1
|
Gao RR, Ma LY, Chen JW, Wang YX, Li YY, Zhou ZY, Deng ZH, Zhong J, Shu YH, Liu Y, Chen Q. ATN-161 alleviates caerulein-induced pancreatitis. J Genet Genomics 2024:S1673-8527(24)00262-5. [PMID: 39396744 DOI: 10.1016/j.jgg.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
Pancreatitis is a common gastrointestinal disorder that causes hospitalization with significant morbidity and mortality. The mechanistic pathophysiology of pancreatitis is complicated, limiting the discovery of pharmacological intervention methods. Here, we show that the administration of ATN-161, an antagonist of Integrin-α5, significantly mitigates the pathological condition of acute pancreatitis induced by caerulein. We find that CK19-positive pancreatic ductal cells align parallel to blood vessels in the pancreas. In the caerulein-induced acute pancreatitis model, the newly emergent CK19-positive cells are highly vascularized, with a significant increase in vascular density and endothelial cell number. Single-cell RNA sequencing analysis shows that ductal and endothelial cells are intimate interacting partners, suggesting the existence of a ductal-endothelial interface in the pancreas. Pancreatitis dramatically reduces the crosstalk in the ductal-endothelial interface but promotes the Spp-1/Integrin-α5 signaling. Blocking this signaling with ATN-161 significantly reduces acinar-to-ductal metaplasia, pathological angiogenesis, and restores other abnormal defects induced by caerulein. Our work reveals the therapeutic potential of ATN-161 as an uncharacterized pharmacological method to alleviate the symptoms of pancreatitis.
Collapse
Affiliation(s)
- Rong-Rong Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences; NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong 250117, China
| | - Lan-Yue Ma
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 101408, China; China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jian-Wei Chen
- Institutes of physical science and information technology, Anhui University, Hefei, Anhui 230601, China
| | - Yu-Xiang Wang
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 101408, China; China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yu-Yan Li
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 101408, China; China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zi-Yuan Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, China
| | - Zhao-Hua Deng
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 101408, China; China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jing Zhong
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 101408, China; China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Ya-Hai Shu
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Qi Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences; NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong 250117, China; Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; Institutes of physical science and information technology, Anhui University, Hefei, Anhui 230601, China; Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
2
|
Lit KK, Zhirenova Z, Blocki A. Insulin-like growth factor-binding protein 7 (IGFBP7): A microenvironment-dependent regulator of angiogenesis and vascular remodeling. Front Cell Dev Biol 2024; 12:1421438. [PMID: 39045455 PMCID: PMC11263173 DOI: 10.3389/fcell.2024.1421438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/25/2024] Open
Abstract
Insulin-like Growth Factor-Binding Protein 7 (IGFBP7) is an extracellular matrix (ECM) glycoprotein, highly enriched in activated vasculature during development, physiological and pathological tissue remodeling. Despite decades of research, its role in tissue (re-)vascularization is highly ambiguous, exhibiting pro- and anti-angiogenic properties in different tissue remodeling states. IGFBP7 has multiple binding partners, including structural ECM components, cytokines, chemokines, as well as several receptors. Based on current evidence, it is suggested that IGFBP7's bioactivity is strongly dependent on the microenvironment it is embedded in. Current studies indicate that during physiological angiogenesis, IGFBP7 promotes endothelial cell attachment, luminogenesis, vessel stabilization and maturation. Its effects on other stages of angiogenesis and vessel function remain to be determined. IGFBP7 also modulates the pro-angiogenic properties of other signaling factors, such as VEGF-A and IGF, and potentially acts as a growth factor reservoir, while its actual effects on the factors' signaling may depend on the environment IGFBP7 is embedded in. Besides (re-)vascularization, IGFBP7 clearly promotes progenitor and stem cell commitment and may exhibit anti-inflammatory and anti-fibrotic properties. Nonetheless, its role in inflammation, immunomodulation, fibrosis and cellular senescence is again likely to be context-dependent. Future studies are required to shed more light on the intricate functioning of IGFBP7.
