1
|
Liu W, Liu H, Zhang S, Hao H, Meng F, Ma W, Guo Z, Jiang S, Shang X. Silica nanoparticles cause ovarian dysfunction and fertility decrease in mice via oxidative stress-activated autophagy and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117049. [PMID: 39303637 DOI: 10.1016/j.ecoenv.2024.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Silica nanoparticles (SiNPs) are widely used in various commercial applications, which inevitably increase the risk of human exposure. It's reported that SiNPs have toxic effects on fertility, however, the specific mechanism of female reproductive toxicity induced by SiNPs remains confusing. In this study, female C57BL/6 mice at the age of 8 weeks were administrated orally with SiNPs at doses of 0, 3, and 10 mg/kg bw. every day in the presence/absence of NAC for eight weeks. The results showed that SiNPs could cause damage to ovaries and reduce the number of ovarian follicles, which led to disruption of sex hormone, altered estrous cyclicity and decreased female fertility. In addition, SiNPs induced oxidative stress in the ovary, as manifested by increased ROS and MDA levels, decreased SOD activity and inhibition of the Nrf2/HO-1 signaling pathway. Further study revealed that exposure to SiNPs resulted in mitochondrial dysfunction and promoted autophagy mediated by PI3K/AKT/mTOR and PINK1/Parkin signaling pathways. Meanwhile, apoptosis is also involved in SiNPs-induced cell death in a cooperative and synchronized manner, as evidenced by an increase in apoptosis-positive cells and activation of the ATM/p53-mediated apoptotic pathway. The supplementation of NAC restored most of the reproductive characteristics of the mice to its physiological range. These results demonstrated that SiNPs could cause ovarian damage via inducing oxidative stress and mitochondrial dysfunction, which led to autophagy and apoptosis, and ultimately resulting in abnormal folliculogenesis and female subfertility.
Collapse
Affiliation(s)
- Wenpeng Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Hui Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Shumin Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Huiyu Hao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Fangyu Meng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Wendong Ma
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Zhiyi Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei 063210, People's Republic of China
| | - Shoufang Jiang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei 063210, People's Republic of China
| | - Xuan Shang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei 063210, People's Republic of China; Hebei Key Laboratory for Organ Fibrosis Research, Tangshan, Hebei 063210, People's Republic of China.
| |
Collapse
|
2
|
Jiang S, Chen L, Shen J, Zhang D, Wu H, Wang R, Zhang S, Jiang N, Li W. Adverse Effects of Prenatal Exposure to Oxidized Black Carbon Particles on the Reproductive System of Male Mice. TOXICS 2023; 11:556. [PMID: 37505521 PMCID: PMC10385084 DOI: 10.3390/toxics11070556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Ambient black carbon (BC), a main constituent of atmospheric particulate matter (PM), is a primary particle that is mainly generated by the incomplete combustion of fossil fuel and biomass burning. BC has been identified as a potential health risk via exposure. However, the adverse effects of exposure to BC on the male reproductive system remain unclear. In the present study, we explored the effects of maternal exposure to oxidized black carbon (OBC) during pregnancy on testicular development and steroid synthesis in male offspring. Pregnant mice were exposed to OBC (467 μg/kg BW) or nanopure water (as control) by intratracheal instillation from gestation day (GD) 4 to GD 16.5 (every other day). We examined the testicular histology, daily sperm production, serum testosterone, and mRNA expression of hormone synthesis process-related factors of male offspring at postnatal day (PND) 35 and PND 84. Histological examinations exhibited abnormal seminiferous tubules with degenerative changes and low cellular adhesion in testes of OBC-exposed mice at PND 35 and PND 84. Consistent with the decrease in daily sperm production, the serum testosterone level of male offspring of OBC-exposed mice also decreased significantly. Correspondingly, mRNA expression levels of hormone-synthesis-related genes (i.e., StAR, P450scc, P450c17, and 17β-HSD) were markedly down-regulated in male offspring of PND 35 and PND 84, respectively. In brief, these results suggest that prenatal exposure has detrimental effects on mouse spermatogenesis in adult offspring.
Collapse
Affiliation(s)
- Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Li Chen
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Jianyun Shen
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Di Zhang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Hai Wu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Rong Wang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Shangrong Zhang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| |
Collapse
|
3
|
Chao HH, Zhang Y, Dong PY, Gurunathan S, Zhang XF. Comprehensive review on the positive and negative effects of various important regulators on male spermatogenesis and fertility. Front Nutr 2023; 9:1063510. [PMID: 36726821 PMCID: PMC9884832 DOI: 10.3389/fnut.2022.1063510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/23/2022] [Indexed: 01/17/2023] Open
Abstract
With the increasing global incidence of infertility, the influence of environmental factors, lifestyle habits, and nutrients on reproductive health has gradually attracted the attention of researchers. The quantity and quality of sperm play vital roles in male fertility, and both characteristics can be affected by external and internal factors. In this review, the potential role of genetic, environmental, and endocrine factors; nutrients and trace elements in male reproductive health, spermatozoa function, and fertility potency and the underlying mechanisms are considered to provide a theoretical basis for clinical treatment of infertility.
