia, lymphocyte depletion, acute hemorrhage, and infiltration of neutrophils were observed in the lymphoid tissues, and high virus load was proved by immunohistochemistry staining. The above results indicated that NADC34 PRRSV has high pathogenicity on pigs.
Collapse
|