1
|
Wang M, Liang H, Yan Y, Bian R, Huang W, Zhang X, Nie J. Distribution of HPV types among women with HPV-related diseases and exploration of lineages and variants of HPV 52 and 58 among HPV-infected patients in China: A systematic literature review. Hum Vaccin Immunother 2024; 20:2343192. [PMID: 38745409 PMCID: PMC11789740 DOI: 10.1080/21645515.2024.2343192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
To summarize the distribution of types of human papillomavirus (HPV) associated with HPV-related diseases and investigate the potential causes of high prevalence of HPV 52 and 58 by summarizing the prevalence of lineages, sub-lineages, and mutations among Chinese women. We searched PubMed, EMBASE, CNKI, and WanFang from January, 2012 to June, 2023 to identify all the eligible studies. We excluded patients who had received HPV vaccinations. Data were summarized in tables and cloud/rain maps. A total of 102 studies reporting HPV distribution and 15 studies reporting HPV52/HPV58 variants were extracted. Among Chinese women, the top five prevalent HPV types associated with cervical cancer (CC) were HPV16, 18, 58, 52, and 33. In patients with vaginal cancers and precancerous lesions, the most common HPV types were 16 and 52 followed by 58. For women with condyloma acuminatum (CA), the most common HPV types were 11 and 6. In Chinese women with HPV infection, lineage B was the most prominently identified for HPV52, and lineage A was the most common for HPV58. In addition to HPV types 16, which is prevalent worldwide, our findings revealed the unique high prevalence of HPV 52/58 among Chinese women with HPV-related diseases. HPV 52 variants were predominantly biased toward lineage B and sub-lineage B2, and HPV 58 variants were strongly biased toward lineage A and sub-lineage A1. Further investigations on the association between the high prevalent lineage and sub-lineage in HPV 52/58 and the risk of cancer risk are needed. Our findings underscore the importance of vaccination with the nine-valent HPV vaccine in China.
Collapse
Affiliation(s)
- Meng Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, WHO Collaborating Center for Standardization and Evaluation of Biologicals, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Haoyu Liang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, WHO Collaborating Center for Standardization and Evaluation of Biologicals, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Yue Yan
- Merck Research Laboratories (MRL) Global Medical Affairs, MSD China, Shanghai, China
| | - Rui Bian
- Merck Research Laboratories (MRL) Global Medical Affairs, MSD China, Shanghai, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, WHO Collaborating Center for Standardization and Evaluation of Biologicals, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Xingxing Zhang
- Merck Research Laboratories (MRL) Global Medical Affairs, MSD China, Shanghai, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, WHO Collaborating Center for Standardization and Evaluation of Biologicals, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| |
Collapse
|
2
|
Catalán-Castorena O, Garibay-Cerdenares OL, Illades-Aguiar B, Rodríguez-Ruiz HA, Zubillaga-Guerrero MI, Leyva-Vázquez MA, Encarnación-Guevara S, Alarcón-Romero LDC. The role of HR-HPV integration in the progression of premalignant lesions into different cancer types. Heliyon 2024; 10:e34999. [PMID: 39170128 PMCID: PMC11336306 DOI: 10.1016/j.heliyon.2024.e34999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
High-risk human papillomavirus (HR-HPV) is associated with the development of different types of cancer, such as cervical, head and neck (including oral, laryngeal, and oropharyngeal), vulvar, vaginal, penile, and anal cancers. The progression of premalignant lesions to cancer depends on factors associated with the host cell and the different epithelia infected by HPV, such as basal cells of the flat epithelium and the cells of the squamocolumnar transformation zone (STZ) found in the uterine cervix and the anal canal, which is rich in heparan sulfate proteoglycans and integrin-like receptors. On the other hand, factors associated with the viral genotype, infection with multiple viruses, viral load, viral persistence, and type of integration determine the viral breakage pattern and the sites at which the virus integrates into the host cell genome (introns, exons, intergenic regions), inducing the loss of function of tumor suppressor genes and increasing oncogene expression. This review describes the role of viral integration and the molecular mechanisms induced by HR-HPV in different types of tissues. The purpose of this review is to identify the common factors associated with the role of integration events in the progression of premalignant lesions in different types of cancer.