Collapse
Affiliation(s)
- Hu-He Chao
- Development Center for Medical Science and Technology, National Health Commission of the People's Republic of China, Beijing, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | | | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China,*Correspondence: Xi-Feng Zhang ✉ ; ✉
| |
Collapse
|
4
|
Aslam I, Roeffaers MBJ. Carbonaceous Nanoparticle Air Pollution: Toxicity and Detection in Biological Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223948. [PMID: 36432235 PMCID: PMC9698098 DOI: 10.3390/nano12223948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 05/27/2023]
Abstract
Among the different air pollutants, particulate matter (PM) is of great concern due to its abundant presence in the atmosphere, which results in adverse effects on the environment and human health. The different components of PM can be classified based on their physicochemical properties. Carbonaceous particles (CPs) constitute a major fraction of ultrafine PM and have the most harmful effects. Herein, we present a detailed overview of the main components of CPs, e.g., carbon black (CB), black carbon (BC), and brown carbon (BrC), from natural and anthropogenic sources. The emission sources and the adverse effects of CPs on the environment and human health are discussed. Particularly, we provide a detailed overview of the reported toxic effects of CPs in the human body, such as respiratory effects, cardiovascular effects, neurodegenerative effects, carcinogenic effects, etc. In addition, we also discuss the challenges faced by and limitations of the available analytical techniques for the qualitative and quantitative detection of CPs in atmospheric and biological samples. Considering the heterogeneous nature of CPs and biological samples, a detailed overview of different analytical techniques for the detection of CPs in (real-exposure) biological samples is also provided. This review provides useful insights into the classification, toxicity, and detection of CPs in biological samples.
Collapse
|
5
|
Sun F, Wang X, Zhang P, Chen Z, Guo Z, Shang X. Reproductive toxicity investigation of silica nanoparticles in male pubertal mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36640-36654. [PMID: 35064498 DOI: 10.1007/s11356-021-18215-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Silica nanoparticles (SiNPs), one of the most produced nanoparticles (NPs) in the world, are used in all aspects of life. The increased application of SiNPs, especially in medicine, has raised considerable concern regarding their toxicological impact. Previous studies have shown that SiNPs can pass through the reproductive barrier and cause reproductive organ dysfunction by destroying Sertoli cells, Leydig cells, and germ cells. However, little is known about the mechanism of SiNPs-induced reproductive toxicity. In the present study, 5-week-old male mice were intraperitoneally administered SiNPs per day for 1 week at a dose of 0.2 mg per mouse. The results showed that SiNPs could cause damage to the structure of the testis and the epididymis and change the reproductive organ coefficients, leading to decreases of 56.1% and 55.3% in the rates of sperm concentration and motility and an increase of 168.8% in the rate of sperm abnormality. Moreover, the serum testosterone level obviously decreased from 18.77 to 5.23 µg/ml after exposure, and the transcription statuses of some key genes involved in the synthesis and transport of testosterone in the testis were also affected. Additional experiments showed that SiNPs exposure during puberty induced oxidative stress and an inflammatory response, as shown by the changed activity of superoxide dismutase (SOD), increased contents of malondialdehyde (MDA), and excess expression of proinflammatory factors, including TNF-α and IL-1β. Furthermore, the administration of SiNPs caused DNA damage and cell apoptosis, which were presented by the increased apoptotic cells in the sections of testis and epididymis and activation of the TNF-α/TNFR I-mediated pro-apoptotic pathway. In conclusion, these results indicate that SiNPs exposure during puberty significantly damaged the structure and function of the testis and epididymis by inducing oxidative stress and cell apoptosis. This study provides novel insight into SiNPs-induced reproductive toxicity during puberty, which warrants a more careful assessment of SiNPs before their application in juvenile supplies.
Collapse
Affiliation(s)
- Fanli Sun
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Xuying Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
- Hebei Key Laboratory for Chronic Diseases, Tangshan, People's Republic of China
| | - Pinzheng Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
- Hebei Key Laboratory for Chronic Diseases, Tangshan, People's Republic of China
| | - Ziyun Chen
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Zhiyi Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
- Hebei Key Laboratory for Chronic Diseases, Tangshan, People's Republic of China
| | - Xuan Shang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China.
