1
|
Gaikwad SY, More A, Seniya C, Verma K, Chandane-Tak M, Nema V, Kumar S, Mukherjee A. Synergistic inhibition of HIV-1 by Nelfinavir and Epigallocatechin Gallate: A novel nanoemulsion-based therapeutic approach. Virology 2025; 603:110391. [PMID: 39787774 DOI: 10.1016/j.virol.2025.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
The integration of nanotechnology into antiretroviral drug delivery systems presents a promising avenue to address challenges posed by long-term antiretroviral therapies (ARTs), including poor bioavailability, drug-induced toxicity, and resistance. These limitations impact the therapeutic effectiveness and quality of life for individuals living with HIV. Nanodrug delivery systems, particularly nanoemulsions, have demonstrated potential in improving drug solubility, enhancing bioavailability, and minimizing systemic toxicity. Moreover, nanodrug platforms can target viral reservoirs, potentially reducing the emergence of drug-resistant strains-a significant challenge in anti-HIV treatment. This study evaluates the biological efficacy of a rosemary oil-based nanoemulsion loaded with Nelfinavir (NFV) and Epigallocatechin Gallate (EGCG), which demonstrated HIV-1 suppression at sub-CC₅₀ concentrations across two distinct cellular systems. The synergistic interaction between NFV and EGCG was confirmed through cellular assays, enzymatic studies, and molecular interaction analysis. In vitro experiments revealed that the NE-NFV-EGCG nanoemulsion exhibited enhanced HIV-1 inhibitory activity compared to pure NFV, highlighting a promising therapeutic synergy. The findings suggest that EGCG could be a valuable adjunct in NFV-based regimens for HIV management. Molecular interaction studies further confirmed the nanoemulsion's inhibitory potential against the HIV-1 protease enzyme. This study marks a significant advancement in HIV-1 treatment by documenting, for the first time, the synergistic inhibitory activity of NFV and EGCG. The novel nanoformulation offers improved oral bioavailability, minimal side effects, and enhanced therapeutic outcomes. Future studies are needed to optimize the formulation for clinical applications, including sustained drug release and drug transport mechanisms.
Collapse
Affiliation(s)
- Shraddha Y Gaikwad
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Ashwini More
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Chandrabhan Seniya
- Department of Biotechnology and Chemical Engineering, Manipal University Jaipur, India
| | - Kunal Verma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, India
| | - Madhuri Chandane-Tak
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Vijay Nema
- Division of Molecular Biology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India; AcSIR - Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, India.
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India; AcSIR - Academy of Scientific & Innovative Research, Ghaziabad, India.
| |
Collapse
|
2
|
Sharma KB, Subramani C, Ganesh K, Sharma A, Basu B, Balyan S, Sharma G, KA S, Deb A, Srivastava M, Chugh S, Sehrawat S, Bharadwaj K, Rout A, Sahoo PK, Saurav S, Motiani RK, Singh R, Jain D, Asthana S, Wadhwa R, Vrati S. Withaferin A inhibits Chikungunya virus nsP2 protease and shows antiviral activity in the cell culture and mouse model of virus infection. PLoS Pathog 2024; 20:e1012816. [PMID: 39775571 PMCID: PMC11723598 DOI: 10.1371/journal.ppat.1012816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 01/10/2025] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus causing fever, myalgia, and debilitating joint swelling and pain, which in many patients becomes chronic. The frequent epidemics of CHIKV across the world pose a significant public health burden necessitating the development of effective antiviral therapeutics. A cellular imaging-based high-content screening of natural compounds identified withaferin A (WFA), a steroidal lactone isolated from the plant Withania somnifera, as a potent antiviral against CHIKV. In the ERMS cells, WFA inhibited CHIKV replication early during the life cycle by binding the CHIKV non-structural protein nsP2 and inhibiting its protease activity. This inhibited the viral polyprotein processing and the minus-sense viral RNA synthesis. WFA mounted the nsP2 protease inhibitory activity through its oxidising property as the reducing agents N-acetylcysteine and Glutathione-monoethyl ester effectively reversed the WFA-mediated protease inhibition in vitro and abolished the WFA-mediated antiviral activity in cultured cells. WFA inhibited CHIKV replication in the C57BL/6 mouse model of chikungunya disease, resulting in significantly lower viremia. Importantly, CHIKV-infected mice showed significant joint swelling which was not seen in WFA-treated mice. These data demonstrate the potential of WFA as a novel CHIKV antiviral.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shouri KA
