1
|
Jamtsho T, Loukas A, Wangchuk P. Pharmaceutical Potential of Remedial Plants and Helminths for Treating Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2024; 17:819. [PMID: 39065669 PMCID: PMC11279646 DOI: 10.3390/ph17070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Research is increasingly revealing that inflammation significantly contributes to various diseases, particularly inflammatory bowel disease (IBD). IBD is a major medical challenge due to its chronic nature, affecting at least one in a thousand individuals in many Western countries, with rising incidence in developing nations. Historically, indigenous people have used natural products to treat ailments, including IBD. Ethnobotanically guided studies have shown that plant-derived extracts and compounds effectively modulate immune responses and reduce inflammation. Similarly, helminths and their products offer unique mechanisms to modulate host immunity and alleviate inflammatory responses. This review explored the pharmaceutical potential of Aboriginal remedial plants and helminths for treating IBD, emphasizing recent advances in discovering anti-inflammatory small-molecule drug leads. The literature from Scopus, MEDLINE Ovid, PubMed, Google Scholar, and Web of Science was retrieved using keywords such as natural product, small molecule, cytokines, remedial plants, and helminths. This review identified 55 important Aboriginal medicinal plants and 9 helminth species that have been studied for their anti-inflammatory properties using animal models and in vitro cell assays. For example, curcumin, berberine, and triptolide, which have been isolated from plants; and the excretory-secretory products and their protein, which have been collected from helminths, have demonstrated anti-inflammatory activity with lower toxicity and fewer side effects. High-throughput screening, molecular docking, artificial intelligence, and machine learning have been engaged in compound identification, while clustered regularly interspaced short palindromic repeats (CRISPR) gene editing and RNA sequencing have been employed to understand molecular interactions and regulations. While there is potential for pharmaceutical application of Aboriginal medicinal plants and gastrointestinal parasites in treating IBD, there is an urgent need to qualify these plant and helminth therapies through reproducible clinical and mechanistic studies.
Collapse
Affiliation(s)
- Tenzin Jamtsho
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Phurpa Wangchuk
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| |
Collapse
|
2
|
Wirasisya DG, Kincses A, Vidács L, Szemerédi N, Spengler G, Barta A, Mertha IG, Hohmann J. Indonesian Euphorbiaceae: Ethnobotanical Survey, In Vitro Antibacterial, Antitumour Screening and Phytochemical Analysis of Euphorbia atoto. PLANTS (BASEL, SWITZERLAND) 2023; 12:3836. [PMID: 38005733 PMCID: PMC10675575 DOI: 10.3390/plants12223836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Indonesia is among the countries with the most significant biodiversity globally. Jamu, the traditional medicine of Indonesia, predominantly uses herbal materials and is an integral component of the Indonesian healthcare system. The present study reviewed the ethnobotanical data of seven Indonesian Euphorbiaceae species, namely Euphorbia atoto, E. hypericifolia, Homalanthus giganteus, Macaranga tanarius, Mallotus mollissimus, M. rufidulus, and Shirakiopsis indica, based on the RISTOJA database and other literature sources. An antimicrobial screening of the plant extracts was performed in 15 microorganisms using the disk diffusion and broth microdilution methods, and the antiproliferative effects were examined in drug-sensitive Colo 205 and resistant Colo 320 cells by the MTT assay. The antimicrobial testing showed a high potency of M. tanarius, H. giganteus, M. rufidulus, S. indica, and E. atoto extracts (MIC = 12.5-500 µg/mL) against different bacteria. In the antitumour screening, remarkable activities (IC50 0.23-2.60 µg/mL) were demonstrated for the extracts of H. giganteus, M. rufidulus, S. indica, and E. atoto against Colo 205 cells. The n-hexane extract of E. atoto, with an IC50 value of 0.24 ± 0.06 µg/mL (Colo 205), was subjected to multistep chromatographic separation, and 24-methylene-cycloartan-3β-ol, jolkinolide E, tetra-tert-butyl-diphenyl ether, α-tocopherol, and β-sitosterol were isolated.
Collapse
Affiliation(s)
- Dyke Gita Wirasisya
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (D.G.W.); (A.K.); (L.V.); (A.B.)
- Department of Pharmacy, Faculty of Medicine, University of Mataram, Mataram 83126, Indonesia
| | - Annamária Kincses
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (D.G.W.); (A.K.); (L.V.); (A.B.)
| | - Lívia Vidács
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (D.G.W.); (A.K.); (L.V.); (A.B.)