| |
Collapse
|
6
|
Yokota S, Takeda K, Oshio S. Spatiotemporal Small Non-coding RNAs Expressed in the Germline as an Early Biomarker of Testicular Toxicity and Transgenerational Effects Caused by Prenatal Exposure to Nanosized Particles. FRONTIERS IN TOXICOLOGY 2022; 3:691070. [PMID: 35295114 PMCID: PMC8915876 DOI: 10.3389/ftox.2021.691070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022] Open
Abstract
In recent years, an apparent decline in human sperm quality has been observed worldwide. One in every 5.5 couples suffers from infertility, with male reproductive problems contributing to nearly 40% of all infertility cases. Although the reasons for the increasing number of infertility cases are largely unknown, both genetic and environmental factors can be contributing factors. In particular, exposure to chemical substances during mammalian male germ cell development has been linked to an increased risk of infertility in later life owing to defective sperm production, reproductive tract obstruction, inflammation, and sexual disorders. Prenatal exposure to nanomaterials (NMs) is no exception. In animal experiments, maternal exposure to NMs has been reported to affect the reproductive health of male offspring. Male germ cells require multiple epigenetic reprogramming events during their lifespan to acquire reproductive capacity. Given that spermatozoa deliver the paternal genome to oocytes upon fertilization, we hypothesized that maternal exposure to NMs negatively affects male germ cells by altering epigenetic regulation, which may in turn affect embryo development. Small non-coding RNAs (including microRNAs, PIWI-interacting RNAs, tRNA-derived small RNAs, and rRNA-derived small RNAs), which are differentially expressed in mammalian male germ cells in a spatiotemporal manner, could play important regulatory roles in spermatogenesis and embryogenesis. Thus, the evaluation of RNAs responsible for sperm fertility is of great interest in reproductive toxicology and medicine. However, whether the effect of maternal exposure to NMs on spermatogenesis in the offspring (intergenerational effects) really triggers multigenerational effects remains unclear, and infertility biomarkers for evaluating paternal inheritance have not been identified to date. In this review, existing lines of evidence on the effects of prenatal exposure to NMs on male reproduction are summarized. A working hypothesis of the transgenerational effects of sperm-derived epigenomic changes in the F1 generation is presented, in that such maternal exposure could affect early embryonic development followed by deficits in neurodevelopment and male reproduction in the F2 generation.
Collapse
Affiliation(s)
- Satoshi Yokota
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Ken Takeda
- Division of Toxicology and Health Science, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Shigeru Oshio
- Department of Hygiene Chemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| |
Collapse
|
7
|
Mazzotta HC, Robbins WA, Tsai CSJ. An Analysis of Prenatal Exposure Factors and Offspring Health Outcomes in Rodents from Synthesized Nanoparticles. Reprod Toxicol 2022; 110:60-67. [DOI: 10.1016/j.reprotox.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
|
8
|
Guo Z, Wang X, Zhang P, Sun F, Chen Z, Ma W, Meng F, Hao H, Shang X. Silica nanoparticles cause spermatogenesis dysfunction in mice via inducing cell cycle arrest and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113210. [PMID: 35051769 DOI: 10.1016/j.ecoenv.2022.113210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of silica nanoparticles (SiNPs) has increased the risk of human exposure, which raised concerns about their adverse effects on human health, especially the reproductive system. Previous studies have shown that SiNPs could cause damage to reproductive organs, but the specific mechanism is still unclear. In this study, to investigate the underlying mechanism of male reproductive toxicity induced by SiNPs, 40 male mice at the age of 8 weeks were divided into two groups and then intraperitoneally injected with vehicle control or 10 mg/kg SiNPs per day for one week. The results showed that SiNPs could damage testicular structure, perturb spermatogenesis and reduce serum testosterone levels, leading to a decrease in sperm quality and quantity. In addition, the ROS level in the testis of exposed mice was significantly increased, followed by imbalance of the oxidative redox status. Further study revealed that exposure to SiNPs led to cell cycle arrest and apoptosis, as shown by downregulation of the expression of positive cell cycle regulators and the activation of TNF-α/TNFR Ⅰ-mediated apoptotic pathway. The results demonstrated that SiNPs could cause testicles injure via inducing oxidative stress and DNA damage which led to cell cycle arrest and apoptosis, and thereby resulting in spermatogenic dysfunction.
Collapse
Affiliation(s)
- Zhiyi Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Key Laboratory for Chronic Diseases, People's Republic of China
| | - Xuying Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Key Laboratory for Chronic Diseases, People's Republic of China
| | - Pinzheng Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Key Laboratory for Chronic Diseases, People's Republic of China
| | - Fanli Sun
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Ziyun Chen
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Wendong Ma
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Fangyu Meng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Huiyu Hao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Xuan Shang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China.
