1
|
Kobayashi Y, Taniguchi R, Shirasaki E, Yoshimoto YS, Aoi W, Kuwahata M. Continuous training in young athletes decreases hepcidin secretion and is positively correlated with serum 25(OH)D and ferritin. PeerJ 2024; 12:e17566. [PMID: 38948227 PMCID: PMC11214734 DOI: 10.7717/peerj.17566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background Iron deficiency is known to impair muscle function and reduce athletic performance, while vitamin D has been reported to induce iron deficiency. However, the mechanism underlying exercise-induced changes in iron metabolism and the involvement of vitamins in this mechanism are unclear. The present study examined changes in biological iron metabolism induced by continuous training and the effects of vitamin D on these changes. Methods Diet, physical characteristics, and blood test data were collected from 23 female high school students in a dance club on the last day of each of a 2-month continuous training period and a 2-week complete rest periods. Results Serum hepcidin-25 levels were significantly lower during the training period than the rest period (p = 0.013), as were the red blood cell count, hemoglobin, and hematocrit (all p < 0.001). Serum erythropoietin was significantly higher (p = 0.001) during the training period. Significant positive correlations were observed between 25(OH)D levels and serum iron, serum ferritin, and transferrin saturation during the training period. Multiple regression analysis with serum 25(OH)D level as the dependent variable and serum ferritin and iron levels as independent variables during the training period revealed a significant association with serum ferritin. Conclusion Continuous training may promote hemolysis and erythropoiesis, contributing to the suppression of hepcidin expression. The relationship between serum 25(OH)D and iron in vivo may be closely related to metabolic changes induced by the exercise load.
Collapse
Affiliation(s)
- Yukiko Kobayashi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Rikako Taniguchi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Emiko Shirasaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yuko Segawa Yoshimoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Wataru Aoi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Masashi Kuwahata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
2
|
Pierce JL, Lyons JW, Chevalier TB, Lindemann MD. Effects of a second iron-dextran injection administered to piglets during lactation on differential gene expression in liver and duodenum at weaning. J Anim Sci 2024; 102:skae005. [PMID: 38219027 PMCID: PMC10874211 DOI: 10.1093/jas/skae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024] Open
Abstract
Six female littermate piglets were used in an experiment to evaluate the mRNA expression in tissues from piglets given one or two 1 mL injections of iron dextran (200 mg Fe/mL). All piglets in the litter were administered the first 1 mL injection < 24 h after birth. On day 7, piglets were paired by weight (mean body weight = 1.72 ± 0.13 kg) and one piglet from each pair was randomly selected as control (CON) and the other received a second injection (+Fe). At weaning on day 22, each piglet was anesthetized, and samples of liver and duodenum were taken from the anesthetized piglets and preserved until mRNA extraction. differential gene expression data were analyzed with a fold change cutoff (FC) of |1.2| P < 0.05. Pathway analysis was conducted with Z-score cutoff of P < 0.05. In the duodenum 435 genes were significantly changed with a FC ≥ |1.2| P < 0.05. In the duodenum, Claudin 1 and Claudin 2 were inversely affected by + Fe. Claudin 1 (CLDN1) plays a key role in cell-to-cell adhesion in the epithelial cell sheets and was upregulated (FC = 4.48, P = 0.0423). Claudin 2 (CLDN2) is expressed in cation leaky epithelia, especially during disease or inflammation and was downregulated (FC = -1.41, P = 0.0097). In the liver, 362 genes were expressed with a FC ≥ |1.2| P < 0.05. The gene most affected by a second dose of 200 mg Fe was hepcidin antimicrobial peptide (HAMP) with a FC of 40.8. HAMP is a liver-produced hormone that is the main circulating regulator of Fe absorption and distribution across tissues. It also controls the major flows of Fe into plasma by promoting endocytosis and degradation of ferroportin (SLC4A1). This leads to the retention of Fe in Fe-exporting cells and decreased flow of Fe into plasma. Gene expression related to metabolic pathway changes in the duodenum and liver provides evidence for the improved feed conversion and growth rates in piglets given two iron injections preweaning with contemporary pigs in a companion study. In the duodenum, there is a downregulation of gene clusters associated with gluconeogenesis (P < 0.05). Concurrently, there was a decrease in the mRNA expression of genes for enzymes required for urea production in the liver (P < 0.05). These observations suggest that there may be less need for gluconeogenesis, and possibly less urea production from deaminated amino acids. The genomic and pathway analyses provided empirical evidence linking gene expression with phenotypic observations of piglet health and growth improvements.