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary; (N.S.); (G.S.)
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary; (N.S.); (G.S.)
| | - Anita Barta
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (D.G.W.); (A.K.); (L.V.); (A.B.)
| | - I Gde Mertha
- Department of Biology Education, Faculty of Teacher Training and Education, University of Mataram, Mataram 83126, Indonesia;
| | - Judit Hohmann
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (D.G.W.); (A.K.); (L.V.); (A.B.)
- ELKH-USZ Biologically Active Natural Products Research Group, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Perry MJ, Wangchuk P. The Ethnopharmacology, Phytochemistry and Bioactivities of the Corymbia Genus (Myrtaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:3686. [PMID: 37960043 PMCID: PMC10648436 DOI: 10.3390/plants12213686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Plants have been vital to human survival for aeons, especially for their unique medicinal properties. Trees of the Eucalyptus genus are well known for their medicinal properties; however, little is known of the ethnopharmacology and bioactivities of their close relatives in the Corymbia genus. Given the current lack of widespread knowledge of the Corymbia genus, this review aims to provide the first summary of the ethnopharmacology, phytochemistry and bioactivities of this genus. The Scopus, Web of Science, PubMed and Google Scholar databases were searched to identify research articles on the biological activities, phytochemistry and ethnomedical uses of Corymbia species. Of the 115 Corymbia species known, 14 species were found to have ethnomedical uses for the leaves, kino and/or bark. Analysis of the references obtained for these 14 Corymbia spp. revealed that the essential oils, crude extracts and compounds isolated from these species possess an array of biological activities including anti-bacterial, anti-fungal, anti-protozoal, anti-viral, larvicidal, insecticidal, acaricidal, anti-inflammatory, anti-oxidant, anti-cancer and anti-diabetic activities, highlighting the potential for this under-studied genus to provide lead compounds and treatments for a host of medical conditions.
Collapse
Affiliation(s)
- Matthew J. Perry
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD 4878, Australia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Phurpa Wangchuk
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD 4878, Australia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
4
|
Mathew S, Raju R, Zhou X, Bodkin F, Govindaraghavan S, Münch G. A Method and Formula for the Quantitative Analysis of the Total Bioactivity of Natural Products. Int J Mol Sci 2023; 24:ijms24076850. [PMID: 37047821 PMCID: PMC10094874 DOI: 10.3390/ijms24076850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Identification of bioactive natural products from plants starts with the screening of extracts for a desired bioactivity such as antimicrobial, antifungal, anti-cancer, anti-inflammatory, or neuroprotective. When the bioactivity shows sufficient potency, the plant material is subjected to bio-activity-guided fractionation, which involves, e.g., sequential extraction followed by chromatographic separation, including HPLC. The bioactive compounds are then structurally identified by high-resolution mass spectrometry and nuclear magnetic resonance (NMR). One of the questions that come up during the purification process is how much of the bioactivity originally present in the crude extract is preserved during the purification process. If this is the case, it is interesting to investigate if the loss of total bioactivity is caused by the loss of material during purification or by the degradation or evaporation of potent compounds. A further possibility would be the loss of synergy between compounds present in the mixture, which disappears when the compounds are separated. In this publication, a novel formula is introduced that allows researchers to calculate total bioactivity in biological samples using experimental data from our research into the discovery of anti-inflammatory compounds from Backhousia myrtifolia (Grey Myrtle). The results presented show that a raw ethanolic extract retains slightly more bioactivity than the sum of all sequential extracts per gram of starting material and that—despite a large loss of material during HPLC purification—the total bioactivity in all purified fractions is retained, which is indicative of rather an additive than a synergistic principle.
