1
|
Ghasemi M, Amini-Khoei H, Bijad E, Rafieian-Kopaei M, Sureda A, Lorigooini Z. Sinapinic acid as a potential therapeutic agent for epilepsy through targeting NMDA receptors and nitrite level. Sci Rep 2024; 14:24941. [PMID: 39438606 PMCID: PMC11496650 DOI: 10.1038/s41598-024-77099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024] Open
Abstract
Epilepsy, a widespread neural ailment considered by prolonged neuronal depolarization and repetitive discharge, has been linked to extreme stimulus of N-methyl-D-aspartate receptors (NMDARs). Despite the availability of approved anti-seizure medications (ASMs) in many developed nations, approximately 30% of epilepsy patients continue to experience drug-resistant seizures. Thus, a growing interest in discovering natural compounds as potential sources for new medications is growing. Sinapinic acid, a natural derivative of cinnamic acid found in food sources, is known for its neuroprotective properties. This study investigated how sinapinic acid interacts with NMDA receptors and its potential role in providing anticonvulsant effects. Male mice were randomly allocated into nine groups: a control group receiving normal saline (1 ml/kg), groups treated with sinapinic acid at doses of 1, 3, and 10 mg/kg, a group treated with diazepam at 10 mg/kg, a group treated with an NMDA agonist at 75 mg/kg, a group treated with an NMDA antagonist at 0.5 mg/kg, a group receiving the ineffective dose of sinapinic acid (1 mg/kg) along with the NMDA antagonist, and a group receiving the effective dose of sinapinic acid (10 mg/kg) along with the NMDA agonist. Sinapinic acid and other treatments were administered intraperitoneally 30 min prior to inducing seizures with PTZ injection. Seizure onset time was recorded following PTZ injection. Blood and brain samples were collected after anesthesia to determine serum and brain nitrite levels. Real-time PCR assessed NMDAR gene expression in the prefrontal cortex (PFC). Data were analyzed using Prism software. The time seizures began was notably extended in groups treated with sinapinic acid at doses of 3 and 10 mg/kg compared to those treated with saline (P < 0.05). Additionally, in the receiving group of an ineffective dose of sinapinic acid alongside ketamine, the beginning of seizure time was significantly prolonged compared to the group that received the ineffective dose of sinapinic acid alone (P < 0.05). Serum and prefrontal cortex (PFC) nitrite levels were significantly lower in mice treated with sinapinic acid at doses of 1, 3, and 10 mg/kg compared to the saline-treated group (P < 0.05). The gene expression of the NMDAR NR2B subunit in the PFC was decreased in groups treated with sinapinic acid at 1 and 10 mg/kg compared to the saline-treated group. Furthermore, co-administration of sinapinic acid (10 mg/kg) with NMDA resulted in significantly lower NR2A gene expression than the group treated with 10 mg/kg of sinapinic acid alone. Conversely, co-administration of ketamine with sinapinic acid (1 mg/kg) significantly increased NR2B subunit gene expression compared to the group treated with sinapinic acid at 1 mg/kg alone. Sinapinic acid showed anticonvulsant effects through reduced serum and PFC nitrite and modulation of glutamatergic signaling.
Collapse
Affiliation(s)
- Mohsen Ghasemi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands- IUNICS, Palma de Mallorca, 07122, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma, Balearic Islands, 07120, Spain
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
2
|
Champsas D, Zhang X, Rosch R, Ioannidou E, Gilmour K, Cooray G, Woodhall G, Pujar S, Kaliakatsos M, Wright SK. NORSE/FIRES: how can we advance our understanding of this devastating condition? Front Neurol 2024; 15:1426051. [PMID: 39175762 PMCID: PMC11338801 DOI: 10.3389/fneur.2024.1426051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction New onset refractory status epilepticus (NORSE) is a rare and devastating condition characterised by the sudden onset of refractory status epilepticus (RSE) without an identifiable acute or active structural, toxic, or metabolic cause in an individual without a pre-existing diagnosis of epilepsy. Febrile infection-related epilepsy syndrome (FIRES) is considered a subcategory of NORSE and presents following a febrile illness prior to seizure onset. NORSE/FIRES is associated with high morbidity and mortality in children and adults. Methods and results In this review we first briefly summarise the reported clinical, paraclinical, treatment and outcome data in the literature. We then report on existing knowledge of the underlying pathophysiology in relation to in vitro and in vivo pre-clinical seizure and epilepsy models of potential relevance to NORSE/FIRES. Discussion We highlight how pre-clinical models can enhance our understanding of FIRES/NORSE and propose future directions for research.
