1
|
Jia J, Zhao H, Li F, Zheng Q, Wang G, Li D, Liu Y. Research on drug treatment and the novel signaling pathway of chronic atrophic gastritis. Biomed Pharmacother 2024; 176:116912. [PMID: 38850667 DOI: 10.1016/j.biopha.2024.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is a global digestive system disease and one of the important causes of gastric cancer. The incidence of CAG has been increasing yearly worldwide. PURPOSE This article reviews the latest research on the common causes and future therapeutic targets of CAG as well as the pharmacological effects of corresponding clinical drugs. We provide a detailed theoretical basis for further research on possible methods for the treatment of CAG and reversal of the CAG process. RESULTS CAG often develops from chronic gastritis, and its main pathological manifestation is atrophy of the gastric mucosa, which can develop into gastric cancer. The drug treatment of CAG can be divided into agents that regulate gastric acid secretion, eradicate Helicobacter. pylori (H. pylori), protect gastric mucous membrane, or inhibit inflammatory factors according to their mechanism of action. Although there are limited specific drugs for the treatment of CAG, progress is being made in defining the pathogenesis and therapeutic targets of the disease. Growing evidence shows that NF-κB, PI3K/AKT, Wnt/ β-catenin, MAPK, Toll-like receptors (TLRs), Hedgehog, and VEGF signaling pathways play an important role in the development of CAG.
Collapse
Affiliation(s)
- Jinhao Jia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Huijie Zhao
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Special Administrative Region of China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832003, PR China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| | - Ying Liu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
2
|
Kumar V, Kumar V, Kondepudi KK, Chopra K, Bishnoi M. Capsazepine-Induced Altered Colonic Mucosal Health Limits Isomalto-oligosaccharide Action in High-Fat Diet-Fed C57BL/6J Mice. ACS Pharmacol Transl Sci 2023; 6:600-613. [PMID: 37082749 PMCID: PMC10111622 DOI: 10.1021/acsptsci.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 04/05/2023]
Abstract
The present study sought to understand the effects of a combination of altered colonic mucosal health (intrarectal capsazepine administration) and high-fat diet (HFD) administration in mice. Furthermore, we also studied whether this combination prevents protective actions of dietary prebiotic, isomaltooligosaccharides. We studied the alterations in intestinal permeability, histological and transcriptional changes, short-chain fatty acid (SCFA) concentrations, and gut microbial abundance. Capsazepine (CPZ) was administered rectally twice a day along with HFD feeding. Following confirmation of CPZ action (loss of TRPA1 and TRPV1-associated nocifensive behavior), the intrarectal dose of CPZ was reduced to once in 2 days up to 8 weeks. Simultaneous intrarectal administration of CPZ exacerbated the HFD (8 weeks feeding)-induced damage to mucosal lining, intestinal permeability, tight junction protein expression, SCFA levels, and gut bacterial abundances. This higher degree of mucosal damage and pathological alteration in colonic mucosa prevented the previously reported protective actions of isomaltooligosaccharides as a prebiotic in HFD-fed mice. Overall, we present evidence that colonic precondition (gut permeability and mucosal lining) is an important factor in determination of HFD-induced changes in the colon, and success of diet-associated interventions (dietary fibers, pre/probiotics, etc.) is dependent on it.