Collapse
Affiliation(s)
- Shintu Mathew
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Francis Bodkin
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | | | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
5
|
Xue Y, Savchenko AI, Agnew-Francis KA, Miles JA, Holt T, Lu H, Chow S, Forster PI, Boyle GM, Ross BP, Fischer K, Kutateladze AG, Williams CM. seco-Pregnane Glycosides from Australian Caustic Vine ( Cynanchum viminale subsp. australe). JOURNAL OF NATURAL PRODUCTS 2023; 86:490-497. [PMID: 36795946 DOI: 10.1021/acs.jnatprod.2c01037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cynanchum viminale subsp. australe, more commonly known as caustic vine, is a leafless succulent that grows in the northern arid zone of Australia. Toxicity toward livestock has been reported for this species, along with use in traditional medicine and its potential anticancer activity. Disclosed herein are novel seco-pregnane aglycones cynavimigenin A (5) and cynaviminoside A (6), together with new pregnane glycosides cynaviminoside B (7) and cynavimigenin B (8). Cynavimigenin B (8) contains an unprecedented 7-oxobicyclo[2.2.1]heptane moiety in the seco-pregnane series, likely arising from a pinacol-type rearrangement. Interestingly, these isolates displayed only limited cytotoxicity in cancer and normal human cell lines, in addition to low activity against acetylcholinesterase and Sarcoptes scabiei bioassays, suggesting that 5-8 are not associated with the reported toxicity of this plant species.
Collapse
Affiliation(s)
- Yongbo Xue
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland, Australia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Andrei I Savchenko
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Kylie A Agnew-Francis
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Jared A Miles
- School of Pharmacy, University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Tina Holt
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Hieng Lu
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Brisbane, 4029 Queensland, Australia
| | - Sharon Chow
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Paul I Forster
- Department of Environment and Science, Brisbane Botanic Gardens, Mt Coot-tha, Queensland Herbarium, Brisbane, 4066 Queensland, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Brisbane, 4029 Queensland, Australia
| | - Benjamin P Ross
- School of Pharmacy, University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Katja Fischer
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Brisbane, 4029 Queensland, Australia
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland, Australia
| |
Collapse
|
6
|
Khakurel D, Uprety Y, Ahn G, Cha JY, Kim WY, Lee SH, Rajbhandary S. Diversity, distribution, and sustainability of traditional medicinal plants in Kaski district, western Nepal. Front Pharmacol 2022; 13:1076351. [PMID: 36605393 PMCID: PMC9807671 DOI: 10.3389/fphar.2022.1076351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Medicinal plants are the primary source of traditional healthcare systems in many rural areas mostly in developing countries. This study aimed to document and analyze the diversity, distribution, and sustainability of the traditional medicinal plants used by the Gurung people of the Sikles region in western Nepal. Ethnobotanical data were collected through focus group discussions and individual interviews, and analyzed using descriptive and inferential statistics. Prior informed consent was obtained before each interview. Quantitative ethnobotanical indices such as informant consensus factor, relative frequency of citation, and use values were also calculated. A possible association among these indices was tested using correlation analysis. A total of 115 wild medicinal plant species belonging to 106 genera and 71 families were documented. Asteraceae and Rosaceae were the dominant families whereas herbs were the most dominant life form. Roots were the most used plant part, paste was the most common method of preparation, and most of the medical formulations were taken orally. The highest number of medicinal plants were used to treat stomach disorders. The average informant consensus value of 0.79 indicates a high consensus among respondents in selecting medicinal plants. Lindera neesiana, Neopicrorhiza scrophulariiflora, Paris polyphylla, and Bergenia ciliata were found to be high-ranking medicinal plants based on the relative frequency of citation and use value. The genders did not affect medicinal plants' knowledge but age had a significant correlation. Most of the informants agreed that medicinal plants are under pressure due to overharvesting and a lack of proper forest management practices. The number of medicinal plants reported from the study area indicates that the Gurung people possess rich traditional knowledge, and the vegetation of the Sikles region constitutes rich diversity of medicinal plants.
Collapse
Affiliation(s)
- Dhruba Khakurel
- Department of Biology, Graduate School, Gyeongsang National University, Jinju, South Korea,Central Department of Botany, Tribhuvan University, Kirtipur, Nepal
| | - Yadav Uprety
- Central Department of Botany, Tribhuvan University, Kirtipur, Nepal,*Correspondence: Yadav Uprety, ; Woe-Yeon Kim, ; Sung-Ho Lee,
| | - Gyeongik Ahn
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Joon-Yung Cha
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea,Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju, South Korea
| | - Woe-Yeon Kim
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea,Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju, South Korea,*Correspondence: Yadav Uprety, ; Woe-Yeon Kim, ; Sung-Ho Lee,
| | - Sung-Ho Lee
- Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea,Division of Life Science, Gyeongsang National University, Jinju, South Korea,*Correspondence: Yadav Uprety, ; Woe-Yeon Kim, ; Sung-Ho Lee,
| | | |
Collapse
|