Collapse
Affiliation(s)
- Dimitrios Champsas
- Department of Neurology, Great Ormond Street Hospital (GOSH), London, United Kingdom
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Xushuo Zhang
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Richard Rosch
- Department of Clinical Neurophysiology, King’s College Hospital London NHS Foundation Trust, London, United Kingdom
- Departments of Neurology and Pediatrics, Columbia University, New York, NY, United States
| | - Evangelia Ioannidou
- Department of Neurology, Great Ormond Street Hospital (GOSH), London, United Kingdom
| | - Kimberly Gilmour
- Department of Immunology, Great Ormond Street Hospital (GOSH), London, United Kingdom
- Biomedical Research Centre (BRC), London, United Kingdom
- Institute of Child Health, University College London, London, United Kingdom
| | - Gerald Cooray
- Department of Neurophysiology, Great Ormond Street Hospital (GOSH), London, United Kingdom
- Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gavin Woodhall
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Suresh Pujar
- Department of Neurology, Great Ormond Street Hospital (GOSH), London, United Kingdom
- Institute of Child Health, University College London, London, United Kingdom
| | - Marios Kaliakatsos
- Department of Neurology, Great Ormond Street Hospital (GOSH), London, United Kingdom
- Institute of Child Health, University College London, London, United Kingdom
| | - Sukhvir K. Wright
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- Birmingham Women’s and Children’s Hospital NHS Trust, Birmingham, United Kingdom
| |
Collapse
|
3
|
Farzan M, Farzan M, Shahrani M, Navabi SP, Vardanjani HR, Amini-Khoei H, Shabani S. Neuroprotective properties of Betulin, Betulinic acid, and Ursolic acid as triterpenoids derivatives: a comprehensive review of mechanistic studies. Nutr Neurosci 2024; 27:223-240. [PMID: 36821092 DOI: 10.1080/1028415x.2023.2180865] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Cognitive deficits are the main outcome of neurological disorders whose occurrence has risen over the past three decades. Although there are some pharmacologic approaches approved for managing neurological disorders, it remains largely ineffective. Hence, exploring novel nature-based nutraceuticals is a pressing need to alleviate the results of neurodegenerative diseases, such as Alzheimer's disease (AD) and other neurodegenerative disorders. Some triterpenoids and their derivates can be considered potential therapeutics against neurological disorders due to their neuroprotective and cognitive-improving effects. Betulin (B), betulinic acid (BA), and ursolic acid (UA) are pentacyclic triterpenoid compounds with a variety of biological activities, including antioxidative, neuroprotective and anti-inflammatory properties. This review focuses on the therapeutic efficacy and probable molecular mechanisms of triterpenoids in damage prevention to neurons and restoring cognition in neurodegenerative diseases. Considering few studies on this concept, the precise mechanisms that mediate the effect of these compounds in neurodegenerative disorders have remained unknown. The findings can provide sufficient information about the advantages of these compounds against neurodegenerative diseases.