Collapse
Affiliation(s)
- Kwok Keung Lit
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine (CNRM), Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Zhamilya Zhirenova
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine (CNRM), Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine (CNRM), Hong Kong Science Park, Shatin, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
3
|
Cantu A, Gutierrez MC, Dong X, Leek C, Anguera M, Lingappan K. Modulation of recovery from neonatal hyperoxic lung injury by sex as a biological variable. Redox Biol 2023; 68:102933. [PMID: 38661305 PMCID: PMC10628633 DOI: 10.1016/j.redox.2023.102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 04/26/2024] Open
Abstract
Recovery from lung injury during the neonatal period requires the orchestration of many biological pathways. The modulation of such pathways can drive the developing lung towards proper repair or persistent maldevelopment that can lead to a disease phenotype. Sex as a biological variable can regulate these pathways differently in the male and female lung exposed to neonatal hyperoxia. In this study, we assessed the contribution of cellular diversity in the male and female neonatal lung following injury. Our objective was to investigate sex and cell-type specific transcriptional changes that drive repair or persistent injury in the neonatal lung and delineate the alterations in the immune-endothelial cell communication networks using single cell RNA sequencing (sc-RNAseq) in a murine model of hyperoxic injury. We generated transcriptional profiles of >55,000 cells isolated from the lungs of postnatal day 1 (PND 1; pre-exposure), PND 7, and PND 21neonatal male and female C57BL/6 mice exposed to 95 % FiO2 between PND 1-5 (saccular stage of lung development). We show the presence of sex-based differences in the transcriptional states of lung endothelial and immune cells at PND 1 and PND 21. Furthermore, we demonstrate that biological sex significantly influences the response to injury, with a greater number of differentially expressed genes showing sex-specific patterns than those shared between male and female lungs. Pseudotime trajectory analysis highlighted genes needed for lung development that were altered by hyperoxia. Finally, we show intercellular communication between endothelial and immune cells at saccular and alveolar stages of lung development with sex-based biases in the crosstalk and identify novel ligand-receptor pairs. Our findings provide valuable insights into the cell diversity, transcriptional state, developmental trajectory, and cell-cell communication underlying neonatal lung injury, with implications for understanding lung development and possible therapeutic interventions while highlighting the crucial role of sex as a biological variable.
Collapse
Affiliation(s)
- Abiud Cantu
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Xiaoyu Dong
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Connor Leek
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Montserrat Anguera
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Krithika Lingappan
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Li Y, Fu L, Wu B, Guo X, Shi Y, Lv C, Yu Y, Zhang Y, Liang Z, Zhong C, Han S, Xu F, Tian Y. Angiogenesis modulated by CD93 and its natural ligands IGFBP7 and MMRN2: a new target to facilitate solid tumor therapy by vasculature normalization. Cancer Cell Int 2023; 23:189. [PMID: 37660019 PMCID: PMC10474740 DOI: 10.1186/s12935-023-03044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023] Open
Abstract
The tumor vasculature was different from the normal vasculature in both function and morphology, which caused hypoxia in the tumor microenvironment (TME). Previous anti-angiogenesis therapy had led to a modest improvement in cancer immunotherapy. However, antiangiogenic therapy only benefitted a few patients and caused many side effects. Therefore, there was still a need to develop a new approach to affect tumor vasculature formation. The CD93 receptor expressed on the surface of vascular endothelial cells (ECs) and its natural ligands, MMRN2 and IGFBP7, were now considered potential targets in the antiangiogenic treatment because recent studies had reported that anti-CD93 could normalize the tumor vasculature without impacting normal blood vessels. Here, we reviewed recent studies on the role of CD93, IGFBP7, and MMRN2 in angiogenesis. We focused on revealing the interaction between IGFBP7-CD93 and MMRN2-CD93 and the signaling cascaded impacted by CD93, IGFBP7, and MMRN2 during the angiogenesis process. We also reviewed retrospective studies on CD93, IGFBP7, and MMRN2 expression and their relationship with clinical factors. In conclusion, CD93 was a promising target for normalizing the tumor vasculature.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Lei Fu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xingqi Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Shi