Collapse
Affiliation(s)
- James L Pierce
- James Pierce Consulting, Nicholasville, KY 40356, USA
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40506, USA
| | | | - Tyler B Chevalier
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Merlin D Lindemann
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
3
|
Yang J, Li Q, Feng Y, Zeng Y. Iron Deficiency and Iron Deficiency Anemia: Potential Risk Factors in Bone Loss. Int J Mol Sci 2023; 24:ijms24086891. [PMID: 37108056 PMCID: PMC10138976 DOI: 10.3390/ijms24086891] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Iron is one of the essential mineral elements for the human body and this nutrient deficiency is a worldwide public health problem. Iron is essential in oxygen transport, participates in many enzyme systems in the body, and is an important trace element in maintaining basic cellular life activities. Iron also plays an important role in collagen synthesis and vitamin D metabolism. Therefore, decrease in intracellular iron can lead to disturbance in the activity and function of osteoblasts and osteoclasts, resulting in imbalance in bone homeostasis and ultimately bone loss. Indeed, iron deficiency, with or without anemia, leads to osteopenia or osteoporosis, which has been revealed by numerous clinical observations and animal studies. This review presents current knowledge on iron metabolism under iron deficiency states and the diagnosis and prevention of iron deficiency and iron deficiency anemia (IDA). With emphasis, studies related to iron deficiency and bone loss are discussed, and the potential mechanisms of iron deficiency leading to bone loss are analyzed. Finally, several measures to promote complete recovery and prevention of iron deficiency are listed to improve quality of life, including bone health.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Qingmei Li
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yan Feng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
4
|
Das A, Bai CH, Chang JS, Huang YL, Wang FF, Chen YC, Chao JCJ. Associations of Dietary Patterns and Vitamin D Levels with Iron Status in Pregnant Women: A Cross-Sectional Study in Taiwan. Nutrients 2023; 15:nu15081805. [PMID: 37111023 PMCID: PMC10143533 DOI: 10.3390/nu15081805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Vitamin D is involved in the pathophysiology of anemia. This cross-sectional study was conducted using the Nationwide Nutrition and Health Survey in Pregnant Women in Taiwan database. We investigated associations among dietary patterns (DPs), vitamin D, and iron-related biomarkers in pregnant women. The principal component analysis revealed four DPs. Linear and logistic regression analyses were performed to investigate the association of DPs with anemia-related biomarkers. Plant-based, carnivore, and dairy and nondairy alternatives DPs were positively associated with serum vitamin D levels. After adjusting covariates, the pregnant women consuming plant-based DPs at the mid-tertile (T2) were associated with reduced risks of low serum folate and vitamin D levels, and those consuming carnivore DPs at higher tertiles (T2 and/or T3) were correlated with an increased risk of low serum iron levels but decreased risks of low serum transferrin saturation, vitamin B12, and vitamin D levels. The pregnant women consuming dairy and nondairy alternatives DPs at the highest tertile (T3) were associated with reduced risks of low serum folate and vitamin B12 levels. However, the processed food DP was not correlated with anemia-related biomarkers. Thus, plant-based, carnivore, and dairy and nondairy alternatives DPs were associated with the risk of low-serum-anemia-related variables.
Collapse
Affiliation(s)
- Arpita Das
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
| | - Chyi-Huey Bai
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
- School of Public Health, College of Public Health, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
- School of Public Health, College of Public Health, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
| | - Fan-Fen Wang
- Department of Metabolism, Yangming Branch, Taipei City Hospital, 105 Yusheng Street, Taipei 111024, Taiwan
| | - Yi-Chun Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
| | - Jane C-J Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan
- Master Program in Global Health and Health Security, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
| |
Collapse
|