| |
Collapse
|
9
|
Teng C, Jiang C, Gao S, Liu X, Zhai S. Fetotoxicity of Nanoparticles: Causes and Mechanisms. NANOMATERIALS 2021; 11:nano11030791. [PMID: 33808794 PMCID: PMC8003602 DOI: 10.3390/nano11030791] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The application of nanoparticles in consumer products and nanomedicines has increased dramatically in the last decade. Concerns for the nano-safety of susceptible populations are growing. Due to the small size, nanoparticles have the potential to cross the placental barrier and cause toxicity in the fetus. This review aims to identify factors associated with nanoparticle-induced fetotoxicity and the mechanisms involved, providing a better understanding of nanotoxicity at the maternal–fetal interface. The contribution of the physicochemical properties of nanoparticles (NPs), maternal physiological, and pathological conditions to the fetotoxicity is highlighted. The underlying molecular mechanisms, including oxidative stress, DNA damage, apoptosis, and autophagy are summarized. Finally, perspectives and challenges related to nanoparticle-induced fetotoxicity are also discussed.
Collapse
Affiliation(s)
- Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| | - Sulian Gao
- Jinan Eco-Environmental Monitoring Center of Shandong Province, Jinan 250101, China;
| | - Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- Correspondence: ; Tel.: +86-531-8836-4464
| |
Collapse
|
10
|
Iftikhar M, Noureen A, Uzair M, Jabeen F, Abdel Daim M, Cappello T. Perspectives of Nanoparticles in Male Infertility: Evidence for Induced Abnormalities in Sperm Production. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041758. [PMID: 33670275 PMCID: PMC7918762 DOI: 10.3390/ijerph18041758] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/16/2022]
Abstract
Advancement in the field of nanotechnology has prompted the need to elucidate the deleterious effects of nanoparticles (NPs) on reproductive health. Many studies have reported on the health safety issues related to NPs by investigating their exposure routes, deposition and toxic effects on different primary and secondary organs but few studies have focused on NPs’ deposition in reproductive organs. Noteworthy, even fewer studies have dealt with the toxic effects of NPs on reproductive indices and sperm parameters (such as sperm number, motility and morphology) by evaluating, for instance, the histopathology of seminiferous tubules and testosterone levels. To date, the research suggests that NPs can easily cross the blood testes barrier and, after accumulation in the testis, induce adverse effects on spermatogenesis. This review aims to summarize the available literature on the risks induced by NPs on the male reproductive system.
Collapse
Affiliation(s)
- Mehwish Iftikhar
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan; (M.I.); (F.J.)
| | - Aasma Noureen
- Department of Biology, Virtual University of Pakistan, Faisalabad 38000, Pakistan
- Correspondence: (A.N.); (T.C.)
| | - Muhammad Uzair
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Farhat Jabeen
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan; (M.I.); (F.J.)
| | - Mohamed Abdel Daim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (A.N.); (T.C.)
| |
Collapse
|
11
|
He M, Jiang X, Zou Z, Qin X, Zhang S, Guo Y, Wang X, Tian X, Chen C. Exposure to carbon black nanoparticles increases seizure susceptibility in male mice. Nanotoxicology 2020; 14:595-611. [PMID: 32091294 DOI: 10.1080/17435390.2020.1728412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbon black nanoparticles (CBNPs) can enter the central nervous system through blood circulation and olfactory nerves, affecting brain development or increasing neurological disease susceptibility. However, whether CBNPs exposure affects seizure is unclear. Herein, mice were exposed to two different doses of CBNPs (21 and 103 μg/animal) based on previous studies and the maximum exposure limitation (4 mg/m3) in occupational workplaces set by the Chinese government. In the pentylenetetrazol (PTZ) and kainic acid (KA) seizure models, high-dose CBNPs exposure increased seizure susceptibility in both models and increased spontaneous recurrent seizure (SRS) frequency in the KA model. In vivo local field potential (LFP) recording in KA model mice revealed that both low-dose and high-dose CBNPs exposure increased seizure-like event (SLE) frequency in the SRS interval but shortened SLE duration. Intriguingly, H&E staining and Nissl staining on brain tissue revealed that CBNPs exposure did not cause significant brain tissue morphology or neuronal damage. Detection of inflammatory factors, such as TNF-α, TGF-β1, IL-1β, and IL-6, in brain tissue showed that only high dose of CBNPs exposure increased the expression of cortical TGF-β1. By using the primary cultured neurons, we observed that CBNPs exposure not only significantly decreased the expression of the neuronal marker MAP2 but also enhanced the levels of action potential frequency in the neurons. In general, CBNPs exposure can affect abnormal epileptic discharges during the seizure interval and enhance susceptibility to frequent seizures. Our findings suggest that minimizing CBNPs exposure may be a potential way to prevent or ease seizure.
Collapse
Affiliation(s)
- Miaoqing He
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Chinese Institute for Brain Research, Peking University, Beijing, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Dongsheng Lung-Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanshan Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yi Guo
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xuefeng Wang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xin Tian
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Chengzhi Chen
- Dongsheng Lung-Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, China.,Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|