1
|
Bahattab S, Assiri A, Alhaidan Y, Trivilegio T, AlRoshody R, Huwaizi S, Almuzzaini B, Alamro A, Abudawood M, Alehaideb Z, Matou-Nasri S. Pharmacological p38 MAPK inhibitor SB203580 enhances AML stem cell line KG1a chemosensitivity to daunorubicin by promoting late apoptosis, cell growth arrest in S-phase, and miR-328-3p upregulation. Saudi Pharm J 2024; 32:102055. [PMID: 38699598 PMCID: PMC11063648 DOI: 10.1016/j.jsps.2024.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Acute myeloid leukaemia (AML) is characterized by uncontrolled proliferation of myeloid progenitor cells and impaired maturation, leading to immature cell accumulation in the bone marrow and bloodstream, resulting in hematopoietic dysfunction. Chemoresistance, hyperactivity of survival pathways, and miRNA alteration are major factors contributing to treatment failure and poor outcomes in AML patients. This study aimed to investigate the impact of the pharmacological p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 on the chemoresistance potential of AML stem cell line KG1a to the therapeutic drug daunorubicin (DNR). KG1a and chemosensitive leukemic HL60 cells were treated with increasing concentrations of DNR. Cell Titer-Glo®, flow cytometry, phosphokinase and protein arrays, Western blot technology, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were employed for assessment of cell viability, half-maximal inhibitory concentration (IC50) determination, apoptotic status detection, cell cycle analysis, apoptosis-related protein and gene expression monitoring. Confocal microscopy was used to visualize caspase and mitochondrial permeability transition pore (mPTP) activities. Exposed at various incubation times, higher DNR IC50 values were determined for KG1a cells than for HL60 cells, confirming KG1a cell chemoresistance potential. Exposed to DNR, late apoptosis induction in KG1a cells was enhanced after SB203580 pretreatment, defined as the combination treatment. This enhancement was confirmed by increased cleavage of poly(ADP-ribose) polymerase, caspase-9, caspase-3, and augmented caspase-3/-7 and mPTP activities in KG1a cells upon combination treatment, compared to DNR. Using phosphokinase and apoptosis protein arrays, the combination treatment decreased survival Akt phosphorylation and anti-apoptotic Bcl-2 expression levels in KG1a cells while increasing the expression levels of the tumor suppressor p53 and cyclin-dependent kinase inhibitor p21, compared to DNR. Cell cycle analysis revealed KG1a cell growth arrest in G2/M-phase caused by DNR, while combined treatment led to cell growth arrest in S-phase, mainly associated with cyclin B1 expression levels. Remarkably, the enhanced KG1a cell sensitivity to DNR after SB203580 pretreatment was associated with an increased upregulation of miR-328-3p and slight downregulation of miR-26b-5p, compared to DNR effect. Altogether, these findings could contribute to the development of a new therapeutic strategy by targeting the p38 MAPK pathway to improve treatment outcomes in patients with refractory or relapsed AML.
Collapse
Affiliation(s)
- Sara Bahattab
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Assiri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Yazeid Alhaidan
- Medical Genomics Research Department, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Thadeo Trivilegio
- Medical Research Core Facility and Platforms, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Rehab AlRoshody
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
| | - Sarah Huwaizi
- Medical Research Core Facility and Platforms, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Abir Alamro
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Zeyad Alehaideb
- Medical Genomics Research Department, KAIMRC, KSAU-HS, MNG-HA, Riyadh 11481, Saudi Arabia
| | - Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School of Systems Biology, George Mason University, Manassas, VA 20110, United States
| |
Collapse
|
2
|
ABDELLATEIF MONAS, HASSAN NAGLAAM, KAMEL MAHMOUDM, EL-MELIGUI YOMNAM. Bone marrow microRNA-34a is a good indicator for response to treatment in acute myeloid leukemia. Oncol Res 2024; 32:577-584. [PMID: 38361758 PMCID: PMC10865737 DOI: 10.32604/or.2023.043026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/06/2023] [Indexed: 02/17/2024] Open
Abstract
Background microRNA-34a (miR-34a) had been reported to have a diagnostic role in acute myeloid leukemia (AML). However, its value in the bone marrow (BM) of AML patients, in addition to its role in response to therapy is still unclear. The current study was designed to assess the diagnostic, prognostic, and predictive significance of miR-34a in the BM of AML patients. Methods The miR-34a was assessed in BM aspirate of 82 AML patients in relation to 12 normal control subjects using qRT-PCR. The data were assessed for correlation with the relevant clinical criteria, response to therapy, disease-free survival (DFS), and overall survival (OS) rates. Results miR-34a was significantly downregulated in AML patients [0.005 (3.3 × 10-6-1.32)], compared to the control subjects [0.108 (3.2 × 10-4-1.64), p = 0.021]. The median relative quantification (RQ) of miR-34a was 0.106 (range; 0-32.12). The specificity, sensitivity, and area under the curve (AUC) for the diagnosis of AML were (58.3%, 69.5%, 0.707, respectively, p = 0.021). patients with upregulated miR-34a showed decreased platelets count <34.5 × 109/L, and achieved early complete remission (CR, p = 0.031, p = 0.044, respectively). Similarly, patients who were refractory to therapy showed decreased miR-34a levels in comparison to those who achieved CR [0.002 (0-0.01) and 0.12 (0-32.12), respectively, p = 0.002]. Therefore, miR-34a could significantly identify patients with CR with a specificity of 75% and sensitivity of 100% at a cut-off of 0.014 (AUC = 0.927, p = 0.005). There was no considerable association between miR-34a expression and survival rates of the included AML patients. Conclusion miR-34a could be a beneficial diagnostic biomarker for AML patients. In addition, it serves as a good indicator for response to therapy, which could possibly identify patients who are refractory to treatment with 100% sensitivity and 75% specificity.