Collapse
Affiliation(s)
- Oscar Catalán-Castorena
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Olga Lilia Garibay-Cerdenares
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
- CONAHCyT-Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Berenice Illades-Aguiar
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Ma. Isabel Zubillaga-Guerrero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Marco Antonio Leyva-Vázquez
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | | | - Luz del Carmen Alarcón-Romero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| |
Collapse
|
3
|
Li T, Yang Z, Luo P, Yang Y, Lin Z, Mei B. Genetic variability of human papillomavirus type 18 based on E6, E7 and L1 genes in central China. Virol J 2024; 21:152. [PMID: 38970084 PMCID: PMC11227198 DOI: 10.1186/s12985-024-02424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND High-risk human papillomavirus (HR-HPV) infection is an important factor for the development of cervical cancer. HPV18 is the second most common HR-HPV after HPV16. METHODS In this study, MEGA11 software was used to analyze the variation and phylogenetic tree of HPV18 E6-E7 and L1 genes. The selective pressure to E6, E7 and L1 genes was estimated using pamlX. In addition, the B cell epitopes of L1 amino acid sequences and T cell epitopes of E6-E7 amino acid sequences in HPV18 were predicted by ABCpred server and IEDB website, respectively. RESULTS A total of 9 single nucleotide variants were found in E6-E7 sequences, of which 2 were nonsynonymous variants and 7 were synonymous variants. Twenty single nucleotide variants were identified in L1 sequence, including 11 nonsynonymous variants and 9 synonymous variants. Phylogenetic analysis showed that E6-E7 and L1 sequences were all distributed in A lineage. In HPV18 E6, E7 and L1 sequences, no positively selected site was found. The nonconservative substitution R545C in L1 affected hypothetical B cell epitope. Two nonconservative substitutions, S82A in E6, and R53Q in E7, impacted multiple hypothetical T cell epitopes. CONCLUSION The sequence variation data of HPV18 may lay a foundation for the virus diagnosis, further study of cervical cancer and vaccine design in central China.
Collapse
Affiliation(s)
- Ting Li
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Zhiping Yang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Ping Luo
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Yang Yang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Zicong Lin
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Bing Mei
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China.
| |
Collapse
|
4
|
Yuan H, Yan Z, Gan J, Di X, Qiu Y, Xu H. Phylogenetic analysis and antigenic epitope prediction for E6 and E7 of Alpha-papillomavirus 9 in Taizhou, China. BMC Genomics 2024; 25:507. [PMID: 38778248 PMCID: PMC11110188 DOI: 10.1186/s12864-024-10411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Alpha-papillomavirus 9 (α-9) is a member of the human papillomavirus (HPV) α genus, causing 75% invasive cervical cancers worldwide. The purpose of this study was to provide data for effective treatment of HPV-induced cervical lesions in Taizhou by analysing the genetic variation and antigenic epitopes of α-9 HPV E6 and E7. METHODS Cervical exfoliated cells were collected for HPV genotyping. Positive samples of the α-9 HPV single type were selected for E6 and E7 gene sequencing. The obtained nucleotide sequences were translated into amino acid sequences (protein primary structure) using MEGA X, and positive selection sites of the amino acid sequences were evaluated using PAML. The secondary and tertiary structures of the E6 and E7 proteins were predicted using PSIPred, SWISS-MODEL, and PyMol. Potential T/B-cell epitopes were predicted by Industrial Engineering Database (IEDB). RESULTS From 2012 to 2023, α-9 HPV accounted for 75.0% (7815/10423) of high-risk HPV-positive samples in Taizhou, both alone and in combination with other types. Among these, single-type-positive samples of α-9 HPV were selected, and the entire E6 and E7 genes were sequenced, including 298 HPV16, 149 HPV31, 185 HPV33, 123 HPV35, 325 HPV52, and 199 HPV58 samples. Compared with reference sequences, 34, 12, 10, 2, 17, and 17 nonsynonymous nucleotide mutations were detected in HPV16, 31, 33, 35, 52, and 58, respectively. Among all nonsynonymous nucleotide mutations, 19 positive selection sites were selected, which may have evolutionary significance in rendering α-9 HPV adaptive to its environment. Immunoinformatics predicted 57 potential linear and 59 conformational B-cell epitopes, many of which are also predicted as CTL epitopes. CONCLUSION The present study provides almost comprehensive data on the genetic variations, phylogenetics, positive selection sites, and antigenic epitopes of α-9 HPV E6 and E7 in Taizhou, China, which will be helpful for local HPV therapeutic vaccine development.