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Mitul Srivastava
- Translational Health Science and Technology Institute, Faridabad, India
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | - Archana Rout
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Suman Saurav
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, India
| | - Deepti Jain
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | | |
Collapse
|
3
|
Jadaun P, Harshithkumar R, Seniya C, Gaikwad SY, Bhoite SP, Chandane-Tak M, Borse S, Chavan-Gautam P, Tillu G, Mukherjee A. Mitochondrial resilience and antioxidant defence against HIV-1: unveiling the power of Asparagus racemosus extracts and Shatavarin IV. Front Microbiol 2024; 15:1475457. [PMID: 39507335 PMCID: PMC11537936 DOI: 10.3389/fmicb.2024.1475457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Asparagus racemosus (AR), an Ayurvedic botanical, possesses various biological characteristics, yet its impact on HIV-1 replication remains to be elucidated. This study aimed to investigate the inhibitory effects of AR root extracts and its principal bioactive molecule, Shatavarin IV (Shatavarin), on HIV-1 replication and their role in mitigating mitochondrial dysfunction during HIV-1 infection, utilizing both in vitro and in silico methodologies. The cytotoxicity of the extracts was evaluated using MTT and ATPlite assays. In vitro anti-HIV-1 activity was assessed in TZM-bl cells against X4 and R5 subtypes, and confirmed in peripheral blood mononuclear cells using HIV-1 p24 antigen capture ELISA and viral copy number assessment. Mechanistic insights were obtained through enzymatic assays targeting HIV-1 Integrase, Protease and Reverse Transcriptase. Shatavarin's activity was also validated via viral copy number and p24 antigen capture assays, along with molecular interaction studies against key HIV-1 replication enzymes. HIV-1 induced mitochondrial dysfunction was evaluated by detecting mitochondrial reactive oxygen species (ROS), calcium accumulation, mitochondrial potential, and caspase activity within the infected cells. Non-cytotoxic concentrations of both aqueous and hydroalcoholic extracts derived from Asparagus racemosus roots displayed dose-dependent inhibition of HIV-1 replication. Notably, the hydroalcoholic extract exhibited superior Reverse Transcriptase activity, complemented by moderate activity observed in the Protease assay. Molecular interaction studies revealed that Shatavarin IV, the key bioactive constituent of AR, formed hydrogen bonds within the active binding pocket site residues crucial for HIV replication enzyme catalysis, suggesting its potential in attenuating HIV-1 infection. Mitochondrial dysfunction induced by HIV-1 infection, marked by increased oxidative stress, mitochondrial calcium overload, loss of mitochondrial membrane potential, and elevated caspase activity, was effectively mitigated by treatment with AR extracts and Shatavarin IV. These findings underscore the potential of AR extracts and Shatavarin IV as antiviral agents, while enhancing mitochondrial function during HIV-1 infection. In conclusion, Asparagus racemosus extracts, particularly Shatavarin IV, demonstrate promising inhibitory effects against HIV-1 replication while concurrently ameliorating mitochondrial dysfunction induced by the virus. These findings suggest the therapeutic potential of AR extracts and Shatavarin in combating HIV-1 infection and improving mitochondrial health.
Collapse
Affiliation(s)
- Pratiksha Jadaun
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | - R. Harshithkumar
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | - Chandrabhan Seniya
- School of Biosciences, Engineering and Technology, VIT Bhopal University, Bhopal, India
| | - Shraddha Y. Gaikwad
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | | | - Madhuri Chandane-Tak
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | - Swapnil Borse
- AYUSH-Center of Excellence, CCIH-Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Preeti Chavan-Gautam
- AYUSH-Center of Excellence, CCIH-Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Girish Tillu