Collapse
Affiliation(s)
- Vibhu Kumar
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Vijay Kumar
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
- Department
of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Kanthi Kiran Kondepudi
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Kanwaljit Chopra
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Mahendra Bishnoi
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| |
Collapse
|
3
|
Widmayer P, Pregitzer P, Breer H. Short-term high fat feeding induces inflammatory responses of tuft cells and mucosal barrier cells in the murine stomach. Histol Histopathol 2023; 38:273-286. [PMID: 35904321 DOI: 10.14670/hh-18-503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Feeding mice with a high fat diet (HFD) induces inflammation and results in changes of gene expression and cellular composition in various tissues throughout the body, including the gastrointestinal tract. In the stomach, tuft cells expressing the receptor GPR120 are capable of sensing saturated long chain fatty acids (LCFAs) and thus may be involved in initiating mechanisms of mucosal inflammation. In this study, we assessed which cell types may additionally be affected by high fat feeding and which candidate molecular mediators might contribute to mucosa-protective immune responses. A high fat dietary intervention for 3 weeks caused an expansion of tuft cells that was accompanied by a higher frequency of mucosal mast cells and surface mucous cells which are a known source of the insult-associated cytokine interleukin 33 (IL-33). Our data demonstrate that both brush and mucosal mast cells comprise the enzyme ALOX5 and its activating protein FLAP and thus have the capacity for synthesizing leukotriene (LT). In HFD mice, several tuft cells showed a perinuclear colocalization of ALOX5 with FLAP which is indicative of an active LT synthesis. Monitoring changes in the expression of genes encoding elements of LT synthesis and signaling revealed that transcript levels of the leukotriene C4 synthase, LTC4S, catalyzing the first step in the biosynthesis of cysteinyl (cys) LTs, and the cysLT receptors, cysLTR2 and cysLTR3, were upregulated in mice on HFD. These mice also showed an increased expression level of IL-33 receptors, the membrane-bound ST2L and soluble isoform sST2, as well as the mast cell-specific protease MCPT1. Based on these findings it is conceivable that upon sensing saturated LCFAs tuft cells may elicit inflammatory responses which result in the production of cysLTs and activation of surface mucous cells as well as mucosal mast cells regulating gastric mucosal function and integrity.
Collapse
Affiliation(s)
- Patricia Widmayer
- Institute of Biology, Department of Physiology (190v), University of Hohenheim, Stuttgart, Germany.
| | - Pablo Pregitzer
- Institute of Biology, Department of Physiology (190v), University of Hohenheim, Stuttgart, Germany
| | - Heinz Breer
- Institute of Biology, Department of Physiology (190v), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
4
|
Kinoshita Y, Arita S, Ogawa T, Takenouchi A, Inagaki-Ohara K. Augmented leptin-induced trefoil factor 3 expression and epidermal growth factor receptor transactivation differentially influences neoplasia progression in the stomach and colorectum of dietary fat-induced obese mice. Arch Biochem Biophys 2022; 729:109379. [PMID: 36002083 DOI: 10.1016/j.abb.2022.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Obesity is a risk factor for gastrointestinal malignancies and tumors. However, which factors either protect or predispose the gastrointestinal organs to high-fat diet (HFD)-induced neoplasia remains unclear. Here, we demonstrate that HFD impacts the stomach to a greater extent as compared to the colorectum, resulting in leptin receptor (LepR) signaling-mediated neoplasia in the tissues. HFD activated leptin signaling, which in turn, accelerates the pathogenesis in the gastric mucosa more than that in the colorectum along with ectopic TFF3 expression. Moreover, in the stomach, higher levels of phosphorylated epidermal growth factor receptor (EGFR) in addition to the activation of STAT3 and Akt were observed as compared to the colorectum. The mice with LepR deletion in the gastrointestinal epithelium exhibited a suppressed induction of leptin, TFF3, and phosphorylated EGFR in the stomach, whereas the levels in the colorectum were insignificant. In co-transfected COS-7 cells with LepR and EGFR plasmid DNA, leptin transactivated EGFR to accelerate TFF3 induction along with activation of STAT3, ERK1/2, Akt, and PI3K p85/p55. Furthermore, TFF3 could bind to EGFR but did not transactivate LepR. Leptin-induced TFF3 induction was markedly suppressed by inhibitors of PI3K (LY294002) and EGFR (Erlotinib). Together, these results suggest a novel role of LepR-mediated signaling in transactivating EGFR that leads to TFF3 expression via the PI3K-Akt pathway. Therefore, this study sheds light on the identification of potentially new therapeutic targets for the treatment of pre-cancerous symptoms in stomach and colorectum.