Collapse
Affiliation(s)
- MONA S. ABDELLATEIF
- Department of Cancer Biology, Medical Biochemistry and Molecular Biology, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| | - NAGLAA M. HASSAN
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| | - MAHMOUD M. KAMEL
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| | - YOMNA M. EL-MELIGUI
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| |
Collapse
|
3
|
Jimbu L, Mesaros O, Joldes C, Neaga A, Zaharie L, Zdrenghea M. MicroRNAs Associated with a Bad Prognosis in Acute Myeloid Leukemia and Their Impact on Macrophage Polarization. Biomedicines 2024; 12:121. [PMID: 38255226 PMCID: PMC10813737 DOI: 10.3390/biomedicines12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding ribonucleic acids (RNAs) associated with gene expression regulation. Since the discovery of the first miRNA in 1993, thousands of miRNAs have been studied and they have been associated not only with physiological processes, but also with various diseases such as cancer and inflammatory conditions. MiRNAs have proven to be not only significant biomarkers but also an interesting therapeutic target in various diseases, including cancer. In acute myeloid leukemia (AML), miRNAs have been regarded as a welcome addition to the limited therapeutic armamentarium, and there is a vast amount of data on miRNAs and their dysregulation. Macrophages are innate immune cells, present in various tissues involved in both tissue repair and phagocytosis. Based on their polarization, macrophages can be classified into two groups: M1 macrophages with pro-inflammatory functions and M2 macrophages with an anti-inflammatory action. In cancer, M2 macrophages are associated with tumor evasion, metastasis, and a poor outcome. Several miRNAs have been associated with a poor prognosis in AML and with either the M1 or M2 macrophage phenotype. In the present paper, we review miRNAs with a reported negative prognostic significance in cancer with a focus on AML and analyze their potential impact on macrophage polarization.
Collapse
Affiliation(s)
- Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Corina Joldes
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
| | - Alexandra Neaga
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
| | - Laura Zaharie
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Ghafouri-Fard S, Safarzadeh A, Hassani Fard Katiraei S, Hussen BM, Hajiesmaeili M. Diverse functions of miR-328 in the carcinogenesis. Pathol Res Pract 2023; 251:154896. [PMID: 37852016 DOI: 10.1016/j.prp.2023.154896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
MicroRNA-328 (miR-328) is an RNA gene that is primarily associated with lung cancer, and its encoding gene is located on 16q22.1. Expression of miR-328 has been observed in lung and esophagus tissues based on RNAseq data. Although several studies have aimed at the detection of miR-328 levels in tumor tissues, there is an obvious discrepancy between the results of these studies. Even in a certain type of cancer, some studies have reported up-regulation of miR-328 in cancerous tissues versus control tissues, while others have reported its down-regulation. This discrepancy might be attributed to different stages/grades of tumor tissues or other clinical characteristics. This review article focuses on the available literature to explore the functions of miR-328 in the development of human carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammadreza Hajiesmaeili
- Anesthesia and Critical Care Department, Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Wang Z, Xie W, Guan H. The diagnostic, prognostic role and molecular mechanism of miR-328 in human cancer. Biomed Pharmacother 2023; 157:114031. [PMID: 36413837 DOI: 10.1016/j.biopha.2022.114031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022] Open
Abstract
MicroRNA are non-coding small RNAs that bind to their target mRNA and cause mRNA degradation or translation inhibition. MiRNA dysregulation is linked to a variety of human cancers and has a role in the genesis and development of cancer pathology. MiR-328 has been reported to be involved in various human cancers. And miR-328 is considered a key regulator in human cancer. It participates in biological processes such as proliferation, apoptosis, invasion, migration, and EMT. The present review will combine the basic and clinical studies to find that miR-328 promotes tumorigenesis and metastasis in human cancer. And we will describe the diagnostic, prognostic, and therapeutic value of miR-328 in various human cancers.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| | - Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| | - Hongzai Guan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| |
Collapse
|
6
|
Matou-Nasri S, Najdi M, AlSaud NA, Alhaidan Y, Al-Eidi H, Alatar G, AlWadaani D, Trivilegio T, AlSubait A, AlTuwaijri A, Abudawood M, Almuzzaini B. Blockade of p38 MAPK overcomes AML stem cell line KG1a resistance to 5-Fluorouridine and the impact on miRNA profiling. PLoS One 2022; 17:e0267855. [PMID: 35511922 PMCID: PMC9071118 DOI: 10.1371/journal.pone.0267855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/16/2022] [Indexed: 11/19/2022] Open
Abstract
Most of the AML patients in remission develop multidrug resistance after the first-line therapy and relapse. AML stem cells have gained attention for their chemoresistance potentials. Chemoresistance is a multifactorial process resulting from altered survival signaling pathways and apoptosis regulators such as MAPK, NF-κB activation and ROS production. We targeted the survival pathway p38 MAPK, NF-κB and ROS generation in human chemoresistant AML stem cell line KG1a, susceptible to enhance cell sensitivity to the chemotherapy drug 5-Fluorouridine, compared to the chemosensitive AML cell line HL60. After confirming the phenotypic characterization of KG1a and HL60 cells using flow cytometry and transcriptomic array analyses, cell treatment with the NF-κB inhibitor IKKVII resulted in a complete induction of apoptosis, and a few p38 MAPK inhibitor SB202190-treated cells underwent apoptosis. No change in the apoptosis status was observed in the ROS scavenger N-acetylcysteine-treated cells. The p38 MAPK pathway blockade enhanced the KG1a cell sensitivity to 5-Fluorouridine, which was associated with the upregulation of microribonucleic acid-(miR-)328-3p, as determined by the microarray-based miRNA transcriptomic analysis. The downregulation of the miR-210-5p in SB202190-treated KG1a cells exposed to FUrd was monitored using RT-qPCR. The miR-328-3p is known for the enhancement of cancer cell chemosensitivity and apoptosis induction, and the downregulation of miR-210-5p is found in AML patients in complete remission. In conclusion, we highlighted the key role of the p38 MAPK survival pathway in the chemoresistance capacity of the AML stem cells and potentially involved miRNAs, which may pave the way for the development of a new therapeutic strategy targeting survival signaling proteins and reduce the rate of AML relapse.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- * E-mail: (SMN); (BA)
| | - Maria Najdi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- Postgraduate program, King Saud University, Riyadh, Saudi Arabia