- AYUSH-Center of Excellence, CCIH-Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Anupam Mukherjee
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| |
Collapse
|
4
|
Verma DK, Hasan A, Rengaraju M, Devi S, Sharma G, Narayanan V, Parameswaran S, Kumar D T, Kadarkarai K, Sunil S. Evaluation of Withania somnifera based supplement for immunomodulatory and antiviral properties against viral infection. J Ayurveda Integr Med 2024; 15:100955. [PMID: 39388854 DOI: 10.1016/j.jaim.2024.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Viral mediated diseases are continuously posing potent threat to human health. Nutraceuticals are being employed as novel therapeutics during viral outbreaks. MAM granules consist of Curcuma longa, Withania somnifera, and Piper nigrum, is one such patented Siddha nutraceutical supplement that has been proposed to be a therapeutic agent against viral diseases. OBJECTIVE We characterised MAM for their phytochemical and physicochemical properties and evaluated its cytotoxicity via in vivo acute toxicity studies using Wistar rats and by cell-based MTT assays. MATERIALS AND METHODS The antiviral properties of the aqueous extract of MAM were investigated against SARS-CoV-2 and chikungunya virus (CHIKV). Further, using ABTS radical scavenging, SOD enzymatic assays and measurement of intracellular ROS, we investigated the antioxidant potential of MAM extract and its ingredients in RAW264.7 cells. Additionally, production of inflammatory mediators was evaluated via NO release, PGE2 production and release of pro-inflammatory cytokines (IL-1β and TNFα). RESULTS The MAM granules and aqueous extracts demonstrated no significant toxicity and demonstrated potent antiviral activity during co-incubation assay with SARS-CoV-2 and CHIKV. Moreover, we observed potent antioxidant and anti-inflammatory activity of MAM extract in a dose dependent manner. Further investigations on the individual ingredients with respect to their antioxidant and anti-inflammatory activities showed that all ingredients contributed synergistically and Withania somnifera showed most potent anti-oxidant activity. CONCLUSION The overall in vitro, and in vivo analysis demonstrated that MAM granules were non-toxic and possessed potent antiviral activity. Additionally, observed significant anti-oxidant and anti-inflammatory properties of MAM suggested the modulation of innate immune response in the host validating its use as an effective nutraceutical during viral outbreaks.
Collapse
Affiliation(s)
- Dileep Kumar Verma
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Abdul Hasan
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Manickavasagam Rengaraju
- Siddha Clinical Research Unit, Govt. Sri Jayachamarajendra Institute of Indian Medicine Campus, Bengaluru, Karnataka, India.
| | - Shree Devi
- Siddha Central Research Institute, Chennai, India
| | - Geetika Sharma
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Vimal Narayanan
- Santhigiri Research Foundation, Santhigiri Ayurveda and Siddha Hospital, Bengaluru, Karnataka, India
| | | | - Thirumal Kumar D
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, India
| | | | - Sujatha Sunil
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| |
Collapse
|
5
|
Gaikwad SY, Tyagi S, Seniya C, More A, Chandane-Tak M, Kumar S, Mukherjee A. A nanoemulsified formulation of dolutegravir and epigallocatechin gallate inhibits HIV-1 replication in cellular models. FEBS Lett 2024; 598:1919-1936. [PMID: 38789398 DOI: 10.1002/1873-3468.14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Nanotechnology offers promising avenues for enhancing drug delivery systems, particularly in HIV-1 treatment. This study investigates a nanoemulsified formulation combining epigallocatechin gallate (EGCG) with dolutegravir (DTG) for managing HIV-1 infection. The combinatorial interaction between EGCG and DTG was explored through cellular, enzymatic, and molecular studies. In vitro assays demonstrated the potential of a dual drug-loaded nanoemulsion, NE-DTG-EGCG, in inhibiting HIV-1 replication, with EGCG serving as a supplementary treatment containing DTG. In silico molecular interaction studies highlighted EGCG's multifaceted inhibitory potential against HIV-1 integrase and reverse transcriptase enzymes. Further investigations are needed to validate the formulation's efficacy across diverse contexts. Overall, by integrating nanotechnology into drug delivery systems, this study represents a significant advancement in managing HIV-1 infection.