Collapse
Affiliation(s)
- Yuta Kinoshita
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Seiya Arita
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Takumi Ogawa
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Ayane Takenouchi
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Kyoko Inagaki-Ohara
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan.
| |
Collapse
|
5
|
Pappas-Gogos G, Tepelenis K, Goussia A, Tellis C, Fousekis F, Glantzounis GK, Vlachos K. Plasma VEGF and Leptin Values in Patients With Gastric Intestinal Metaplasia and Metabolic Syndrome. Front Oncol 2022; 12:905168. [PMID: 35712481 PMCID: PMC9194502 DOI: 10.3389/fonc.2022.905168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Intestinal metaplasia of the stomach (IM) is considered a pre-cancerous lesion and is a potential precursor to adenocarcinoma. Metabolic syndrome (MetS) has been associated with lesions to the gastrointestinal tract such as the risk of developing Barett esophagus. Vascular endothelial growth factor and leptin have been associated with either gastrointestinal tract carcinogenesis or MetS. In this context, this study was designed to analyze plasma levels of VEGF and leptin in patients with IM and MetS. Four groups of 137 participants (a control group and three patient groups, IM, MetS and IM- MetS) were created. Inclusion criteria for the presence of IM were endoscopic findings and histological confirmation, while for MetS the ATP III and IDF guidelines. Levels of plasma vascular endothelial growth factor (VEGF) and leptin (Leptin) were determined. VEGF levels were increased in IM (IM vs Control, p=0,011) and IM-MetS groups (IM-MetS vs Control, p <0.001 and IM-MetS vs MetS, p=0.001). Leptin levels were found to be increased in the MetS group (MetS vs. Control, p <0.001 and MetS vs IM, p <0.001) and in IM-MetS (IM-MetS vs Control, p = 0.002, IM-MetS vs IM, p=0.033). Patients with intestinal metaplasia and metabolic syndrome (I M - Me t S g r o u p) have elevated levels of VEGF, while leptin levels were associated predominantly with MetS and not with IM.
Collapse
Affiliation(s)
- George Pappas-Gogos
- Department of Surgery, Ioannina University Hospital, Ioannina, Greece
- *Correspondence: George Pappas-Gogos,
| | - Kostas Tepelenis
- Department of Surgery, Ioannina University Hospital, Ioannina, Greece
| | - Anna Goussia
- Department of Pathology, Ioannina University Hospital, Ioannina, Greece
- School of Medicine, University of Ioannina, Ioannina, Greece
| | - Constantinos Tellis
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Fotis Fousekis
- Department of Gastroenterology, Ioannina University Hospital, Ioannina, Greece
| | - Georgios K. Glantzounis
- Department of Surgery, Ioannina University Hospital, Ioannina, Greece
- School of Medicine, University of Ioannina, Ioannina, Greece
| | - Konstantinos Vlachos
- Department of Surgery, Ioannina University Hospital, Ioannina, Greece
- School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
6
|
Abstract
Leptin is a pluripotent peptide hormone produced mainly by adipocytes, as well as by other tissues such as the stomach. Leptin primarily acts on the central nervous system, particularly the hypothalamus, where this hormone regulates energy homeostasis and neuroendocrine function. Owing to this, disruption of leptin signaling has been linked with numerous pathological conditions. Recent studies have also highlighted the diverse roles of leptin in the digestive system including immune regulation, cell proliferation, tissue healing, and glucose metabolism. Of note, leptin acts differently under physiological and pathological conditions. Here, we review the current knowledge on the functions of leptin and its downstream signaling in the gastrointestinal tract and accessory digestive organs, with an emphasis on its physiological and pathological implications. We also discuss the current therapeutic uses of recombinant leptin, as well as its limitations.
