1
|
Duriez P, Nilsson IAK, Le Thuc O, Alexandre D, Chartrel N, Rovere C, Chauveau C, Gorwood P, Tolle V, Viltart O. Exploring the Mechanisms of Recovery in Anorexia Nervosa through a Translational Approach: From Original Ecological Measurements in Human to Brain Tissue Analyses in Mice. Nutrients 2021; 13:nu13082786. [PMID: 34444945 PMCID: PMC8401511 DOI: 10.3390/nu13082786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022] Open
Abstract
Anorexia nervosa (AN) is a severe eating disorder where caloric restriction, excessive physical activity and metabolic alterations lead to life-threatening situations. Despite weight restoration after treatment, a significant part of patients experience relapses. In this translational study, we combined clinical and preclinical approaches. We describe preliminary data about the effect of weight gain on the symptomatology of patients suffering from acute AN (n = 225) and partially recovered (n = 41). We measured more precisely physical activity with continuous cardiac monitoring in a sub-group (n = 68). Using a mouse model, we investigated whether a long-term food restriction followed by nutritional recovery associated or not with physical activity may differentially impact peripheral and central homeostatic regulation. We assessed the plasma concentration of acyl ghrelin, desacyl ghrelin and leptin and the mRNA expression of hypothalamic neuropeptides and their receptors. Our data show an effect of undernutrition history on the level of physical activity in AN. The preclinical model supports an important role of physical activity in the recovery process and points out the leptin system as one factor that can drive a reliable restoration of metabolic variables through the hypothalamic regulation of neuropeptides involved in feeding behavior.
Collapse
Affiliation(s)
- Philibert Duriez
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
- GHU Paris Psychiatry and Neurosciences, Hospital Sainte-Anne, F-75014 Paris, France
| | - Ida A. K. Nilsson
- Department of Molecular Medicine & Surgery, Karolinska Institutet, Centre for Eating Disorders Innovation (CEDI), Medical University, Karolinska Institutet, S-17176 Stockholm, Sweden;
| | - Ophelia Le Thuc
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), University of Nice-Sophia Antipolis, F-06560 Valbonne, France; (O.L.T.); (C.R.)
| | - David Alexandre
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Normandie, UNIROUEN, F-76821 Mont-Saint-Aignan, France; (D.A.); (N.C.)
| | - Nicolas Chartrel
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Normandie, UNIROUEN, F-76821 Mont-Saint-Aignan, France; (D.A.); (N.C.)
| | - Carole Rovere
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), University of Nice-Sophia Antipolis, F-06560 Valbonne, France; (O.L.T.); (C.R.)
| | - Christophe Chauveau
- Marrow Adiposity and Bone Laboratory (MABLab), University of Littoral Côté d’Opale, CHRU Lille, F-62327 Boulogne sur Mer, France;
- Faculty of Sciences and Technologies, University of Lille, F-59650 Villeneuve d’Ascq, France
| | - Philip Gorwood
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
- GHU Paris Psychiatry and Neurosciences, Hospital Sainte-Anne, F-75014 Paris, France
| | - Virginie Tolle
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
| | - Odile Viltart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
- Faculty of Sciences and Technologies, University of Lille, F-59650 Villeneuve d’Ascq, France
- Correspondence: ; Tel.: +33-6-76-88-05-06
| |
Collapse
|
2
|
Scharner S, Stengel A. Animal Models for Anorexia Nervosa-A Systematic Review. Front Hum Neurosci 2021; 14:596381. [PMID: 33551774 PMCID: PMC7854692 DOI: 10.3389/fnhum.2020.596381] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Anorexia nervosa is an eating disorder characterized by intense fear of gaining weight and a distorted body image which usually leads to low caloric intake and hyperactivity. The underlying mechanism and pathogenesis of anorexia nervosa is still poorly understood. In order to learn more about the underlying pathophysiology of anorexia nervosa and to find further possible treatment options, several animal models mimicking anorexia nervosa have been developed. The aim of this review is to systematically search different databases and provide an overview of existing animal models and to discuss the current knowledge gained from animal models of anorexia nervosa. For the systematic data search, the Pubmed—Medline database, Embase database, and Web of Science database were searched. After removal of duplicates and the systematic process of selection, 108 original research papers were included in this systematic review. One hundred and six studies were performed with rodents and 2 on monkeys. Eighteen different animal models for anorexia nervosa were used in these studies. Parameters assessed in many studies were body weight, food intake, physical activity, cessation of the estrous cycle in female animals, behavioral changes, metabolic and hormonal alterations. The most commonly used animal model (75 of the studies) is the activity-based anorexia model in which typically young rodents are exposed to time-reduced access to food (a certain number of hours a day) with unrestricted access to a running wheel. Of the genetic animal models, one that is of particular interest is the anx/anx mice model. Animal models have so far contributed many findings to the understanding of mechanisms of hunger and satiety, physical activity and cognition in an underweight state and other mechanisms relevant for anorexia nervosa in humans.