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yang Yu
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Shukun Han
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
5
|
Cantu A, Gutierrez MC, Dong X, Leek C, Anguera M, Lingappan K. Modulation of Recovery from Neonatal Hyperoxic Lung Injury by Sex as a Biological Variable. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552532. [PMID: 37609288 PMCID: PMC10441379 DOI: 10.1101/2023.08.09.552532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Recovery from lung injury during the neonatal period requires the orchestration of many biological pathways. The modulation of such pathways can drive the developing lung towards proper repair or persistent maldevelopment that can lead to a disease phenotype. Sex as a biological variable can regulate these pathways differently in the male and female lung exposed to neonatal hyperoxia. In this study, we assessed the contribution of cellular diversity in the male and female neonatal lung following injury. Our objective was to investigate sex and cell-type specific transcriptional changes that drive repair or persistent injury in the neonatal lung and delineate the alterations in the immune-endothelial cell communication networks using single cell RNA sequencing (sc-RNAseq) in a murine model of hyperoxic injury. We generated transcriptional profiles of >55,000 cells isolated from the lungs of postnatal day 1 (PND 1) and postnatal day 21 (PND 21) neonatal male and female C57BL/6 mice exposed to 95% FiO 2 between PND 1-5 (saccular stage of lung development). We show the presence of sex-based differences in the transcriptional states of lung endothelial and immune cells at PND 1 and PND 21. Furthermore, we demonstrate that biological sex significantly influences the response to injury, with a greater number of differentially expressed genes showing sex-specific patterns than those shared between male and female lungs. Pseudotime trajectory analysis highlighted genes needed for lung development that were altered by hyperoxia. Finally, we show intercellular communication between endothelial and immune cells at saccular and alveolar stages of lung development with sex-based biases in the crosstalk and identify novel ligand-receptor pairs. Our findings provide valuable insights into the cell diversity, transcriptional state, developmental trajectory, and cell-cell communication underlying neonatal lung injury, with implications for understanding lung development and possible therapeutic interventions while highlighting the crucial role of sex as a biological variable.
Collapse
|
6
|
Retinal arterial macroaneurysms with supravalvular pulmonic stenosis syndrome can be associated with coronary and major systemic arterial disease. Am J Ophthalmol Case Rep 2022; 26:101514. [PMID: 35464689 PMCID: PMC9027035 DOI: 10.1016/j.ajoc.2022.101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose To report novel life-threatening coronary and systemic arterial disease associated with Retinal Arterial Macroaneurysms with Supravalvular Pulmonic Stenosis (RAMSVPS) syndrome, previously known as Familial Retinal Arterial Macroaneurysms (FRAM). Observations A 29-years old woman with longstanding poor vision in her right eye presented with acute myocardial infarction and subclavian bruit. Her polyangiogram showed peculiar ostial coronary aneurysms, left anterior descending coronary artery stenosis, occlusion of the left subclavian artery, stenosis of both renal arteries, irregularities in the mesenteric artery and tapering of the aorta. Takayasu arteritis was initially presumed, however fundus examination revealed beading and macroaneurysms along major retinal arteries, intraretinal exudation and hemorrhages, retinal arterial sheathing and stenosis, Coats’-like features and submacular gliosis in the right eye, vitreous hemorrhage in the left eye, and persistent hyaloid artery remnant in both eyes. These features evoked RAMSVPS syndrome. Genetic testing identified the same homozygous IGFBP7 c.830-1G > A mutation reported with RAMSVPS syndrome, rectifying the systemic diagnosis. Conclusion and importance RAMSVPS syndrome can be associated with more life-threatening coronary and widespread major arterial disease than previously recognized. It is crucial for ophthalmologists to recognize RAMSVPS syndrome and refer patients for a thorough cardiovascular evaluation. Likewise, a careful retinal examination and the possibility of an IGFBP7 mutation should be considered in the setting of systemic arterial or cardiac disease.