Collapse
Affiliation(s)
- Min-Hyun Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Hyeyoung Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
7
|
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J, Li P, Wang Y, Du L, Wang C. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics 2021; 11:5889-5910. [PMID: 33897888 PMCID: PMC8058730 DOI: 10.7150/thno.56157] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is currently one of the main causes of cancer death, with a large number of cases and a wide range of lesioned sites. A high fat diet, as a public health problem, has been shown to be correlated with various digestive system diseases and tumors, and can accelerate the occurrence of cancer due to inflammation and altered metabolism. The gut microbiome has been the focus of research in recent years, and associated with cell damage or tumor immune microenvironment changes via direct or extra-intestinal effects; this may facilitate the occurrence and development of gastrointestinal tumors. Based on research showing that both a high fat diet and gut microbes can promote the occurrence of gastrointestinal tumors, and that a high fat diet imbalances intestinal microbes, we propose that a high fat diet drives gastrointestinal tumors by changing the composition of intestinal microbes.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| |
Collapse
|
8
|
Olea-Flores M, Juárez-Cruz JC, Zuñiga-Eulogio MD, Acosta E, García-Rodríguez E, Zacapala-Gomez AE, Mendoza-Catalán MA, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. New Actors Driving the Epithelial-Mesenchymal Transition in Cancer: The Role of Leptin. Biomolecules 2020; 10:E1676. [PMID: 33334030 PMCID: PMC7765557 DOI: 10.3390/biom10121676] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022] Open
Abstract
Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial-mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Juan C. Juárez-Cruz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Miriam D. Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Erika Acosta
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Eduardo García-Rodríguez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Ana E. Zacapala-Gomez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Miguel A. Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Carlos Ortuño-Pineda
- Laboratorio de Ácidos Nucleicos y Proteinas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico;
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| |
Collapse
|
9
|
Arita S, Ogawa T, Murakami Y, Kinoshita Y, Okazaki M, Inagaki-Ohara K. Dietary Fat-Accelerating Leptin Signaling Promotes Protumorigenic Gastric Environment in Mice. Nutrients 2019; 11:nu11092127. [PMID: 31489936 PMCID: PMC6770546 DOI: 10.3390/nu11092127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Excess of fat intake leads to obesity and causes a variety of metabolic diseases and cancer. We previously demonstrated that high-lard diet induces intestinal metaplasia, a precancerous lesion of the stomach mediated by leptin signaling. This study aims to investigate which kinds of dietary fat cause the intestinal metaplasia onset. We fed eight kinds of high-fat diets (HFDs) of animal or plant origin to mice evaluated their effect on gastric pathogenesis. Five types of dietary fat were divided according to their observed effects: Obese with high metaplasia (group I; beef tallow, lard, and hydrogenated coconut oil), non-obese with high metaplasia (group II; linseed oil), obese without metaplasia (group III; corn oil and olive oil), non-obese without metaplasia (group IV, soybean oil) and lean without metaplasia (group V; cocoa butter). The group I and II diets induced leptin, phosphorylated leptin receptor (ObR), signal transducer and activator 3 (STAT3), and increased intracellular β-catenin accumulation in the stomach. Moreover, mice fed these HFDs with 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), a gastric carcinogen, and further accelerated dysplasia in the stomach. Lactobacillus occupancy in the stomach increased in all HFDs except hydrogenated coconut oil. Our findings suggest that HFDs inducing leptin signaling accelerate the enhancement of protumorigenic gastric microenvironment independent of body mass gain or microbiome changes.