Collapse
Affiliation(s)
- Haobo Yuan
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, P. R. China
| | - Ziyi Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, P. R. China
| | - Jun Gan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, P. R. China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, 317000, P. R. China
| | - Xinghong Di
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, P. R. China
| | - Yi Qiu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, P. R. China
| | - Huihui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, P. R. China.
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, 317000, P. R. China.
- Scientific Research Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, P. R. China.
| |
Collapse
|
5
|
Liu S, Mei B, Ouyang Y, Li C. Prevalence and genotype distribution of human papillomavirus infection among women in Jingzhou, China: a population-based study of 51,720 women. Virol J 2023; 20:297. [PMID: 38102627 PMCID: PMC10722767 DOI: 10.1186/s12985-023-02262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Cervical cancer is the fourth most common cancer among women worldwide with a serious threat to women's health. Persistent infection with high-risk human papillomavirus (HR-HPV) has been identified as the main cause of cervical cancer. This study aimed to evaluate the prevalence and genotype distribution of HR-HPV among women in Jingzhou, Hubei province, China, which is critical for the government to formulate the precision strategies of cervical cancer screening and HPV vaccine innoculation. METHODS To obtain the baseline data on the population-based prevalence and genotype distribution of HR-HPV infection among age groups and different years, a total of 51,720 women from 2018 to 2022 who went to Jingzhou Hospital Affiliated to Yangtze University for physical examination or gynacological treatment and received HR-HPV DNA genotyping were included in this retrospective study. The possible cervicovaginal infection of 15 high-risk HPV genotypes were analyzed by multiplex fluorescent real-time PCR, including HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68 and 82. RESULTS The overall high-risk HPV prevalence among 51,720 women was 18.75% (9,698/51,720), and the HPV-positive rate of physical examination group (PEG) was 13.22% (541/4,091), which was lower than the HPV-positive rate of gynacological checkup group (GCG) 19.23% (9,157/47,629), with statistical difference (χ2 = 89.069, P < 0.01). The five most common prevalent genotypes were HPV52 (6.55%), HPV58 (3.41%), HPV16 (2.58%), HPV68 (1.82%) and HPV51 (1.57%). Single HPV infection was the predominant (14.36%), which compared to double (3.34%) and multiple (1.05%) infections. The HPV-positive rate was the highest in the > 60 age group (31.73%), and the lowest in the 31-40 age group (15.46%). CONCLUSIONS The prevalence of high-risk HPV infection among women in Jingzhou area was 18.75%. HPV52, HPV58 and HPV16 genotypes were the most common. The higher prevalence was in the > 60 and ≤ 20 age group, which showed a "U" shape curve, suggesting the necessity of screening among older women to decrease the mortality of cervical cancer.