| | - Nouran Abu AlSaud
- Department of Cellular Therapy and Cancer Research, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Yazeid Alhaidan
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Ghada Alatar
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Deemah AlWadaani
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Thadeo Trivilegio
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Arwa AlSubait
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Abeer AlTuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratory Sciences, Chair of Medical and Molecular Genetics Research, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- * E-mail: (SMN); (BA)
| |
Collapse
|
7
|
Lin X, Ling Q, Lv Y, Ye W, Huang J, Li X, Guo Q, Wang J, Li Z, Jin J. Plasma exosome-derived microRNA-532 as a novel predictor for acute myeloid leukemia. Cancer Biomark 2021; 28:151-158. [PMID: 32176633 DOI: 10.3233/cbm-191164] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The interest in plasma biomarkers has increased recently. Plasma exosome-derived microRNA-532 is aberrantly expressed in a variety of human cancers and has the prognostic value in many solid tumors. However, the prognostic impact of the expression value on AML remains unclear. OBJECTIVE The aim of this study is to investigate the prognostic value of exosome-derived microRNA-532 in AML patients. METHODS We performed the real-time PCR to quantify exosome-derived microRNA-532 in plasma of 198 AML patients. To assess the prognostic value, we performed Cox regression analyses in the context of well-established clinical and molecular markers. Cellular metabolic profile was conducted to help us understand the biological insight of its expression. RESULTS The expression level was not associated with white blood cell counts, age, FAB subtypes, cytogenetic risk groups and genes of FLT3-ITD, NPM1, CEBPA and DNMT3A mutations. Interestingly, high expressers had a favorable overall survival in the univariate analysis. This prognostic value was testified in the multivariate analysis. Moreover, up-regulation of miR-532 was negatively associated with cellular energy like fructose and glutamine. CONCLUSION We found plasma exosome-derived microRNA-532 can be used as a novel survival predictor for acute myeloid leukemia.
Collapse
Affiliation(s)
- Xia Lin
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Qing Ling
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Yunfei Lv
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiansong Huang
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Xia Li
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Guo
- Department of Nephrology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Zhongqi Li
- The Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Moussa Agha D, Rouas R, Najar M, Bouhtit F, Naamane N, Fayyad-Kazan H, Bron D, Meuleman N, Lewalle P, Merimi M. Identification of Acute Myeloid Leukemia Bone Marrow Circulating MicroRNAs. Int J Mol Sci 2020; 21:ijms21197065. [PMID: 32992819 PMCID: PMC7583041 DOI: 10.3390/ijms21197065] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In addition to their roles in different biological processes, microRNAs in the tumor microenvironment appear to be potential diagnostic and prognostic biomarkers for various malignant diseases, including acute myeloid leukemia (AML). To date, no screening of circulating miRNAs has been carried out in the bone marrow compartment of AML. Accordingly, we investigated the circulating miRNA profile in AML bone marrow at diagnosis (AMLD) and first complete remission post treatment (AMLPT) in comparison to healthy donors (HD). METHODS Circulating miRNAs were isolated from AML bone marrow aspirations, and a low-density TaqMan miRNA array was performed to identify deregulated miRNAs followed by quantitative RT-PCR to validate the results. Bioinformatic analysis was conducted to evaluate the diagnostic and prognostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). RESULTS We found several deregulated miRNAs between the AMLD vs. HD vs. AMLPT groups, which were involved in tumor progression and immune suppression pathways. We also identified significant diagnostic and prognostic signatures with the ability to predict AML patient treatment response. CONCLUSIONS This study provides a possible role of enriched circulating bone marrow miRNAs in the initiation and progression of AML and highlights new markers for prognosis and treatment monitoring.
Collapse
Affiliation(s)
- Douâa Moussa Agha
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Redouane Rouas
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada;
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Najib Naamane
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Hussein Fayyad-Kazan
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Dominique Bron
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Makram Merimi
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
- Correspondence:
| |
Collapse
|
9
|
Liu Z, Xu L, Zhang K, Guo B, Cui Z, Gao N. LINC00210 plays oncogenic roles in non-small cell lung cancer by sponging microRNA-328-5p. Exp Ther Med 2020; 19:3325-3331. [PMID: 32266029 PMCID: PMC7132237 DOI: 10.3892/etm.2020.8593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/16/2020] [Indexed: 12/17/2022] Open
Abstract
Long noncoding RNA (lncRNA) has an important role in regulating non-small cell lung cancer (NSCLC) progression. The present study aimed to investigate the effect of LINC00210 in NSCLC progression in order to provide a novel treatment target for patients with NSCLC. A total of 39 NSCLC patients were obtained and divided into LINC00210 high expression and low expression groups. Subsequently, the 5-year survival rate from this patient cohort was analyzed. The SK-MES-1 and A549 NSCLC and the human 16-HBE bronchial epithelial cell lines were utilized to investigate expression level of LIN00210. A549 cells were used to investigate cell proliferation, migration and invasive abilities using Cell Counting kit 8, Transwell and Matrigel assays, respectively. In addition, the luciferase reporter gene assay was performed to investigate the potential target of LINC00210. Reverse transcription-quantitative PCR was used to determine LINC00210 and microRNA (miR)-328-5p expression levels in NSCLC tissues and tumor cell lines (SK-MES-1 and A549). The results demonstrated that LINC00210 was upregulated in NSCLC tissues and cell lines compared with that in normal tissues and 16-HBE cells, and that LINC00210 expression was associated with a poor prognosis in patients with NSCLC (P<0.05). Furthermore, A549 cell transfection with small interfering (si)LINC00210#1 and siLINC00210#2 induced a significant decrease in cell proliferation, and migratory and invasive abilities compared with that in the control groups (P<0.05). In addition, miR-328-5p overexpression was stimulated by knockdown of LINC00210. Furthermore, A549 cells transfected with siLINC00210#1 and miR-328-5p inhibitor exhibited a significant increase in cell proliferation, and migratory and invasive ability compared with that in A549 cells transfected with siLINC00210#1. These findings suggest that LINC00210 may serve as an oncogenic role in NSCLC by sponging miR-328-5p.