Collapse
Affiliation(s)
- Seiya Arita
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan
| | - Takumi Ogawa
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan
| | - Yuta Murakami
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan
| | - Yuta Kinoshita
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan
| | - Masaharu Okazaki
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan
| | - Kyoko Inagaki-Ohara
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
10
|
High-fat-diet-induced modulations of leptin signaling and gastric microbiota drive precancerous lesions in the stomach. Nutrition 2019; 67-68:110556. [PMID: 31554603 DOI: 10.1016/j.nut.2019.110556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Obesity is a risk factor for malignancy in various tissues, and has been associated with gut microbiota alterations. However, the link between obesity-associated microbiota and gastric pathogenesis has not been clarified. We demonstrated that high-fat-diet (HFD) feeding causes intestinal metaplasia, which are precancerous lesions of the stomach, with augmented gastric leptin signaling. The aim of this study was to investigate the precise role of leptin signaling in the altered microbiota composition and pathogenesis in the stomach during diet-induced obesity. METHODS Male C57 BL/6 J, leptin receptor (Lepr)-mutated db/db, and gastrointestinal epithelium-specific Lepr conditional knockout (T3 b-Lepr cKO) mice were fed a HFD or control diet. Gastrointestinal microbiota was analyzed by 16 S rRNA gene sequences and quantitative polymerase chain reaction. Transplantation of gastric microbiota of HFD-fed mice was performed to evaluate metaplasia onset in recipient mice. RESULTS One week of HFD caused severe microbial dysbiosis in the stomach. The microbiota changes were accompanied by increased gastric leptin, leading to the consequent development of intestinal metaplasia. Transplantation of gastric microbiota from HFD-fed mice induced intestinal metaplasia in recipient mice; however, only a limited effect on pathogenesis was noted. HFD-fed db/db mice did not show a decrease in microbial abundance. Moreover, T3 b-Lepr cKO mice failed spontaneous obesity, and suppressed decreased abundance of gastric microbiota and occurrence of intestinal metaplasia during HFD feeding similar to db/db mice. CONCLUSIONS Gastric leptin signaling modulates the gastric microbiota community and regulates the pathogenesis in the gastric mucosa.
Collapse
|
11
|
Leptin treatment of in vitro cultured embryos increases outgrowth rate of inner cell mass during embryonic stem cell derivation. In Vitro Cell Dev Biol Anim 2019; 55:473-481. [DOI: 10.1007/s11626-019-00367-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 05/03/2019] [Indexed: 12/24/2022]
|
12
|
Inagaki-Ohara K. Gastric Leptin and Tumorigenesis: Beyond Obesity. Int J Mol Sci 2019; 20:ijms20112622. [PMID: 31141984 PMCID: PMC6600422 DOI: 10.3390/ijms20112622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Leptin, an adipocyte-derived hormone and its receptor (ObR) expressed in the hypothalamus are well known as an essential regulator of appetite and energy expenditure. Obesity induces abundant leptin production, however, reduced sensitivity to leptin leads to the development of metabolic disorders, so called leptin resistance. The stomach has been identified as an organ that simultaneously expresses leptin and ObR. Accumulating evidence has shown gastric leptin to perform diverse functions, such as those in nutrient absorption and carcinogenesis in the gastrointestinal system, independent of its well-known role in appetite regulation and obesity. Overexpression of leptin and phosphorylated ObR is implicated in gastric cancer in humans and in murine model, and diet-induced obesity causes precancerous lesions in the stomach in mice. While the underlying pathomechanisms remain unclear, leptin signaling can affect gastric mucosal milieu. In this review, we focus on the significant role of the gastric leptin signaling in neoplasia and tumorigenesis in stomach in the context of hereditary and diet-induced obesity.
Collapse
Affiliation(s)
- Kyoko Inagaki-Ohara
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
13
|
Kim K, Chang Y, Ahn J, Yang HJ, Jung JY, Kim S, Sohn CI, Ryu S. Body Mass Index and Risk of Intestinal Metaplasia: A Cohort Study. Cancer Epidemiol Biomarkers Prev 2019; 28:789-797. [PMID: 30700447 DOI: 10.1158/1055-9965.epi-18-0733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/02/2018] [Accepted: 01/16/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND We examined the association between body mass index (BMI) and development of endoscopic intestinal metaplasia. METHODS This retrospective cohort study included 142,832 Korean adults free of endoscopic intestinal metaplasia and atrophic gastritis who underwent upper endoscopy at baseline and subsequent visits and were followed for up to 5 years. A parametric proportional hazards model was used to estimate the adjusted HR with 95% confidence interval (CI) for incident intestinal metaplasia. RESULTS In more than 444,719.1 person-years of follow-up, 2,281 participants developed endoscopic intestinal metaplasia (incidence rate, 5.1 per 1,000 person-years). Increased BMI categories were associated with increased risk of new-onset intestinal metaplasia in a dose-response manner. After adjustment for age, sex, center, year of screening exam, smoking status, alcohol intake, exercise, total calorie intake, history of diabetes and hypertension, and history of Helicobacter pylori infection, the multivariable adjusted HRs (95% CIs) for incident intestinal metaplasia comparing BMIs of <18.5, 23-24.9, 25.0-29.9, and >30 kg/m2 with a BMI of 18.5-22.9 kg/m2 were 0.84 (0.64-1.09), 1.03 (0.93-1.16), 1.07 (0.96-1.20), and 1.48 (1.20-1.83), respectively. These associations did not differ by clinically relevant subgroups. Risk of endoscopic atrophic gastritis also increased as the baseline BMI category increased. CONCLUSIONS In a large cohort of Korean men and women, obesity was independently associated with increased incidence of endoscopic atrophic gastritis and intestinal metaplasia. IMPACT Excessive adiposity appears to play a role in development of stomach precursor lesions of stomach cancer, requiring further studies to determine whether strategies to reduce obesity will also help reduce precancerous lesions and, in turn, gastric cancer.