Collapse
|
7
|
Neuroinflammatory astrocyte subtypes in the mouse brain. Nat Neurosci 2021; 24:1475-1487. [PMID: 34413515 DOI: 10.1038/s41593-021-00905-6] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Astrocytes undergo an inflammatory transition after infections, acute injuries and chronic neurodegenerative diseases. How this transition is affected by time and sex, its heterogeneity at the single-cell level and how sub-states are spatially distributed in the brain remains unclear. In this study, we investigated transcriptome changes of mouse cortical astrocytes after an acute inflammatory stimulus using the bacterial cell wall endotoxin lipopolysaccharide. We identified fast transcriptomic changes in astrocytes occurring within hours that drastically change over time. By sequencing ~80,000 astrocytes at single-cell resolution, we show that inflammation causes a widespread response with subtypes of astrocytes undergoing distinct inflammatory transitions with defined transcriptomic profiles. We also attribute key sub-states of inflammation-induced reactive astrocytes to specific brain regions using spatial transcriptomics and in situ hybridization. Together, our datasets provide a powerful resource for profiling astrocyte heterogeneity and will be useful for understanding the biological importance of regionally constrained reactive astrocyte sub-states.
Collapse
|
8
|
Lu L, Kong W, Zhou K, Chen J, Hou Y, Dou H, Liang J. Association of lipoproteins and thyroid hormones with cognitive dysfunction in patients with systemic lupus erythematosus. BMC Rheumatol 2021; 5:18. [PMID: 34103098 PMCID: PMC8188676 DOI: 10.1186/s41927-021-00190-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Background Neuropsychiatric manifestations occur in up to 75% of adult systemic lupus erythematosus (SLE) patients and are one of the major causes of death in SLE patients. Cognitive dysfunction is a typical clinical feature of neuropsychiatric SLE (NPSLE), which seriously affects the quality of life of patients. Dyslipidaemia and thyroid symptoms, which are prevalent in SLE patients, have both been related to neuropsychiatric disturbances, including significant psychiatric and cognitive disturbances. This study aimed to investigate whether cognitive dysfunction in patients with SLE was related to the expression of serum thyroid hormone and lipoprotein levels. Methods A total of 121 patients with SLE and 65 healthy controls (HCs) at Nanjing Drum Tower Hospital completed a cognitive function test, and 81 SLE patients were divided into a high-cognition (n = 33) group and a low-cognition group (n = 48). The clinical and laboratory characteristics of the patients were compared; moreover, correlations between serum HDL-C, LDL-C, F-T3 and F-T4 levels and cognitive function were analysed. Serum levels of APOE, APOA1, IGF-1, and IGFBP7 in 81 patients were detected by ELISA, and the correlation between these four proteins and cognition was analysed separately. Results The patients with SLE with abnormal cognitive function were less educated than the HCs. For low-cognition patients, the levels of albumin, F-T3 (P < 0.05) and F-T4 decreased, while D-dimer, anti-dsDNA antibody, and IgM levels increased. Serum F-T3 and F-T4 levels positively correlated with cognition. Furthermore, serum protein levels of APOE and APOA1 showed no difference between the high- and low-cognition groups. However, the serum APOE levels were negatively correlated with line orientation scores, and APOA1 levels were positively correlated with coding scores. Conclusions Serum F-T3 and F-T4 levels were both positively correlated with four indexes of cognition (language was the exception), while serum APOE levels were negatively correlated with line orientation scores, APOA1 levels were positively correlated with coding scores, and IGFBP7 levels were negatively correlated with figure copy scores. These results demonstrated that F-T3 and F-T4 might be clinical biomarkers of cognitive dysfunction in SLE. Supplementary Information The online version contains supplementary material available at 10.1186/s41927-021-00190-7.