Collapse
Affiliation(s)
- Zhengjia Liu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lei Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Kejian Zhang
- Department of Thoracic Surgery, Jilin Cancer Hospital, Changchun, Jilin 130021, P.R. China
| | - Bo Guo
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhi Cui
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Nan Gao
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
10
|
Pan S, Ren F, Li L, Liu D, Li Y, Wang A, Li W, Dong Y, Guo W. MiR-328-3p inhibits cell proliferation and metastasis in colorectal cancer by targeting Girdin and inhibiting the PI3K/Akt signaling pathway. Exp Cell Res 2020; 390:111939. [PMID: 32142853 DOI: 10.1016/j.yexcr.2020.111939] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/13/2020] [Accepted: 03/01/2020] [Indexed: 12/24/2022]
Abstract
MiR-328-3p has been reported to be downregulated and serve as a tumor suppressor in several cancers. Previous studies only have reported the downregulation of miR-328-3p in CRC. However, the roles of miR-328-3p in CRC growth and metastasis were unknown. In this study, we demonstrated that miR-328-3p overexpression inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). The PI3K/Akt signaling pathway was also inactivated by miR-328-3p overexpression. MiR-328-3p knockdown showed the opposite effects. In addition, we confirmed that miR-328-3p directly bound to 3'UTR of Girdin and negatively regulated its expression. Girdin knockdown or treatment with PI3K inhibitor LY294002 blocked the effects of miR-328-3p inhibitor on cell proliferation, metastasis, and the PI3K/Akt signaling pathway. Moreover, pre-miR-328 decreased numbers of liver metastatic nodules, and reduced the levels of p-Akt, p-Girdin, and Girdin in metastatic tissues in liver. In conclusion, miR-328-3p may inhibit proliferation and metastasis of CRC cells by targeting Girdin and inactivating the PI3K/Akt signaling pathway. MiR-328-3p may be a novel target in cancer therapy.
Collapse
Affiliation(s)
- Shuang Pan
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Fu Ren
- Biological Anthropology Institute, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China; Key Laboratory of Chinese Physical Characteristics Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People's Republic of China.
| | - Dahua Liu
- Biological Anthropology Institute, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China; Key Laboratory of Chinese Physical Characteristics Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Yao Li
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Aimei Wang
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Weihong Li
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Yongyan Dong
- The First Clinical College, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Wenjuan Guo
- School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, People's Republic of China
| |
Collapse
|
11
|
Yu G, Yin Z, He H, Zheng Z, Chai Y, Xuan L, Lin R, Wang Q, Li J, Xu D. Low serum miR-223 expression predicts poor outcome in patients with acute myeloid leukemia. J Clin Lab Anal 2019; 34:e23096. [PMID: 31691380 PMCID: PMC7083432 DOI: 10.1002/jcla.23096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/12/2019] [Accepted: 09/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background Identification of biomarkers for acute myeloid leukemia (AML) is important for treating this malignancy. Recent studies have reported that microRNAs (miRNAs) are stably detectable in the blood/plasma and can be used as biomarkers for various types of cancer including AML. The aim of this study was to analyze miR‐223 level in serum as a potential indicator for AML diagnosis and prognosis prediction. Methods Quantitative reverse transcription‐polymerase chain reaction (qRT‐PCR) was used to detect the levels of miR‐223 in the serum samples from 131 patients and 70 healthy individuals. Results The results revealed that serum miR‐223 was underexpressed in AML patients, particularly those in intermediate and unfavorable cytogenetic risk groups. Further analysis revealed that serum miR‐223 could yield a receiver operating characteristic (ROC) area under the curve (AUC) of 0.849 with 83.2% sensitivity and 81.4% specificity. Moreover, a significant increase in serum miR‐223 level was observed in AML subjects after their treatment. Reduced serum miR‐223 level was highly associated with aggressive clinical variables and shorter survival of patients. Furthermore, miR‐223 expression was identified to be an independent prognostic predictor of worse overall survival. Conclusion In conclusion, miR‐223 may be a reliable diagnostic and prognostic biomarker for AML.