Collapse
Affiliation(s)
- Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahour Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mehrdad Shahrani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossien Rajabi Vardanjani
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
He X, Chen X, Yang Y, Xie Y, Liu Y. Medicinal plants for epileptic seizures: Phytoconstituents, pharmacology and mechanisms revisited. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117386. [PMID: 37956914 DOI: 10.1016/j.jep.2023.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy is a neurological disorder that presents with recurring and spontaneous seizures. It is prevalent worldwide, affecting up to 65 million people, with 80% of cases found in lower-income countries. Medicinal plants are commonly employed for managing and treating epilepsy and convulsions due to their unique therapeutic properties. With increasing research and clinical application, medicinal plants are gaining attention globally due to their potent therapeutic effects and fewer side effects. The development of new plant-based antiepileptic/anticonvulsant agents has become a major focus in the pharmaceutical industry. AIM OF THE REVIEW This article summarizes recent research on medicinal plants with reported antiepileptic/anticonvulsant effects. It provides pharmacological and molecular mechanism of action information for the crude extracts and related active constituents evaluated in preclinical research for the treatment of epilepsy and convulsions, and offers a reference for the development of future related studies in this area. MATERIALS AND METHODS Articles related to ethnopharmacological and antiepileptic studies on plants or natural products from 2018 to 2023 were collected from PubMed, Web of Science and Scopus, etc. using keywords related to epilepsy, medicinal plants, and natural products, etc. RESULTS: Eighty plant species are commonly used to treat epilepsy and convulsions in African and Asian countries. Sixty natural products showing potential for antiepileptic/anticonvulsant effects have been identified from these medicinal plants. These products can be broadly classified as alkaloids, coumarins, flavonoids, saponins, terpenoids and other compounds. The antiepileptic action of plant extracts and their active ingredients can be classified according to their abilities to modulate the GABAergic and glutamatergic systems, act as antioxidants, exhibit anti-neuroinflammatory effects, and provide neuroprotection. In addition, we highlight that some medicinal plants capable of pharmacologically relieving epilepsy and cognition may be therapeutically useful in the treatment of refractory epilepsy. CONCLUSIONS The review highlights the fact that herbal medicinal products used in traditional medicine are a valuable source of potential candidates for antiepileptic drugs. This confirms and encourages the antiepileptic/anticonvulsant activity of certain medicinal plants, which could serve as inspiration for further development. However, the aspects of structural modification and optimization, metabolism, toxicology, mechanisms, and clinical trials are not fully understood and need to be further explored.
Collapse
Affiliation(s)
- Xirui He
- Shool of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, China.
| | - Xufei Chen
- Key Laboratory of Western Resource Biology and Modern Biotechnology, Northwest University, 710065, Shaanxi, Xi'an, China
| | - Yan Yang
- Shool of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, China
| | - Yulu Xie
- Shool of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, China
| | - Yujie Liu
- Shool of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, China
| |
Collapse
|
5
|
Li S, Tian Z, Xian X, Yan C, Li Q, Li N, Xu X, Hou X, Zhang X, Yang Y, Xue S, Ma S, Cui S, Sun L, Yao X. Catalpol rescues cognitive deficits by attenuating amyloid β plaques and neuroinflammation. Biomed Pharmacother 2023; 165:115026. [PMID: 37336148 DOI: 10.1016/j.biopha.2023.115026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
This study sought to investigate the anti-amyloid β (Aβ) and anti-neuroinflammatory effects of catalpol in an Alzheimer's disease (AD) mouse model. METHODS The effects of catalpol on Aβ formation were investigated by thioflavin T assay. The effect of catalpol on generating inflammatory cytokines from microglial cells and the cytotoxicity of microglial cells on HT22 hippocampal cells were assessed by real-time quantitative PCR, ELISA, redox reactions, and cell viability. APPswe/PS1ΔE9 mice were treated with catalpol, and their cognitive ability was investigated using the water maze and novel object recognition tests. Immunohistochemistry and immunofluorescence were used to probe for protein markers of microglia and astrocyte, Aβ deposits, and NF-κB pathway activity. Aβ peptides, neuroinflammation, and nitric oxide production were examined using ELISA and redox reactions. RESULTS Catalpol potently inhibited Aβ fibril and oligomer formation. In microglial cells stimulated by Aβ, catalpol alleviated the expression of the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and inducible nitric oxide synthase (iNOS) but promoted the expression of the anti-inflammatory cytokine IL-10. Catalpol alleviated the cytotoxic effects of Aβ-exposed microglia on HT22 cells. Treatment with catalpol in APPswe/PS1ΔE9 mice downregulated neuroinflammation production, decreased Aβ deposits in the brains and alleviated cognitive impairment. Catalpol treatment decreased the number of IBA-positive microglia and GFAP-positive astrocytes and their activities of the NF-κB pathway in the hippocampus of APPswe/PS1ΔE9 mice. CONCLUSION The administration of catalpol protected neurons by preventing neuroinflammation and Aβ deposits in an AD mouse model. Therefore, catalpol may be a promising strategy for treating AD.