Collapse
Affiliation(s)
- Li Lu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China.,The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Wei Kong
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China.,The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Kangxing Zhou
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China.,The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jinglei Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Yayi Hou
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China. .,The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| | - Huan Dou
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China. .,The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China. .,The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
9
|
Diana Neely M, Xie S, Prince LM, Kim H, Tukker AM, Aschner M, Thimmapuram J, Bowman AB. Single cell RNA sequencing detects persistent cell type- and methylmercury exposure paradigm-specific effects in a human cortical neurodevelopmental model. Food Chem Toxicol 2021; 154:112288. [PMID: 34089799 DOI: 10.1016/j.fct.2021.112288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022]
Abstract
The developing human brain is uniquely vulnerable to methylmercury (MeHg) resulting in lasting effects especially in developing cortical structures. Here we assess by single-cell RNA sequencing (scRNAseq) persistent effects of developmental MeHg exposure in a differentiating cortical human-induced pluripotent stem cell (hiPSC) model which we exposed to in vivo relevant and non-cytotoxic MeHg (0.1 and 1.0 μM) concentrations. The cultures were exposed continuously for 6 days either once only during days 4-10, a stage representative of neural epithelial- and radial glia cells, or twice on days 4-10 and days 14-20, a somewhat later stage which includes intermediate precursors and early postmitotic neurons. After the completion of MeHg exposure the cultures were differentiated further until day 38 and then assessed for persistent MeHg-induced effects by scRNAseq. We report subtle, but significant changes in the population size of different cortical cell types/stages and cell cycle. We also observe MeHg-dependent differential gene expression and altered biological processes as determined by Gene Ontology analysis. Our data demonstrate that MeHg results in changes in gene expression in human developing cortical neurons that manifest well after cessation of exposure and that these changes are cell type-, developmental stage-, and exposure paradigm-specific.
Collapse
Affiliation(s)
- M Diana Neely
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Hyunjin Kim
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Anke M Tukker
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Dept of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Aaron B Bowman
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Wang J, Deng X, Xie Y, Tang J, Zhou Z, Yang F, He Q, Cao Q, Zhang L, He L. An Integrated Transcriptome Analysis Reveals IGFBP7 Upregulation in Vasculature in Traumatic Brain Injury. Front Genet 2021; 11:599834. [PMID: 33505428 PMCID: PMC7831608 DOI: 10.3389/fgene.2020.599834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
Vasculature plays critical roles in the pathogenesis and neurological repair of traumatic brain injury (TBI). However, how vascular endothelial cells respond to TBI at the molecular level has not been systematically reviewed. Here, by integrating three transcriptome datasets including whole cortex of mouse brain, FACS-sorted mouse brain endothelial cells, and single cell sequencing of mouse brain hippocampus, we revealed the key molecular alteration of endothelial cells characterized by increased Myc targets and Epithelial-Mesenchymal Transition signatures. In addition, immunofluorescence staining of patients’ samples confirmed that IGFBP7 was up-regulated in vasculature in response to TBI. TGFβ1, mainly derived from microglia and endothelial cells, sufficiently induces IGFBP7 expression in cultured endothelial cells, and is significantly upregulated in response to TBI. Our results identified IGFBP7 as a potential biomarker of vasculature in response to TBI, and indicate that TGFβ signaling may contribute to the upregulation of IGFBP7 in the vasculature.
Collapse
Affiliation(s)
- Jianhao Wang
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Xiangyi Deng
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Yuan Xie
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiefu Tang
- Trauma Center, First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Ziwei Zhou
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Fan Yang
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China
| | - Qiyuan He
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qingze Cao
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lei Zhang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Precision Medicine Center, The Second People's Hospital of Huaihua, Huaihua, China
| | - Liqun He
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Ministry of Education and Tianjin City, Tianjin, China.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|