Collapse
Affiliation(s)
- Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Han He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongxin Zheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanyan Chai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Study on miRNAs in Pan-Cancer of the Digestive Tract Based on the Illumina HiSeq System Data Sequencing. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8016120. [PMID: 31737678 PMCID: PMC6817930 DOI: 10.1155/2019/8016120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/16/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
Abstract
Objective miRNA has gained attention as a therapeutic target in various malignancies. The proposal of this study was to investigate the biological functions of key miRNAs and target genes in cancers of the digestive tract which include esophageal carcinoma (ESCA), gastric adenocarcinoma (GAC), colon adenocarcinoma (COAD), and rectal adenocarcinoma (READ). Materials and Methods After screening differentially expressed miRNAs (DEMIs) and differentially expressed mRNAs (DEMs) in four digestive cancers from The Cancer Genome Atlas (TCGA) database, the diagnostic value of above DEMIs was evaluated by receiver-operating characteristic (ROC) curve analysis. Then, corresponding DEMIs' target genes were predicted by miRWalk 2.0. Intersection of predicted target genes and DEMs was taken as the target genes of DEMIs, and miRNA-mRNA regulatory networks between DEMIs and target genes were constructed. Meanwhile, the univariate Cox risk regression model was used to screen miRNAs with distinct prognostic value, and Kaplan-Meier analysis was used to determine their significance of prognosis. Furthermore, we performed bioinformatics methods including protein-protein interaction (PPI) networks, gene ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and gene group RIDA analysis by Gene-Cloud of Biotechnology Information (GCBI) to explore the function and molecular mechanisms of DEMIs and predicted target genes in tumor development. Results Eventually, 3 DEMIs (miR-7-3, miR-328, and miR-323a) with significant prognostic value were obtained. In addition, 3 DEMIs (miR-490-3p, miR-133a-3p, and miR-552-3p) and 281 target genes were identified, and the 3 DEMIs showed high diagnostic value in READ and moderate diagnostic value in ESCA, GAC, and COAD. Also, the miRNA-mRNA regulatory network with 3 DEMIs and 281 overlapping genes was successfully established. Functional enrichment analysis showed that 281 overlapping genes were mainly related to regulation of cell proliferation, cell migration, and PI3K-Akt signaling pathway. Conclusion The diagnostic value and prognostic value of significant DEMIs in cancers of the digestive tract were identified, which may provide a novel direction for treatment and prognosis improvement of cancers of the digestive tract.
Collapse
|
13
|
Bioinformatics analysis of circulating miRNAs related to cancer following spinal cord injury. Biosci Rep 2019; 39:BSR20190989. [PMID: 31444279 PMCID: PMC6753324 DOI: 10.1042/bsr20190989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Patients with spinal cord injury (SCI) have an increased risk of developing esophageal, bladder and hematologic malignancies compared with the normal population. In the present study, we aimed to identify, through in silico analysis, miRNAs and their target genes related to the three most frequent types of cancer in individuals with SCI. In a previous study, we reported a pattern of expression of miRNAs in 17 sedentary SCI males compared with 22 healthy able-bodied males by TaqMan OpenArray. This list of miRNAs deregulated in SCI patients was uploaded to miRWALK2.0 to predict the target genes and pathways of selected miRNAs. We used Cytoscape software to construct the network displaying the miRNAs and their gene targets. Among the down-regulated miRNAs in SCI, 21, 19 and 20 miRNAs were potentially associated with hematological, bladder and esophageal cancer, respectively, and three target genes (TP53, CCND1 and KRAS) were common to all three types of cancer. The three up-regulated miRNAs were potentially targeted by 18, 15 and 10 genes associated with all three types of cancer. Our current bioinformatics analysis suggests the potential influence of several miRNAs on the development of cancer in SCI. In general, these data may provide novel information regarding potential molecular mechanisms involved in the development of cancer among individuals with SCI. Further studies aiming at understanding how miRNAs contribute to the development of the major cancers that affect patients after SCI may help elucidate the role of these molecules in the pathophysiology of the disease.
Collapse
|
14
|
Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L, Zhao H, Shi J, Ke X, Fu L. Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol 2019; 12:51. [PMID: 31126316 PMCID: PMC6534901 DOI: 10.1186/s13045-019-0734-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant tumor of the immature myeloid hematopoietic cells in the bone marrow (BM). It is a highly heterogeneous disease, with rising morbidity and mortality in older patients. Although researches over the past decades have improved our understanding of AML, its pathogenesis has not yet been fully elucidated. Long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are three noncoding RNA (ncRNA) molecules that regulate DNA transcription and translation. With the development of RNA-Seq technology, more and more ncRNAs that are closely related to AML leukemogenesis have been discovered. Numerous studies have found that these ncRNAs play an important role in leukemia cell proliferation, differentiation, and apoptosis. Some may potentially be used as prognostic biomarkers. In this systematic review, we briefly described the characteristics and molecular functions of three groups of ncRNAs, including lncRNAs, miRNAs, and circRNAs, and discussed their relationships with AML in detail.
Collapse
Affiliation(s)
- Yan Liu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhiheng Cheng
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Liang Quan
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongyou Zhao
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. .,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. .,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| |
Collapse
|
15
|
Zheng Z, Rong G, Li G, Ren F, Ma Y. Diagnostic and prognostic significance of serum miR-203 in patients with acute myeloid leukemia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1548-1556. [PMID: 31933972 PMCID: PMC6947105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/26/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs play important roles in the initiation and progression of acute myeloid leukemia (AML). This study aimed to detect serum miR-203 expression levels in AML and explore its potential clinical significance. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was performed to measure the serum miR-203 levels in 134 patients with AML and 70 healthy controls. The results demonstrated that serum miR-203 expression was significantly reduced in AML patients compared with healthy controls. Receiver operating characteristic curve (ROC) analysis revealed miR-203 could distinguish AML cases from normal controls. Low serum miR-203 levels were associated with worse clinical features, as well as poorer overall survival and relapse free survival of AML patients. Moreover, multivariate analysis confirmed low serum miR-203 expression to be an independent unfavorable prognostic predictor for AML. The bioinformatics analysis showed that the downstream genes and pathways of miR-203 was closely associated with tumorigenesis. Downregulation of miR-203 in AML cell lines upregulated the expression levels of oncogenic promoters such as CREB1, SRC and HDAC1. Thus, these findings demonstrated that serum miR-203 might be a promising biomarker for the diagnosis and prognosis of AML.