Collapse
Affiliation(s)
- Shun Liu
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Bing Mei
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Yaoling Ouyang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Chengbin Li
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Li T, Yang Z, Zhang C, Wang S, Mei B. Genetic variation of E6 and E7 genes of human papillomavirus type 16 from central China. Virol J 2023; 20:217. [PMID: 37759219 PMCID: PMC10537582 DOI: 10.1186/s12985-023-02188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Persistent high-risk human papillomavirus (HR-HPV) infection is an important factor in the development of cervical cancer, and human papillomavirus type 16 (HPV-16) is the most common HR-HPV type worldwide. The oncogenic potential of HPV-16 is closely related to viral sequence variation. METHODS In order to clarify the variant characteristics of HPV-16 E6 and E7 genes in central China, E6 and E7 sequences of 205 HPV-16 positive samples were amplified by polymerase chain reaction. PCR products of E6 and E7 genes were further sequenced and subjected to variation analysis, phylogenetic analysis, selective pressure analysis and B-cell epitope prediction. RESULTS Twenty-six single nucleotide variants were observed in E6 sequence, including 21 non-synonymous and 5 synonymous variants. Twelve single nucleotide variants were identified in E7 sequence, including 6 non-synonymous and 6 synonymous variants. Four new variants were found. Furthermore, nucleotide variation A647G (N29S) in E7 was significantly related to the higher risk of HSIL and cervical cancer. Phylogenetic analysis showed that the E6 and E7 sequences were all distributed in A lineage. No positively selected site was found in HPV-16 E6 and E7 sequences. Non-conservative substitutions in E6, H31Y, D32N, D32E, I34M, L35V, E36Q, L45P, N65S and K75T, affected multiple B-cell epitopes. However, the variation of E7 gene had little impact on the corresponding B-cell epitopes (score < 0.85). CONCLUSION HPV-16 E6 and E7 sequences variation data may contribute to HR-HPV prevention and vaccine development in Jingzhou, central China.
Collapse
Affiliation(s)
- Ting Li
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Zhiping Yang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Chunlin Zhang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Sutong Wang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Bing Mei
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China.
| |
Collapse
|
7
|
Chagas BS, Tibúrcio Júnior E, Silva RCDO, dos Santos DL, Barros Junior MR, de Lima RDCP, Invenção MDCV, Santos VEP, França Neto PL, Silva Júnior AH, Silva Neto JC, Batista MVDA, de Freitas AC. E7 Oncogene HPV58 Variants Detected in Northeast Brazil: Genetic and Functional Analysis. Microorganisms 2023; 11:1915. [PMID: 37630475 PMCID: PMC10458125 DOI: 10.3390/microorganisms11081915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Cervical cancer is associated with persistent infections by high-risk Human Papillomavirus (HPV) types that may have nucleotide polymorphisms and, consequently, different oncogenic potentials. Therefore, this study aimed to evaluate the genetic variability and structural effects of the E7 oncogene of HPV58 in cervical scraping samples from Brazilian women. The study was developed with patients from hospitals in the metropolitan area of Recife, PE, Brazil. The most frequent HPV types were, in descending order of abundance, HPV16, 31, and 58. Phylogenetic analysis demonstrated that the isolates were classified into sublineages A2, C1, and D2. Two positively selected mutations were found in E7: 63G and 64T. The mutations G41R, G63D, and T64A in the E7 protein reduced the stability of the protein structure. Utilizing an NF-kB reporter assay, we observed a decrease in the NK-kB pathway activity with the HPV58-E7 variant 54S compared to the WT E7. The other detected E7 HPV58 variants presented similar NF-kB pathway activity compared to the WT E7. In this study, it was possible to identify mutations that may interfere with the molecular interaction between the viral oncoproteins and host proteins.