Collapse
Affiliation(s)
- Si Li
- Department of Technology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ziqi Tian
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaohui Xian
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Cuihuan Yan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiang Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Nan Li
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaokang Xu
- College of Acupuncture and Massage, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaojie Hou
- College of Acupuncture and Massage, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoyun Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yinan Yang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Sisi Xue
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shengkai Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shuanlong Cui
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Lijun Sun
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xiaoguang Yao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, College of Integrative Medicine, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
6
|
Madireddy S, Madireddy S. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci 2023; 13:brainsci13050784. [PMID: 37239256 DOI: 10.3390/brainsci13050784] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Epilepsy is a central nervous system disorder involving spontaneous and recurring seizures that affects 50 million individuals globally. Because approximately one-third of patients with epilepsy do not respond to drug therapy, the development of new therapeutic strategies against epilepsy could be beneficial. Oxidative stress and mitochondrial dysfunction are frequently observed in epilepsy. Additionally, neuroinflammation is increasingly understood to contribute to the pathogenesis of epilepsy. Mitochondrial dysfunction is also recognized for its contributions to neuronal excitability and apoptosis, which can lead to neuronal loss in epilepsy. This review focuses on the roles of oxidative damage, mitochondrial dysfunction, NAPDH oxidase, the blood-brain barrier, excitotoxicity, and neuroinflammation in the development of epilepsy. We also review the therapies used to treat epilepsy and prevent seizures, including anti-seizure medications, anti-epileptic drugs, anti-inflammatory therapies, and antioxidant therapies. In addition, we review the use of neuromodulation and surgery in the treatment of epilepsy. Finally, we present the role of dietary and nutritional strategies in the management of epilepsy, including the ketogenic diet and the intake of vitamins, polyphenols, and flavonoids. By reviewing available interventions and research on the pathophysiology of epilepsy, this review points to areas of further development for therapies that can manage epilepsy.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
7
|
Farzan M, Farzan M, Amini-Khoei H, Shahrani M, Bijad E, Anjomshoa M, Shabani S. Protective effects of vanillic acid on autistic-like behaviors in a rat model of maternal separation stress: Behavioral, electrophysiological, molecular and histopathological alterations. Int Immunopharmacol 2023; 118:110112. [PMID: 37030116 DOI: 10.1016/j.intimp.2023.110112] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Compounds derived from herbs exhibit a range of biological properties, including anti-inflammatory, antioxidant, and neuroprotective properties. However, the exact mechanism of action of these compounds in various neurological disorders is not fully discovered yet. Herein, the present work detected the effect of Vanillic acid (VA), a widely-used flavoring agent derived from vanillin, on autistic-like behaviors to assess the probable underlying mechanisms that mediate behavioral, electrophysiological, molecular, and histopathological alterations in the rat model of maternal separation (MS) stress. Maternal separated rats were treated with VA (25, 50, and 100 mg/kg interperitoneally for 14 days). In addition, anxiety-like, autistic-like behaviors, and learning and memory impairment were evaluated using various behavioral tests. Hippocampus samples were assessed histopathologically by H&E staining. Levels of malondialdehyde (MDA) and antioxidant capacity (by the FRAP method), as well as nitrite levels, were measured in brain tissue. Moreover, gene expression of inflammatory markers (IL-1β, TLR-4, TNF-α, and NLRP3) was evaluated in the hippocampus. Electrophysiological alterations were also estimated in the hippocampus by long-term potentiation (LTP) assessments. Results showed that VA reversed the negative effects of MS on behavior. VA increased the diameter and decreased the percentage of dark neurons in the CA3 area. Accordingly, VA decreased MDA and nitrite levels and increased the antioxidant capacity in brain samples and decreased the expression of all inflammatory genes. VA treated rats showed significant improvements in all LTP parameters. This study provided evidence suggesting a possible role for VA in preventing autism spectrum disorder (ASD) by regulating immune signaling.