Collapse
Affiliation(s)
- Zhuanzhen Zheng
- The Second Hospital of Shanxi Medical UniversityTaiyuan 030001, Shanxi Province, China
| | - Gong Rong
- Shanxi Academy of Medical Sciences, Shanxi University HospitalTaiyuan 030006, Shanxi Province, China
| | - Guoxia Li
- The Second Hospital of Shanxi Medical UniversityTaiyuan 030001, Shanxi Province, China
| | - Fanggang Ren
- The Second Hospital of Shanxi Medical UniversityTaiyuan 030001, Shanxi Province, China
| | - Yanping Ma
- The Second Hospital of Shanxi Medical UniversityTaiyuan 030001, Shanxi Province, China
| |
Collapse
|
16
|
Mardani R, Jafari Najaf Abadi MH, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, Gheibi Hayat SM, Motieian M, Pourghadamyari H. MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol 2018; 234:8465-8486. [PMID: 30515779 DOI: 10.1002/jcp.27776] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Leukemia is known as a progressive malignant disease, which destroys the blood-forming organs and results in adverse effects on the proliferation and development of leukocytes and their precursors in the blood and bone marrow. There are four main classes of leukemia including acute leukemia, chronic leukemia, myelogenous leukemia, and lymphocytic leukemia. Given that a variety of internal and external factors could be associated with the initiation and progression of different types of leukemia. One of the important factors is epigenetic regulators such as microRNAs (miRNAs) and long noncoding RNAs (ncRNA). MiRNAs are short ncRNAs which act as tumor suppressor (i.e., miR-15, miR-16, let-7, and miR-127) or oncogene (i.e., miR-155, miR-17-92, miR-21, miR-125b, miR-93, miR-143-p3, miR-196b, and miR-223) in leukemia. It has been shown that deregulation of these molecules are associated with the initiation and progression of leukemia. Hence, miRNAs could be used as potential therapeutic candidates in the treatment of patients with leukemia. Moreover, increasing evidence revealed that miRNAs could be used as diagnostic and prognostic biomarkers in monitoring patients in early stages of disease or after received chemotherapy regimen. It seems that identification and development of new miRNAs could pave to the way to the development new therapeutic platforms for patients with leukemia. Here, we summarized various miRNAs as tumor suppressor and oncogene which could be introduced as therapeutic targets in treatment of leukemia.
Collapse
Affiliation(s)
- Rajab Mardani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahsa Motieian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Borujen, Iran
| | - Amir Bayat
- Hematology, Oncology, and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cell and Molecular Biology, College of Science, Kish International Campus, University of Tehran, Kish, Iran
| | - Alireza Farsinezhad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahtab Motieian
- Department of Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New York, New York
| | - Hossein Pourghadamyari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
17
|
Huang Y, Zou Y, Lin L, Ma X, Chen H. Identification of serum miR-34a as a potential biomarker in acute myeloid leukemia. Cancer Biomark 2018; 22:799-805. [DOI: 10.3233/cbm-181381] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Differential expression profiles of miRNAs and correlation with clinical outcomes in acute myeloid leukemia. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Serum levels of miRNA in patients with hepatitis B virus-associated acute-on-chronic liver failure. Hepatobiliary Pancreat Dis Int 2018; 17:126-132. [PMID: 29602672 DOI: 10.1016/j.hbpd.2018.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 01/05/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV)-associated acute-on-chronic liver failure (HBV-ACLF) is a life-threatening condition and its exact pathophysiology and progression remain unclear. The present study aimed to assess the role of serum miRNAs in the evaluation of HBV-ACLF and to develop a model to predict the outcomes for ACLF. METHODS Serum was collected from 41 chronic hepatitis B and 55 HBV-ACLF patients in addition to 30 chronic asymptomatic HBV carriers as controls. The miRNAs expressions were measured by real-time quantitative PCR (q-PCR). Statistical analyses were conducted to assess the ability of differentially expressed miRNAs and other prognostic factors in identifying ACLF prognosis and to develop a new predictive model. RESULTS Real-time q-PCR indicated that serum miR-146a-5p, miR-122-3p and miR-328-3p levels were significantly upregulated in ACLF patients compared to chronic hepatitis B and chronic asymptomatic HBV carriers patients. In addition, multivariate regression analyses indicated that Na+, INR, gastrointestinal bleeding and miR-122-3p are all independent factors that are reliable and sensitive to the prognosis of HBV-ACLF. Therefore, we developed a new model for the prediction of HBV-ACLF disease state: Y = 0.402 × Na+ - 1.72 × INR - 4.963 × gastrointestinal bleeding (Yes = 0; No = 1)-0.278 × (miR-122-3p) + 50.449. The predictive accuracy of the model was 95.3% and the area under the receiver operating characteristic curve (AUROC) was 0.847. CONCLUSIONS Expression levels of these miRNAs (miR-146a-5p, miR-122-3p and miR-328-3p) positively correlate with the severity of liver inflammation in patients with ACLF and may be useful to predict HBV-ACLF severity.
Collapse
|
20
|
Liao Q, Wang B, Li X, Jiang G. miRNAs in acute myeloid leukemia. Oncotarget 2018; 8:3666-3682. [PMID: 27705921 PMCID: PMC5356910 DOI: 10.18632/oncotarget.12343] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/24/2016] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs found throughout the eukaryotes that control the expression of a number of genes involved in commitment and differentiation of hematopoietic stem cells and tumorigenesis. Widespread dysregulation of miRNAs have been found in hematological malignancies, including human acute myeloid leukemia (AML). A comprehensive understanding of the role of miRNAs within the complex regulatory networks that are disrupted in malignant AML cells is a prerequisite for the development of therapeutic strategies employing miRNA modulators. Herein, we review the roles of emerging miRNAs and the miRNAs regulatory networks in AML pathogenesis, prognosis, and miRNA-directed therapies.