Collapse
Affiliation(s)
- Bárbara Simas Chagas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Elias Tibúrcio Júnior
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Ruany Cristyne de Oliveira Silva
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Daffany Luana dos Santos
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Marconi Rego Barros Junior
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Rita de Cássia Pereira de Lima
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Maria da Conceição Viana Invenção
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Vanessa Emanuelle Pereira Santos
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Pedro Luiz França Neto
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Antônio Humberto Silva Júnior
- Center for Biological and Health Sciences, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil;
| | - Jacinto Costa Silva Neto
- Laboratory of Molecular and Cytological Research, Department of Histology, Federal University of Pernambuco, Recife 50670-901, PE, Brazil;
| | - Marcus Vinícius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil;
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| |
Collapse
|
8
|
Yang Z, Zhang C, Luo P, Sun F, Mei B. Genetic diversity and functional implication of the long control region in human papillomavirus types 52, 58, and 16 from Central China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105447. [PMID: 37217029 DOI: 10.1016/j.meegid.2023.105447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 05/24/2023]
Abstract
OBJECT High-risk human papillomavirus (HR-HPV) is a main reason for cervical cancer. The long control region (LCR) of the genome plays a variety of roles in the transcription of the virus. METHODS LCR sequences were amplified by polymerase chain reaction (PCR) and confirmed by DNA sequencing. MEGA 11.0 software and NCBI blast were used to analyze the sequences and construct the Neighbor-Joining tree. In addition, the JASPAR database was used to predict the potential transcription factor binding sites (TFBS). RESULTS For HPV-52 LCR, 68 single nucleotide polymorphisms (SNPs), 8 deletions, and 1 insertion were found, 17 of which were novel variations. Most of the variants were clustered in B2 sub-lineage (96.22%). For HPV-58 LCR, 25.43% of samples were prototype. 49 SNPs, 2 deletions, and 1 insertion were observed in the remaining samples. A1 sub-lineage was the most frequent (64.16%). For HPV-16 LCR, 75 SNPs and 2 deletions were identified, 13 of which were newly identified. A total of 55.68% of the variants were distributed in A4 sub-lineage. The JASPAR results suggested that multiple variations occurred in TFBSs, which might affect the function of transcription factors. CONCLUSIONS This study provides experimental data for further studies on the epidemiology and biological function of LCR. Various LCR mutational data may prove useful for exploring the carcinogenic mechanism of HPV.
Collapse
Affiliation(s)
- ZhiPing Yang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei 434020, China
| | - Chunlin Zhang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei 434020, China
| | - Ping Luo
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei 434020, China
| | - Fenglan Sun
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei 434020, China
| | - Bing Mei
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei 434020, China.
| |
Collapse
|
9
|
Chen Y, Zhang X, Jiang J, Luo M, Tu H, Xu C, Tan H, Zhou X, Chen H, Han X, Yue Q, Guo Y, Zheng K, Qi Y, Situ C, Cui Y, Guo X. Regulation of Miwi-mediated mRNA stabilization by Ck137956/Tssa is essential for male fertility. BMC Biol 2023; 21:89. [PMID: 37069605 PMCID: PMC10111675 DOI: 10.1186/s12915-023-01589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Sperm is formed through spermiogenesis, a highly complex process involving chromatin condensation that results in cessation of transcription. mRNAs required for spermiogenesis are transcribed at earlier stages and translated in a delayed fashion during spermatid formation. However, it remains unknown that how these repressed mRNAs are stabilized. RESULTS Here we report a Miwi-interacting testis-specific and spermiogenic arrest protein, Ck137956, which we rename Tssa. Deletion of Tssa led to male sterility and absence of sperm formation. The spermiogenesis arrested at the round spermatid stage and numerous spermiogenic mRNAs were down-regulated in Tssa-/- mice. Deletion of Tssa disrupted the localization of Miwi to chromatoid body, a specialized assembly of cytoplasmic messenger ribonucleoproteins (mRNPs) foci present in germ cells. We found that Tssa interacted with Miwi in repressed mRNPs and stabilized Miwi-interacting spermiogenesis-essential mRNAs. CONCLUSIONS Our findings indicate that Tssa is indispensable in male fertility and has critical roles in post-transcriptional regulations by interacting with Miwi during spermiogenesis.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jiayin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengjiao Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Haixia Tu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xudong Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