Collapse
Affiliation(s)
- Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mahan Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Shahrani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjomshoa
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
8
|
Dehkordi HT, Bijad E, Saghaei E, Korrani MS, Amini-Khoei H. Chronic stress but not acute stress decreases the seizure threshold in PTZ-induced seizure in mice: role of inflammatory response and oxidative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:973-982. [PMID: 36542120 DOI: 10.1007/s00210-022-02364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Seizure is paroxysmal abnormal electrical discharges in the cerebral cortex. Inflammatory pathways and oxidative stress are involved in the pathophysiology of seizures. Stress can induce an oxidative stress state and increase the production of inflammatory mediators in the brain. We investigated the effects of acute and chronic stresses on the seizure threshold in pentylenetetrazol (PTZ)-induced seizures in mice, considering oxidative stress and inflammatory mediators in the prefrontal cortex. In this study, 30 male Naval Medical Research Institute (NMRI) mice were divided into 3 groups, including acute stress, chronic stress, and control groups. PTZ was used for the induction of seizures. The gene expression of inflammatory markers (IL-1β, TNF-α, NLRP3, and iNOS), malondialdehyde (MDA) level, nitrite level, and total antioxidant capacity (TAC) were assessed in the prefrontal cortex and serum. Our results showed that stress could increase the expression of inflammatory cytokines genes and oxidative stress in the prefrontal cortex of the brain and serum following PTZ-induced seizures, which is associated with increased seizure sensitivity and decreased the seizure threshold. The effects of chronic stress were much more significant than acute stress. We concluded that the effects of chronic stress on seizure sensitivity and enhancement of neuroinflammation and oxidative stress are much greater than acute stress.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Saghaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Shahrani Korrani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
9
|
Shalaby AM, Sharaf Eldin HEM, Abdelsameea AA, Abdelnour HM, Alabiad MA, Elkholy MR, Aboregela AM. Betahistine Attenuates Seizures, Neurodegeneration, Apoptosis, and Gliosis in the Cerebral Cortex and Hippocampus in a Mouse Model of Epilepsy: A Histological, Immunohistochemical, and Biochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-15. [PMID: 35686434 DOI: 10.1017/s1431927622012107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Epilepsy is a prevalent and chronic neurological disorder marked by recurring, uncontrollable seizures of the brain. Chronic or repeated seizures produce memory problems and induce damage to different brain regions. Histamine has been reported to have neuroprotective effects. Betahistine is a histamine analogue. The current research investigated the effects of convulsions on the cerebral cortex and hippocampus of adult male albino mice and assessed the possible protective effect of betahistine. Four groups of 40 adult male mice were organized: control, betahistine (10 mg/kg/day), pentylenetetrazole (PTZ) (40 mg/kg/ on alternate days), and Betahistine-PTZ group received betahistine 1 h before PTZ. PTZ induced a substantial rise in glutamate level and a considerable decrease in histamine level. Structural changes in the cerebral cortex and cornu ammonis (CA1) of the hippocampus were detected in the pattern of neuron degeneration. Some neurons were shrunken with dark nuclei, and others had faintly stained ones. Focal accumulation of neuroglial cells and ballooned nerve cells of the cerebral cortex were also detected. Cleaved caspase-3, glial fibrillary acidic protein, and ionized calcium-binding adaptor molecule 1 showed substantial increases, while synaptophysin expression was significantly reduced. Interestingly, these changes were less prominent in mice pretreated with betahistine. In conclusion, betahistine had shown neuroprotective properties against brain damage induced by convulsions.
