1
|
Wei Z, Li X, Ai C, Dang H. Characterization and Genomic Analyses of dsDNA Vibriophage vB_VpaM_XM1, Representing a New Viral Family. Mar Drugs 2024; 22:429. [PMID: 39330310 PMCID: PMC11432961 DOI: 10.3390/md22090429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
A novel vibriophage vB_VpaM_XM1 (XM1) was described in the present study. Morphological analysis revealed that phage XM1 had Myovirus morphology, with an oblate icosahedral head and a long contractile tail. The genome size of XM1 is 46,056 bp, with a G + C content of 42.51%, encoding 69 open reading frames (ORFs). Moreover, XM1 showed a narrow host range, only lysing Vibrio xuii LMG 21346 (T) JL2919, Vibrio parahaemolyticus 1.1997, and V. parahaemolyticus MCCC 1H00029 among the tested bacteria. One-step growth curves showed that XM1 has a 20-min latent period and a burst size of 398 plaque-forming units (PFU)/cell. In addition, XM1 exhibited broad pH, thermal, and salinity stability, as well as strong lytic activity, even at a multiplicity of infection (MOI) of 0.001. Multiple genome comparisons and phylogenetic analyses showed that phage XM1 is grouped in a clade with three other phages, including Vibrio phages Rostov 7, X29, and phi 2, and is distinct from all known viral families that have ratified by the standard genomic analysis of the International Committee on Taxonomy of Viruses (ICTV). Therefore, the above four phages might represent a new viral family, tentatively named Weiviridae. The broad physiological adaptability of phage XM1 and its high lytic activity and host specificity indicated that this novel phage is a good candidate for being used as a therapeutic bioagent against infections caused by certain V. parahaemolyticus strains.
Collapse
Affiliation(s)
- Zuyun Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen 361102, China
| | - Xuejing Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen 361102, China
| | - Chunxiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Mariculture Breeding, Xiamen 361102, China
| | - Hongyue Dang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen 361102, China
| |
Collapse
|
2
|
Gao J, Zhu Y, Zhang R, Xu J, Zhou R, Di M, Zhang D, Liang W, Zhou X, Ren X, Li H, Yang Y. Isolation and Characterization of a Novel Phage against Vibrio alginolyticus Belonging to a New Genus. Int J Mol Sci 2024; 25:9132. [PMID: 39201817 PMCID: PMC11354583 DOI: 10.3390/ijms25169132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Vibrio alginolyticus causes substantial economic losses in the aquaculture industry. With the rise of multidrug-resistant Vibrio strains, phages present a promising solution. Here, a novel lytic Vibrio phage, vB_ValC_RH2G (RH2G), that efficiently infects the pathogenic strain V. alginolyticus ATCC 17749T, was isolated from mixed wastewater from an aquatic market in Xiamen, China. Transmission electron microscopy revealed that RH2G has the morphology of Siphoviruses, featuring an icosahedral head (73 ± 2 nm diameter) and long noncontractile tail (142 ± 4 nm). A one-step growth experiment showed that RH2G had a short latent period (10 min) and a burst size of 48 phage particles per infected cell. Additionally, RH2G was highly species-specific and was relatively stable at 4-55 °C and pH 4-10. A genomic analysis showed that RH2G has a 116,749 bp double-stranded DNA genome with 43.76% GC content. The intergenomic similarity between the genome sequence of RH2G and other phages recorded in the GenBank database was below 38.8%, suggesting that RH2G represents a new genus. RH2G did not exhibit any virulence or resistance genes. Its rapid lysis capacity, lytic activity, environmental resilience, and genetic safety suggested that RH2G may be a safe candidate for phage therapy in combatting vibriosis in aquaculture settings.
Collapse
Affiliation(s)
- Jie Gao
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China; (J.G.); (J.X.); (D.Z.)
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University (Xiang’an), Xiamen 361005, China
| | - Yuang Zhu
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China; (J.G.); (J.X.); (D.Z.)
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518061, China;
| | - Juntian Xu
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China; (J.G.); (J.X.); (D.Z.)
| | - Runjie Zhou
- State Key Laboratory of Trophic Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
- Centre for Regional Oceans, Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Meiqi Di
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China; (J.G.); (J.X.); (D.Z.)
| | - Di Zhang
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China; (J.G.); (J.X.); (D.Z.)