10
|
Zhang C, Yang Z, Luo P, Li T, Wang S, Sun F, Gong P, Mei B. Association of TLR4 and TLR9 gene polymorphisms with cervical HR-HPV infection status in Chinese Han population. BMC Infect Dis 2023; 23:152. [PMID: 36915050 PMCID: PMC10012518 DOI: 10.1186/s12879-023-08116-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/23/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) may be involved in the natural history of human papillomavirus (HPV) infection. In our study, we aimed to investigate the association of TLR4 (rs10116253, rs1927911, rs10759931) and TLR9 (rs187084, rs352140) gene polymorphisms with cervical persistent high-risk HPV (HR-HPV) infection, as well as multiple HR-HPV infections. METHODS A total of 269 study subjects were enrolled and grouped by retrospectively analyzing the HR-HPV testing results and other clinical data of 2647 gynecological outpatients from Jingzhou Hospital Affiliated to Yangtze University. We conducted a case-control study to compare the role of TLR4/TLR9 gene polymorphisms between HR-HPV transient and persistent infections, as well as between HR-HPV single and multiple infections. HR-HPV genotypes were detected using Real-time polymerase chain reaction (RT-PCR). PCR-restriction fragment length polymorphism (PCR-RFLP) was used to determine TLR4 and TLR9 gene polymorphisms. Analyses of the different outcome variables (HR-HPV infection status and time for HR-HPV clearance) with respect to TLR4/TLR9 polymorphisms were carried out. Logistic regression analysis was used to determine the association of TLR4/TLR9 genotypes and alleles with HR-HPV infection status. The Kaplan-Meier method with the log-rank test was used to analyze the relationship between TLR4/TLR9 genotypes and the time for HR-HPV clearance. RESULTS The mutant genotypes of TLR9 rs187084 and rs352140 were associated with persistent (rs187084: CT and CT+CC; rs352140: CT and CT+TT) and multiple (rs187084: CT and CT+CC; rs352140: CT+TT) (all P < 0.05) HR-HPV infection. However, no association was found between TLR4 polymorphisms and HR-HPV infection status. Kaplan-Meier time to HR-HPV clearance analysis demonstrated that women carrying rs187084 and rs352140 mutant genotypes take longer duration to clear HR-HPV infection compared with wild-type genotype carriers (P1 = 0.012; P2 = 0.031). CONCLUSION Our results suggested that TLR9 polymorphisms, but not TLR4, were associated with cervical persistent and multiple HR-HPV infections, which could be useful as a potential predictor of HR-HPV infection status.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Zhiping Yang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Ping Luo
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Ting Li
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Sutong Wang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Fenglan Sun
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Ping Gong
- Department of Pathology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Bing Mei
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China.
| |
Collapse
|
11
|
Characteristics of human papillomavirus infection among females and the genetic variations of HPV18 and HPV58 in Henan province, China. Sci Rep 2023; 13:2252. [PMID: 36755053 PMCID: PMC9908864 DOI: 10.1038/s41598-022-24641-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/17/2022] [Indexed: 02/10/2023] Open
Abstract
The present study aims to investigate the genotype distribution of Human papillomavirus (HPV) and variations of HPV18 and HPV58 infection among 6538 females in Luoyang city during 2019-2021. The overall positive rate of females with HPV infection was 12.34%, with 9.74% were infected with single HPV and 2.60% with multiple HPVs. The prevalent rate of high-risk HPV (HR-HPV) was 9.85% and the top five HR-HPV genotypes were HPV52 (1.94%), HPV16 (1.93%), HPV58 (1.48%), HPV51 (1.02%) and HPVV39 (0.99%). Two peaks of HPV infections rates were observed in females aged ≤ 20 and 61-65 years old. To characterize mutations, 39 HPV18 and 56 HPV58 L1, E6 and E7 genes were sequenced and submitted to GenBank. In the HPV18 E6-E7-L1 sequences, 38 nucleotides changes were observed with 10/38 were non-synonymous mutations (5 in E6 gene, 1 in E7 gene and 4 in L1 gene). In the HPV58 E6-E7-L1 sequences, 53 nucleotides changes were observed with 23/53 were non-synonymous mutations (3 in E6 gene, 5 in E7 gene and 15 in L1 gene). Phylogenetic analysis based on L1 gene showed that 92.3% (36/39) of HPV18 isolates fell into sublineage A1 and 7.7% (3/39) belonged to A5. For HPV58, 75.0% (42/56) isolates belonged to sublineage A1 and 25.0% (14/56) were sublineage A2. There was no association between amino mutation and cervical lesions. The present study provides basic information about the distribution, genotypes and variations of HPV among females population in Luoyang city, which would assist in the formulation of HPV screening and vaccination programs and preventive strategies for HPV-attributable cancer in this region.
Collapse
|