Collapse
Affiliation(s)
- Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Heba E M Sharaf Eldin
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Hanim Magdy Abdelnour
- Medical Biochemistry Department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Ramadan Elkholy
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Adel Mohamed Aboregela
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
- Basic Medical Sciences Department, College of Medicine, Bisha University, Bisha, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Li X, Wang Q, Zhang DW, Wu D, Zhang SW, Wei ZR, Chen X, Li W. Hippocampus RNA Sequencing of Pentylenetetrazole-Kindled Rats and Upon Treatment of Novel Chemical Q808. Front Pharmacol 2022; 13:820508. [PMID: 35345815 PMCID: PMC8957222 DOI: 10.3389/fphar.2022.820508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
The expression of genes altered in epilepsy remains incomplete, particularly in the hippocampus, which exhibits exquisite vulnerability to epilepsy. Q808 is an innovation chemical compound that has potent anti-convulsant effect. Exploring its mechanism can not only explore the pathogenesis of epilepsy but also provide a theoretical basis for its clinical application. The present study aimed to use RNA sequencing (RNA-seq) to reveal the gene transcriptomic profile of chronic pentylenetetrazole (PTZ)-kindled seizure rats and the difference of the PTZ model rat before and after treatment with Q808. Quantitative real-time PCR (qRT-PCR) was performed to validate the RNA-seq results. The protein level was estimated with Western blot. Hippocampal transcriptomic analysis showed that 289 differentially expressed genes (DEGs) were confirmed in the PTZ-kindled seizure group compared with the vehicle control. Gene cluster analysis identified most of the DEGs linked to neuronal apoptosis, neurogenesis, neuronal projections, and neurotransmitter regulation. After analysis across the three groups, 23 hub genes and 21 pathways were identified, and qRT-PCR analysis confirmed that most of the mRNA levels of hub genes were consistent with the RNA-seq results. Q808 treatment increased the level of ACE, a GABA-related protein. Our analysis showed the comprehensive compendium of genes and pathways differentially expressed for PTZ-kindled seizure rats and upon Q808 treatment in PTZ-kindled seizure, which may provide a theoretical basis to explore the mechanism and unique efficacy of Q808 and the pathophysiology of epilepsy in the future.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qing Wang
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| | - Dian-Wen Zhang
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| | - Di Wu
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| | - Si-Wei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zheng-Ren Wei
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Li
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
11
|
Lin M, Li P, Liu W, Niu T, Huang L. Germacrone alleviates okadaic acid-induced neurotoxicity in PC12 cells via M1 muscarinic receptor-mediated Galphaq (Gq)/phospholipase C beta (PLCβ)/ protein kinase C (PKC) signaling. Bioengineered 2022; 13:4898-4910. [PMID: 35156515 PMCID: PMC8974147 DOI: 10.1080/21655979.2022.2036918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder with prominent individual morbidity and mortality among elderly people. Germacrone (Germ) has been reported to exert dominant protective roles in multiple human diseases, and neurological diseases are also included. The intention of this paper is to determine the impacts of Germ on okadaic acid (OA)-treated PC12 cells and confirm the hidden regulatory mechanism. First, PC12 cells were induced by OA in the absence or presence of Germ. Cell counting kit-8 assay was to monitor cell proliferation. Western blot was to test the protein levels of cholinergic muscarinic M1 receptor (CHRM1), Galphaq (Gq), phospholipase C beta (PLCβ) and protein kinase C (PKC). The levels of reactive oxygen species (ROS) and other oxidative stress markers were evaluated using