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development/Ministry of Natural Resources, Beihai 536000, China
| | - Wenxin Liang
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China; (J.G.); (J.X.); (D.Z.)
| | - Xing Zhou
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China; (J.G.); (J.X.); (D.Z.)
| | - Xing Ren
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development/Ministry of Natural Resources, Beihai 536000, China
| | - Huifang Li
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China; (J.G.); (J.X.); (D.Z.)
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University (Xiang’an), Xiamen 361005, China
| | - Yunlan Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518061, China;
| |
Collapse
|
3
|
Li H, Zhong W, Zhang X, Rui Z, Yang Y, Xu J, Gao J, Zhou X, Wu J, Xu J. Isolation and Characterization of a Novel Vibrio Phage vB_ValA_R15Z. Curr Microbiol 2024; 81:285. [PMID: 39073500 DOI: 10.1007/s00284-024-03736-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/08/2024] [Indexed: 07/30/2024]
Abstract
Vibrio phages have emerged as a potential alternative to antibiotic therapy for treating Vibrio infections. In this study, a lytic Vibrio phage, vB_ValA_R15Z against Vibrio alginolyticus ATCC 17749T, was isolated from an aquatic water sample collected in Xiamen, China. The phage had an icosahedral head (diameter 69 ± 2 nm) and a short, non-contractile tail measuring 16 ± 2 nm. The genome of vB_ValA_R15Z was found to be a double-stranded DNA consisting of 43, 552 bp, containing 54 coding sequences (CDSs) associated with phage packaging, structure, DNA metabolism, lysis and additional functions. The BLASTN results indicated that vB_ValA_R15Z shared less than 90.18% similarity with known phages recorded in the NCBI GenBank database, suggesting that vB_ValA_R15Z was a novel Vibrio phage. Furthermore, phylogenetic analysis revealed that vB_ValA_R15Z belongs to the genus Kaohsiungvirus. In addition, a typical lytic mechanism (holin-endolysim) was found in the genome of vB_ValA_R15Z, while no antibiotic resistance- or virulence factor-related gene was detected. Overall, the study provides valuable insights into the isolation and characterization of vB_ValA_R15Z, highlighting its potential as an effective phage therapy option for combating Vibrio alginolyticus infections.
Collapse
Affiliation(s)
- Huifang Li
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, 222005, China.
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), Xiamen, 361005, Fujian, China.
| | - Wanxuan Zhong
- State Key Laboratory of Trophic Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinyu Zhang
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhang Rui
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), Xiamen, 361005, Fujian, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518061, Guangdong, China
| | - Yunlan Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), Xiamen, 361005, Fujian, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518061, Guangdong, China
| | - Juntian Xu
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jie Gao
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xing Zhou
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jie Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), Xiamen, 361005, Fujian, China.
| | - Jie Xu
- Centre for Regional Oceans, Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Macau, 999078, China.
| |
Collapse
|
4
|
Fang C, Dai X, Xiang L, Qiu Y, Yin M, Fu Y, Li Y, Zhang L. Isolation and characterization of three novel lytic phages against K54 serotype carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Cell Infect Microbiol 2023; 13:1265011. [PMID: 38149011 PMCID: PMC10749971 DOI: 10.3389/fcimb.2023.1265011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) has driven us to explore alternative treatments for the limitation of antimicrobial agents. Lytic phages are considered a promising alternative treatment for CR-hvKP infection. In this study, we reported three novel lytic phages, vB_KpnA_SCNJ1-Z, vB_KpnS_SCNJ1-C, and vB_KpnM_SCNJ1-Y, against a CR-hvKP strain SCNJ1, and they possess genomes of double-stranded DNA with a size of 43,428 bp, 46,039 bp, and 50,360 bp, respectively. Phylogenetic analysis demonstrated that vB_KpnA_SCNJ1-Z belongs to the family Autographiviridae within the class Caudoviricetes, while vB_KpnS_SCNJ1-C and vB_KpnM_SCNJ1-Y are unclassified Caudoviricetes. The phages showed a narrow host range only lysing 1 of 50 tested clinical bacterial strains. The one-step growth curves and stability results showed that the phages displayed relatively short latency periods, with broad pH (pH 3-14) and thermal stabilities (20-60°C). The phages showed significant inhibition of the biofilm formation by SCNJ1 and strong antibacterial activity in vitro. In the mouse model, we demonstrated that administration of a single phage or phage cocktail significantly reduced bacteria loads in the lung, liver, and spleen, and effectively rescued mice from the infection of the SCNJ1 strain, with a survival rate of 70-80%. These findings suggested the three phages have great potential as an alternative therapy with favorable stability and strong antibacterial activity both in vivo and in vitro for the treatment of CR-hvKP infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Li