Collapse
Affiliation(s)
- Sophie Scharner
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Khoo AWS, Taylor SM, Owens TJ. Successful management and recovery following severe prolonged starvation in a dog. J Vet Emerg Crit Care (San Antonio) 2019; 29:542-548. [PMID: 31448525 DOI: 10.1111/vec.12878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To describe the successful management of a dog following a period of prolonged food deprivation. CASE SUMMARY A 7-year-old, intact male Labrador Retriever presented with profound weakness and loss of nearly 50% of his body weight due to severe prolonged starvation after being trapped in a well for 27 days. Electrolyte concentrations were managed with intensive intravenous supplementation during refeeding. The dog's electrolyte abnormalities resolved, wounds healed, and strength returned during the first 3 weeks of treatment. During the next 3 months, body condition score normalized and muscle mass improved. NEW OR UNIQUE INFORMATION PROVIDED This report describes the management of a severely malnourished dog during refeeding, and highlights treatment considerations that may be important in the prevention of refeeding syndrome in such cases.
Collapse
Affiliation(s)
- Alison Wui Sing Khoo
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Susan M Taylor
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tammy J Owens
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Schalla MA, Stengel A. Activity Based Anorexia as an Animal Model for Anorexia Nervosa-A Systematic Review. Front Nutr 2019; 6:69. [PMID: 31165073 PMCID: PMC6536653 DOI: 10.3389/fnut.2019.00069] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Anorexia nervosa (AN) is a severe eating disorder affecting around 1 per 100 persons. However, the knowledge about its underlying pathophysiology is limited. To address the need for a better understanding of AN, an animal model was established early on in the late 1960's: the activity-based anorexia (ABA) model in which rats have access to a running wheel combined with restricted food access leading to self-starving/body weight loss and hyperactivity. Both symptoms, separately or combined, can also be found in patients with AN. The aim of this systematic review was to compile the current knowledge about this animal model as well as to address gaps in knowledge. Using the data bases of PubMed, Embase and Web of science 102 publications were identified meeting the search criteria. Here, we show that the ABA model mimics core features of human AN and has been characterized with regards to brain alterations, hormonal changes as well as adaptations of the immune system. Moreover, pharmacological interventions in ABA animals and new developments, such as a chronic adaptation of the ABA model, will be highlighted. The chronic model might be well suited to display AN characteristics but should be further characterized. Lastly, limitations of the model will be discussed.
Collapse
Affiliation(s)
- Martha A Schalla
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
The Role of Psychotropic Medications in the Management of Anorexia Nervosa: Rationale, Evidence and Future Prospects. CNS Drugs 2016; 30:419-42. [PMID: 27106297 PMCID: PMC4873415 DOI: 10.1007/s40263-016-0335-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder without approved medication intervention. Every class of psychoactive medication has been tried to improve treatment outcome; however, randomized controlled trials have been ambiguous at best and across studies have not shown robust improvements in weight gain and recovery. Here we review the available literature on pharmacological interventions since AN came to greater public recognition in the 1960s, including a critical review of why those trials may not have been successful. We further provide a neurobiological background for the disorder and discuss how cognition, learning, and emotion-regulating circuits could become treatment targets in the future. Making every effort to develop effective pharmacological treatment options for AN is imperative as it continues to be a complex psychiatric disorder with high disease burden and mortality.
Collapse
|