corresponding kits. ELISA was used to estimate the levels of AD markers. RT-qPCR was used to examine the mRNA levels of beta-site amyloid-precursor-protein-cleaving enzyme 1 (BACE-1) and apolipoprotein E (APOE). The results uncovered that Germ enhanced the proliferation of OA-insulted PC12 cells, elevated the protein level of CHRM1 and activated the Gq/PLCβ/PKC signaling. Moreover, after OA-induced PC12 cells were administered with Germ, insufficiency of CHRM1 impeded cell proliferation, enhanced oxidative stress and neuron injury and inactivated the Gq/PLCβ/PKC signaling. Furthermore, the addition of Gq inhibitor UBO-QIC, PLCβ inhibitor U73122 or PKC inhibitor Go6983 reversed the enhanced proliferation, the reduced oxidative stress and neuron injury in OA-treated PC12 cells caused by Germ. Collectively, Germ modulated M1 muscarinic receptor-mediated Gq/PLCβ/PKC signaling, thereby alleviating OA-induced PC12 cell injury.
Collapse
Affiliation(s)
- Mingqin Lin
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, Hainan, China
| | - Peiqiong Li
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, Hainan, China
| | - Wei Liu
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, Hainan, China
| | - Tianqi Niu
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, Hainan, China
| | - Liping Huang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| |
Collapse
|
12
|
A 10-day mild treadmill exercise performed before an epileptic seizure alleviates oxidative injury in the skeletal muscle and brain tissues of the rats. MARMARA MEDICAL JOURNAL 2022. [DOI: 10.5472/marumj.1056192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Involvement of nitric oxide pathway in the acute anticonvulsant effect of salmon calcitonin in rats. Epilepsy Res 2022; 180:106864. [DOI: 10.1016/j.eplepsyres.2022.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
|
14
|
Jiang H, Zhang S. Therapeutic effect of acute and chronic use of different doses of vitamin D3 on seizure responses and cognitive impairments induced by pentylenetetrazole in immature male rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:84-95. [PMID: 35656438 PMCID: PMC9118278 DOI: 10.22038/ijbms.2021.60123.13328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Objectives This study aimed to evaluate the effects of acute and chronic intake of different doses of vitamin D3 on seizure responses and cognitive impairment induced by pentylenetetrazole (PTZ) in immature male rats. Materials and Methods Sixty-six immature male NMRI rats were divided into control (10), epileptic (10), and treatment groups (46). The stage 5 latency (S5L) and stage 5 duration (S5D) were assessed along with the shuttle box test. Levels of antioxidant enzymes and inflammatory factors along with genes involved in inflammation, oxidative damage, apoptosis, and mTORc1 were measured in the hippocampus tissue of the brain of controlled and treated rats. Serum levels of parathyroid hormone (PTH), vitamin D, calcium, and phosphorus were also assessed. Results The results showed that the ability to learn, memory consolidation, and memory retention in epileptic rats were reduced. In addition, S5D increased and S5L decreased in epileptic rats, while being effectively ameliorated by chronic and acute vitamin D intake. The results showed that vitamin D in different doses acutely and chronically decreased the levels of oxidative and inflammatory biomarkers in hippocampus tissue and inhibited the expression of genes involved in inflammation, oxidative damage, apoptosis, and mTORc1 in the hippocampus tissue of epileptic rats. Conclusion The results showed that vitamin D in different doses acutely and chronically could improve cognitive impairments and convulsive responses in epileptic rats by improving neurotransmission, inflammation, apoptosis, and oxidative damage.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Pediatric, Weinan Maternal and Child Health Hospital, Weinan, 714000, China
| | - Suying Zhang
- Department of Child Health, Weinan Central Hospital, Weinan, 714000, China
| |
Collapse
|