Collapse
Affiliation(s)
- Qiong Liao
- Key Laboratory for Rare & Uncommon Dseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China.,School of Medicine and Life Sciences, Jinan University, Jinan, Shandong, P.R. China
| | - Bingping Wang
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong, P.R. China
| | - Xia Li
- Key Laboratory for Rare & Uncommon Dseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China.,Shandong University School of Medicine, Jinan, Shandong, P.R. China
| | - Guosheng Jiang
- Key Laboratory for Rare & Uncommon Dseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|
21
|
Trino S, Lamorte D, Caivano A, Laurenzana I, Tagliaferri D, Falco G, Del Vecchio L, Musto P, De Luca L. MicroRNAs as New Biomarkers for Diagnosis and Prognosis, and as Potential Therapeutic Targets in Acute Myeloid Leukemia. Int J Mol Sci 2018; 19:ijms19020460. [PMID: 29401684 PMCID: PMC5855682 DOI: 10.3390/ijms19020460] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemias (AML) are clonal disorders of hematopoietic progenitor cells which are characterized by relevant heterogeneity in terms of phenotypic, genotypic, and clinical features. Among the genetic aberrations that control disease development there are microRNAs (miRNAs). miRNAs are small non-coding RNAs that regulate, at post-transcriptional level, translation and stability of mRNAs. It is now established that deregulated miRNA expression is a prominent feature in AML. Functional studies have shown that miRNAs play an important role in AML pathogenesis and miRNA expression signatures are associated with chemotherapy response and clinical outcome. In this review we summarized miRNA signature in AML with different cytogenetic, molecular and clinical characteristics. Moreover, we reviewed the miRNA regulatory network in AML pathogenesis and we discussed the potential use of cellular and circulating miRNAs as biomarkers for diagnosis and prognosis and as therapeutic targets.
Collapse
MESH Headings
- Animals
- Antagomirs/genetics
- Antagomirs/metabolism
- Antagomirs/therapeutic use
- Biomarkers, Tumor/agonists
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Chromosome Aberrations
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/pathology
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Mice
- MicroRNAs/agonists
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Targeted Therapy
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- Oligoribonucleotides/therapeutic use
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Prognosis
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Daniela Lamorte
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Antonella Caivano
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Daniela Tagliaferri
- Biogem Scarl, Istituto di Ricerche Genetiche 'Gaetano Salvatore', 83031 Ariano Irpino, Italy.
| | - Geppino Falco
- Biogem Scarl, Istituto di Ricerche Genetiche 'Gaetano Salvatore', 83031 Ariano Irpino, Italy.
- Department of Biology, University of Naples Federico II, 80147 Naples, Italy.
| | - Luigi Del Vecchio
- CEINGE Biotecnologie Avanzate s.c.a r.l., 80147 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80138 Naples, Italy.
| | - Pellegrino Musto
- Scientific Direction, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Potenza, Italy.
| | - Luciana De Luca
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| |
Collapse
|
22
|
Megiorni F, Colaiacovo M, Cialfi S, McDowell HP, Guffanti A, Camero S, Felsani A, Losty PD, Pizer B, Shukla R, Cappelli C, Ferrara E, Pizzuti A, Moles A, Dominici C. A sketch of known and novel MYCN-associated miRNA networks in neuroblastoma. Oncol Rep 2017; 38:3-20. [PMID: 28586032 PMCID: PMC5492854 DOI: 10.3892/or.2017.5701] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) originates from neural crest-derived precursors and represents the most common childhood extracranial solid tumour. MicroRNAs (miRNAs), a class of small non-coding RNAs that participate in a wide variety of biological processes by regulating gene expression, appear to play an essential role within the NB context. High-throughput next generation sequencing (NGS) was applied to study the miRNA transcriptome in a cohort of NB tumours with and without MYCN-amplification (MNA and MNnA, respectively) and in dorsal root ganglia (DRG), as a control. Out of the 128 miRNAs differentially expressed in the NB vs. DRG comparison, 47 were expressed at higher levels, while 81 were expressed at lower levels in the NB tumours. We also found that 23 miRNAs were differentially expressed in NB with or without MYCN-amplification, with 17 miRNAs being upregulated and 6 being downregulated in the MNA subtypes. Functional annotation analysis of the target genes of these differentially expressed miRNAs demonstrated that many mRNAs were involved in cancer-related pathways, such as DNA-repair and apoptosis as well as FGFR and EGFR signalling. In particular, we found that miR-628-3p negatively affects MYCN gene expression. Furthermore, we identified a novel miRNA candidate with variable expression in MNA vs. MNnA tumours, whose putative target genes are implicated in the mTOR pathway. The present study provides further insight into the molecular mechanisms that correlate miRNA dysregulation to NB development and progression.
Collapse
Affiliation(s)
- Francesca Megiorni
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | | | - Samantha Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Heather P McDowell
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | | | - Simona Camero
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | | | - Paul D Losty
- Department of Paediatric Surgery, Alder Hey Children's NHS Foundation Trust, L12 2AP Liverpool, UK
| | - Barry Pizer
- Department of Oncology, Alder Hey Children's NHS Foundation Trust, L12 2AP Liverpool, UK
| | - Rajeev Shukla
- Department of Perinatal and Paediatric Pathology, Alder Hey Children's NHS Foundation Trust, L12 2AP Liverpool, UK
| | - Carlo Cappelli
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Eva Ferrara
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Anna Moles
- Genomnia s.r.l., I-20091 Bresso, MI, Italy
| | - Carlo Dominici
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| |
Collapse
|
23
|
Tang Y, Zhao S, Wang J, Li D, Ren Q, Tang Y. Plasma miR-122 as a potential diagnostic and prognostic indicator in human glioma. Neurol Sci 2017; 38:1087-1092. [PMID: 28367610 DOI: 10.1007/s10072-017-2912-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Gliomas are the most common and aggressive brain tumors, and a poor prognosis is correlated with its World Health Organization (WHO) grade. MicroRNAs (miRNAs) may serve as diagnostic and prognostic biomarkers in gliomas. In the present study, we collected plasma samples from patients with gliomas to evaluate the expression of miR-122 and analyzed the role of miR-122 in the diagnosis and prognosis of gliomas. We found that the expression of miR-122 in the plasma of patients with gliomas was significantly down-regulated compared to that in healthy individuals. In addition, the expression of miR-122, which was significantly correlated with WHO grade, decreased along with the development of gliomas. A receiver operating characteristic curve analysis showed high sensitivity and specificity of miR-122 for diagnosing gliomas (sensitivity 91.9%; specificity 81.1%; area under the curve 0.939). Finally, we found that lower expression of miR-122 was correlated with poor prognosis, and miR-122 was an independent prognostic parameter indicating poor prognosis for gliomas. In conclusion, our results showed that plasma miR-122 expression might act as a diagnostic and prognostic biomarker for gliomas.