Collapse
Affiliation(s)
- Kyungeun Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yoosoo Chang
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, South Korea
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Jiin Ahn
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Hyo-Joon Yang
- Division of Gastroenterology, Department of Internal Medicine and Gastrointestinal Cancer Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ju Young Jung
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Seokkyun Kim
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Chong Il Sohn
- Division of Gastroenterology, Department of Internal Medicine and Gastrointestinal Cancer Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Seungho Ryu
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, South Korea
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
14
|
Subcutaneously administered adrenomedullin exerts a potent therapeutic effect in a murine model of ulcerative colitis. Hum Cell 2018; 32:12-21. [PMID: 30306504 DOI: 10.1007/s13577-018-0219-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/30/2018] [Indexed: 01/01/2023]
Abstract
Adrenomedullin (AM) exerts a potent anti-inflammatory effect. Intrarectal or consecutive intravenous administrations of AM reduce pathological manifestations in rodent colitis models. However, in clinical applications, a safer administration route that provides stronger alleviation of patient burden is preferred. We investigated whether subcutaneously administered AM is effective against dextran sulfate sodium (DSS)-induced colitis. C57BL/6J mice were administered 1% DSS in drinking water and received AM at 8, 40 or 80 nmol/kg subcutaneously once a day for 7 consecutive days. Subcutaneously administered AM significantly and dose-dependently ameliorated body weight loss, diarrhea, and histological severity of colonic inflammation in DSS-treated mice. The AM therapeutic effect was associated with the upregulation of the production of autocrine AM, and expression of cAMP, c-fos, KLF4, and downregulation of STAT3 and NF-κB p65 phosphorylation, as well as a decrease in proinflammatory cytokine expression in the colon. Subcutaneous AM treatment potently attenuated DSS-induced colitis, which suggests that AM administered subcutaneously in ulcerative colitis (UC) patients may decrease diseases burden and improve quality of life.
Collapse
|
15
|
Confirming the Effects of Qinghuayin against Chronic Atrophic Gastritis and a Preliminary Observation of the Involved Inflammatory Signaling Pathways: An In Vivo Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4905089. [PMID: 30356431 PMCID: PMC6178163 DOI: 10.1155/2018/4905089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
Background Qinghuayin (QHY) is a Chinese formula that is widely used in the treatment of chronic atrophic gastritis (CAG). This study was planned with the following objectives: (1) confirming the efficacy of QHY in a rat model of CAG and (2) performing a preliminary observation of the changes in several inflammatory signaling pathways potentially involved in the QHY mechanisms. Methods A total of 33 rats were used in this study; they were divided into the control (n = 12) and model (n = 21) groups. QHY was administrated to both the groups. We assessed the pathological manifestations and the serum tumor necrosis factor alpha (TNF-α) level as markers of efficacy. We also performed a preliminary observation of the changes in the protein and messenger ribonucleic acid (mRNA) expression of toll-like receptors 4 (TLR4), MyD88, NF-κB, and COX-2. Results The pathological changes induced in the rats by the establishment of the CAG models were recovered by low and high doses of QHY. Their serum TNF-α level also reduced following low- and high-dose QHY treatment. Protein and mRNA expressions of TLR4, MyD88, NF-κB, and COX-2 were upregulated by the establishment of CAG models and downregulated by the administration of low- and high-dose QHY. Conclusions Our data confirm the efficacy of QHY as an adjuvant therapy, based on the theories in traditional Chinese medicine. The preliminary observations indicate that the downregulation of the enhanced inflammatory signaling pathways might be crucial QHY mechanisms that need further verification.