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Luhua Zhang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Li Y, Yun H, Chen R, Jiao N, Zheng Q, Yang Y, Zhang R. Characterization of a Vibriophage Infecting Pathogenic Vibrio harveyi. Int J Mol Sci 2023; 24:16202. [PMID: 38003392 PMCID: PMC10671443 DOI: 10.3390/ijms242216202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial diseases caused by Vibrio spp. are prevalent in aquaculture and can lead to high mortality rates among aquatic species and significant economic losses. With the increasing emergence of multidrug-resistant Vibrio strains, phage therapy is being explored as a potential alternative to antibiotics for biocontrol of infectious diseases. Here, a new lytic phage named vB_VhaS_R21Y (R21Y) was isolated against Vibrio harveyi BVH1 obtained from seawater from a scallop-farming area in Rongcheng, China. Its morphology, infection cycle, lytic profile, phage stability, and genetic features were characterized. Transmission electronic microscopy indicated that R21Y is siphovirus-like, comprising an icosahedral head (diameter 73.31 ± 2.09 nm) and long noncontractile tail (205.55 ± 0.75 nm). In a one-step growth experiment, R21Y had a 40-min latent period and a burst size of 35 phage particles per infected cell. R21Y was highly species-specific in the host range test and was relatively stable at pH 4-10 and 4-55 °C. Genomic analysis showed that R21Y is a double-stranded DNA virus with a genome size of 82,795 bp and GC content of 47.48%. Its high tolerance and lytic activity indicated that R21Y may be a candidate for phage therapy in controlling vibriosis in aquacultural systems.
Collapse
Affiliation(s)
- Yingying Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.L.); (H.Y.); (R.C.); (N.J.); (Q.Z.)
- Institute for Advanced Study, Shenzhen University, Shenzhen 518061, China
| | - Huayi Yun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.L.); (H.Y.); (R.C.); (N.J.); (Q.Z.)
| | - Ruo Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.L.); (H.Y.); (R.C.); (N.J.); (Q.Z.)
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.L.); (H.Y.); (R.C.); (N.J.); (Q.Z.)
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.L.); (H.Y.); (R.C.); (N.J.); (Q.Z.)
| | - Yunlan Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518061, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518061, China
| |
Collapse
|
6
|
Usman SS, Uba AI, Christina E. Bacteriophage genome engineering for phage therapy to combat bacterial antimicrobial resistance as an alternative to antibiotics. Mol Biol Rep 2023; 50:7055-7067. [PMID: 37392288 DOI: 10.1007/s11033-023-08557-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 07/03/2023]
Abstract
Bacteriophages (phages) are viruses that mainly infect bacteria and are ubiquitously distributed in nature, especially to their host. Phage engineering involves nucleic acids manipulation of phage genome for antimicrobial activity directed against pathogens through the applications of molecular biology techniques such as synthetic biology methods, homologous recombination, CRISPY-BRED and CRISPY-BRIP recombineering, rebooting phage-based engineering, and targeted nucleases including CRISPR/Cas9, zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Management of bacteria is widely achieved using antibiotics whose mechanism of action has been shown to target both the genetic dogma and the metabolism of pathogens. However, the overuse of antibiotics has caused the emergence of multidrug-resistant (MDR) bacteria which account for nearly 5 million deaths as of 2019 thereby posing threats to the public health sector, particularly by 2050. Lytic phages have drawn attention as a strong alternative to antibiotics owing to the promising efficacy and safety of phage therapy in various models in vivo and human studies. Therefore, harnessing phage genome engineering methods, particularly CRISPR/Cas9 to overcome the limitations such as phage narrow host range, phage resistance or any potential eukaryotic immune response for phage-based enzymes/proteins therapy may designate phage therapy as a strong alternative to antibiotics for combatting bacterial antimicrobial resistance (AMR). Here, the current trends and progress in phage genome engineering techniques and phage therapy are reviewed.
Collapse
Affiliation(s)
- Sani Sharif Usman
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144401, Punjab, India
- Department of Biological Sciences, Faculty of Science, Federal University of Kashere, P.M.B. 0182, Gombe, Nigeria
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, 34537, Istanbul, Türkiye
| | - Evangeline Christina
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144401, Punjab, India.
| |
Collapse
|