Collapse
Affiliation(s)
- Shraddha Y Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Pune, India
| | - Shivani Tyagi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, India
| | - Chandrabhan Seniya
- School of Biosciences, Engineering and Technology, VIT Bhopal University, India
| | - Ashwini More
- Division of Virology, ICMR-National AIDS Research Institute, Pune, India
| | | | - Shobhit Kumar
- School of Biosciences, Engineering and Technology, VIT Bhopal University, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune, India
| |
Collapse
|
6
|
Chandhiruthil Sathyan A, Yadav P, Gupta P, Mahapathra AK, Galib R. In Silico Approaches to Polyherbal Synergy: Protocol for a Scoping Review. JMIR Res Protoc 2024; 13:e56646. [PMID: 38857494 PMCID: PMC11196908 DOI: 10.2196/56646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 04/10/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND According to the World Health Organization, more than 80% of the world's population relies on traditional medicine. Traditional medicine is typically based on the use of single herbal drugs or polyherbal formulations (PHFs) to manage diseases. However, the probable mode of action of these formulations is not well studied or documented. Over the past few decades, computational methods have been used to study the molecular mechanism of phytochemicals in single herbal drugs. However, the in silico methods applied to study PHFs remain unclear. OBJECTIVE The aim of this protocol is to develop a search strategy for a scoping review to map the in silico approaches applied in understanding the activity of PHFs used as traditional medicines worldwide. METHODS The scoping review will be conducted based on the methodology developed by Arksey and O'Malley and the recommendations of the Joanna Briggs Institute (JBI). A set of predetermined keywords will be used to identify the relevant studies from five databases: PubMed, Embase, Science Direct, Web of Science, and Google Scholar. Two independent reviewers will conduct the search to yield a list of relevant studies based on the inclusion and exclusion criteria. Mendeley version 1.19.8 will be used to remove duplicate citations, and title and abstract screening will be performed with Rayyan software. The JBI System for the Unified Management, Assessment, and Review of Information tool will be used for data extraction. The scoping review will be reported based on the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. RESULTS Based on the core areas of the scoping review, a 3-step search strategy was developed. The initial search produced 3865 studies. After applying filters, 875 studies were short-listed for further review. Keywords were further refined to yield more relevant studies on the topic. CONCLUSIONS The findings are expected to determine the extent of the knowledge gap in the applications of computational methods in PHFs for any traditional medicine across the world. The study can provide answers to open research questions related to the phytochemical identification of PHFs, criteria for target identification, strategies applied for in silico studies, software used, and challenges in adopting in silico methods for understanding the mechanisms of action of PHFs. This study can thus provide a better understanding of the application and types of in silico methods for investigating PHFs. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/56646.
Collapse
Affiliation(s)
| | - Pramod Yadav
- Department of Rasa Shastra and Bhaishajya Kalpana, All India Institute of Ayurveda, Delhi, India
| | - Prashant Gupta
- Ayurinformatics Laboratory, Department of Kaumarbhritya, All India Institute of Ayurveda, Delhi, India
| | - Arun Kumar Mahapathra
- Ayurinformatics Laboratory, Department of Kaumarbhritya, All India Institute of Ayurveda, Delhi, India
| | - Ruknuddin Galib
- Department of Rasa Shastra and Bhaishajya Kalpana, All India Institute of Ayurveda, Delhi, India
| |
Collapse
|
7
|
Rakshit S, More A, Gaikwad S, Seniya C, Gade A, Muley VY, Mukherjee A, Kamble K. Role of diosgenin extracted from Helicteres isora L in suppression of HIV-1 replication: An in vitro preclinical study. Heliyon 2024; 10:e24350. [PMID: 38288021 PMCID: PMC10823083 DOI: 10.1016/j.heliyon.2024.e24350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
Background Diosgenin, an essential sapogenin steroid with significant biological implications, is composed of a hydrophilic sugar moiety intricately linked to a hydrophobic steroid aglycone. While the antiviral properties of diosgenin against numerous RNA viruses have been extensively documented, its potential in combating Human Immunodeficiency Virus infections remains unexplored. Experimental procedure This current investigation presents a comprehensive and systematic analysis of extracts derived from the leaves of Helicteres isora, which are notably enriched with diosgenin. Rigorous methodologies, including established chromatographic techniques and Fourier-transform infrared spectroscopy were employed for the characterization of the active diosgenin compound followed by molecular interaction analyses with the key HIV enzymes and mechanistic validation of HIV inhibition. Key results The inhibitory effects of extracted diosgenin on the replication of HIV-1 were demonstrated using a permissive cellular system, encompassing two distinct subtypes of HIV-1 strains. Computational analyses involving molecular interactions highlighted the substantial occupancy of critical active site pocket residues within the key HIV-1 proteins by diosgenin. Additionally, the mechanistic underpinnings of diosgenin activity in conjunction with standard controls were elucidated through specialized colorimetric assays, evaluating its impact on HIV-1 Reverse Transcriptase and Integrase enzymes. Conclusions To our current state of knowledge, this study represents the inaugural demonstration of the anti-HIV efficacy inherent to diosgenin found in the leaves of Helicteres isora, and can be taken further for drug design and development for the management of HIV infection.
Collapse
Affiliation(s)
- Smita Rakshit
- Department of Microbiology, Sant Gadge Baba Amravati University, Amravati, MH, India
| | - Ashwini More
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Shraddha Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Chandrabhan Seniya
- VIT Bhopal University, School of Biosciences, Engineering and Technology, Bhopal, MP, India
| | - Aniket Gade
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MH, India
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, MH, India
| | | | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Kapil Kamble
- Department of Microbiology, Sant Gadge Baba Amravati University, Amravati, MH, India
| |
Collapse
|
8
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|