Collapse
Affiliation(s)
- Ying Tang
- Zaozhuang Hospital of Zaozhuang Mining Group, NO.188 Shengli Road, Zaozhuang, 277101, People's Republic of China
| | - Shunfeng Zhao
- The Third People's Hospital of Liaocheng, No. 62 Weiyu Road, Liaocheng, 252000, People's Republic of China
| | - Jiliang Wang
- Central Hospital of Shengli Oilfield, No. 31 Jinan Road, Dongying, 257034, People's Republic of China
| | - Dongfeng Li
- Juye County People's Hospital, No. 3 Wenhua Road, Heze, 274900, People's Republic of China
| | - Qingbo Ren
- The Sixth People's Hospital of Qingdao, No. 9 Fushun Road, Qingdao, 266003, People's Republic of China.
| | - Yurong Tang
- Central Hospital of Shengli Oilfield, No. 31 Jinan Road, Dongying, 257034, People's Republic of China.
| |
Collapse
|
24
|
MicroRNAs as prognostic biomarker and relapse indicator in leukemia. Clin Transl Oncol 2017; 19:951-960. [PMID: 28271337 DOI: 10.1007/s12094-017-1638-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
Abstract
Despite significant progress in the treatment of different types of leukemia, relapse remains a challenging clinical problem that is observed in a number of patients who are often resistant to chemotherapy and exhibit multi-drug resistance. Identification of new functional biomarkers, including microRNAs, is essential to determine prognosis and relapse at the time of diagnosis. The aim of this study was to detect the specific microRNAs involved in predicting relapse or progression in acute and chronic leukemias, as well as their relationship with overall survival (OS) and relapse-free survival (RFS). The relevant literature was identified through a PubMed and Scholar search (2008-2016) of English-language papers using the terms Leukemia, microRNAs, survival and relapse. Different leukemia types and subtypes show specific microRNA expression profile and different changes, which can be useful in the differentiation between leukemias and evaluation of relapse at the time of diagnosis. Altered microRNA expression profiles can turn these molecules into oncogenes or tumor suppressors, which affect the expression of relapse-related genes. Therefore, monitoring of specific microRNA expression profiles from diagnosis and during follow-up of patients can contribute to the assessment of outcome and determination of relapse and prognosis of leukemic patients.
Collapse
|
25
|
Qian Z, Zhang L, Chen J, Li Y, Kang K, Qu J, Wang Z, Zhai Y, Li L, Gou D. MiR-328 targeting PIM-1 inhibits proliferation and migration of pulmonary arterial smooth muscle cells in PDGFBB signaling pathway. Oncotarget 2016; 7:54998-55011. [PMID: 27448984 PMCID: PMC5342397 DOI: 10.18632/oncotarget.10714] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) have been recognized to mediate PDGF-induced cell dysregulation, but their exact functions remain to be elucidated. By using a sensitive S-Poly(T) Plus qRT-PCR method, the expression profiling of 1,078 miRNAs were investigated in pulmonary artery smooth muscle cells (PASMCs) with or without PDGFBB stimulation. MiR-328 was found as a prominent down-regulated miRNA, displaying a specific dose- and time-dependent downregulation upon PDGFBB exposure. Functional analyses revealed that miR-328 could inhibit PASMCs proliferation and migration both with and without PDGFBB treatment. The Ser/Thr-protein kinase-1 (PIM-1) was identified as a direct target of miR-328, and functionally confirmed by a rescue experiment. In addition, the decrease of miR-328 by PDGFBB might be due to the increased expression of DNA methylation transferase 1 (DNMT1) and DNA methylation. Finally, serum miR-328 level was downregulated in PAH patients associated with congenital heart disease (CHD- PAH). Overall, this study provides critical insight into fundamental regulatory mechanism of miR-328 in PDGFBB-activited PASMCs via targeting PIM- 1, and implies the potential of serum miR-328 level as a circulating biomarker for CHD- PAH diagnosis.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Limin Zhang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jidong Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yanjiao Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Kang Kang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Yujia Zhai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
26
|
Up- regulation of miR-328-3p sensitizes non-small cell lung cancer to radiotherapy. Sci Rep 2016; 6:31651. [PMID: 27530148 PMCID: PMC4987701 DOI: 10.1038/srep31651] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/22/2016] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are believed to be resistant against radiotherapy in certain types of cancers. The aim of our study was to determine the clinical application of miRNAs in non-small cell lung cancer (NSCLC). Sixty NSCLC tissue samples and adjacent histologically normal tissues were obtained for miRNAs microarray analysis and validated by RT-qPCR. Correlation between miRNA expression level and clinicopathological features was evaluated. Our study examined the influence of changed miRNA expression on the damaged DNA and its associated radio sensitivity. Luciferase assay was performed to determine potential effects on the targeted gene. Our study identified fifteen altered miRNAs in which miR-328-3p was down regulated in NSCLC tumour tissue as compared to normal tissues. Down-expression of miR-328-3p was positively associated with an enhanced lymph node metastasis, advanced clinical stage and a shortened survival rate. miR-328-3p expression was decreased in A549 cells compared to other NSCLC cell lines. Up-regulation of miR-328-3p demonstrated a survival inhibition effect in A549 and restored NSCLC cells' sensitivity to radio therapy. An increased miR-328-3p expression promoted irradiation-induced DNA damage in cells. γ-H2AX was identified as the direct target of miR-328-3p. Over-expressed miR-328-3p can improve the radiosensitvity of cells by altering the DNA damage/repair signalling pathways in NSCLC.
Collapse
|