Collapse
|
16
|
Kim N, Youn CH, Kim AS, Ko HJ, Kim HM, Moon H, Park S. [Associations between Body Mass Index and Chronic Atrophic Gastritis and Intestinal Metaplasia]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2017; 70:81-88. [PMID: 28830133 DOI: 10.4166/kjg.2017.70.2.81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background/Aims Chronic atrophic gastritis (AG) and intestinal metaplasia (IM) of the stomach are premalignant lesions. The present study aimed to examine the associations between obesity and these lesions. Methods A total of 2,997 patients, who underwent gastroscopy, participated in this study, excluding those who had been diagnosed with gastric cancer. Participants were divided into four groups based on their body mass index (BMI). The risk of AG and IM with increasing BMI was analyzed in men and women, separately. Results The association between BMI and AG was not significant. After adjusting for age, smoking, alcohol, and AG, the odds ratios for IM in the overweight, obesity, and severe obesity groups were 2.25 (95% confidence interval [CI], 1.50-3.37), 2.32 (95% CI, 1.58-3.42), and 4.86 (95% CI, 2.04-11.5) in men, and 2.66 (95% CI, 1.29-5.47), 4.46 (95% CI, 2.28-8.75), and 9.57 (95% CI, 3.26-28.12) in women, compared with the normal BMI group. Conclusions Gastric IM was significantly associated with increased BMI.
Collapse
Affiliation(s)
- Nari Kim
- Department of Family Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Chang Ho Youn
- Department of Family Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - A Sol Kim
- Department of Family Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hae Jin Ko
- Department of Family Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hyo Min Kim
- Department of Family Medicine, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Hana Moon
- Department of Family Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Sujung Park
- Department of Family Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
17
|
High-fat diet feeding promotes stemness and precancerous changes in murine gastric mucosa mediated by leptin receptor signaling pathway. Arch Biochem Biophys 2016; 610:16-24. [PMID: 27693038 DOI: 10.1016/j.abb.2016.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/25/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022]
Abstract
Obesity increases the risk for gastric cancers. However, the occurrence and mechanisms of precancerous atrophic gastritis induced by high-fat diet (HFD) remain unclear. Here, we show that HFD-associated lipotoxicity induces precancerous lesions that are accompanied by the disruption of organelle homeostasis, tissue integrity, and deregulated expression of stemness genes in the gastric epithelium mediated by leptin receptor (ObR) signaling. Following HFD feeding, ectopic fat accumulated and expression of LAMP2A in lysosome and COX IV in mitochondria increased in the gastric mucosa. HFD feeding also led to enhanced expression of activated-Notch1 and stem cell markers Lgr5, CD44, and EpCAM. In addition, HFD-fed mice showed intracellular β-catenin accumulation in the gastric mucosa with increased expression of its target genes, Nanog, Oct4, and c-Myc. These observations were abrogated in the leptin-deficient ob/ob mice and ObR-mutated db/db mice, indicating that these HFD-induced changes were responsible for effects downstream of the ObR. Consistent with this, the expression of the Class IA and III PI3Ks was increased following ObR activation in the gastric mucosa of HFD-fed mice. Together, these results suggest that HFD-induced lipotoxicity and deregulated organelle biosynthesis confer cancer stem cell-like properties to the gastric mucosa via signaling pathway mediated by leptin, PI3K and β-catenin.
Collapse
|