1
|
Sikora J, Celiński K. Exploring Taxonomic and Genetic Relationships in the Pinus mugo Complex Using Genome Skimming Data. Int J Mol Sci 2024; 25:10178. [PMID: 39337663 PMCID: PMC11432513 DOI: 10.3390/ijms251810178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Genome skimming is a novel approach that enables obtaining large-scale genomic information based on high-copy DNA fractions from shallow whole-genome sequencing. The simplicity of this method, low analysis costs, and large amounts of generated data have made it widely used in plant research, including species identification, especially in the case of protected or endangered taxa. This task is particularly difficult in the case of closely related taxa. The Pinus mugo complex includes several dozen closely related taxa occurring in the most important mountain ranges in Europe. The taxonomic rank, origin, or distribution of many of these taxa have been debated for years. In this study, we used genome skimming and multilocus DNA barcoding approaches to obtain different sequence data sets and also to determine their genetic diversity and suitability for distinguishing closely related taxa in the Pinus mugo complex. We generated seven different data sets, which were then analyzed using three discrimination methods, i.e., tree based, distance based, and assembling species by automatic partitioning. Genetic diversity among populations and taxa was also investigated using haplotype network analysis and principal coordinate analysis. The proposed data set based on divergence hotspots is even twenty-times more variable than the other analyzed sets and improves the phylogenetic resolution of the Pinus mugo complex. In light of the obtained results, Pinus × rhaetica does not belong to the Pinus mugo complex and should not be identified with either Pinus uliginosa or Pinus rotundata. It seems to represent a fixed hybrid or introgressant between Pinus sylvestris and Pinus mugo. In turn, Pinus mugo and Pinus uncinata apparently played an important role in the origins of Pinus uliginosa and Pinus rotundata.
Collapse
Affiliation(s)
- Joanna Sikora
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, School of Natural Sciences, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Konrad Celiński
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, School of Natural Sciences, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Yang Y, Li J, Zhang Z, Zhang M. The complete chloroplast genome of Elaeagnus bambusetorum hand.-mazz. 1933 and its implications for phylogenetic relationships in the Elaeagnus genus. Mitochondrial DNA B Resour 2024; 9:1213-1217. [PMID: 39286474 PMCID: PMC11404369 DOI: 10.1080/23802359.2024.2403413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
Elaeagnus bambusetorum Hand.-Mazz. is a rare plant from China in the Elaeagnaceae family. In this study, we sequenced its complete chloroplast genome. The whole chloroplast genome was 152,265 bp in length, containing a pair of inverted repeats of 25,897 bp, separated by large single copy and small single copy regions of 82,291 bp and 18,180 bp, respectively. The complete genome contained 113 genes, including 79 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. The overall GC content was 37.1%. Phylogenetic analysis using the whole chloroplast genome revealed that E. bambusetorum is sister to E. loureirii and E. conferta. Our study provides valuable insights into the genetic information of E. bambusetorum, which may have important implications for species conservation.
Collapse
Affiliation(s)
- Yuchen Yang
- Faculty of Geography, Yunnan Normal University, Kunming, China
| | - Jun Li
- Honghe Prefecture Institute of Forestry and Grassland, Mengzi, China
| | - Zhixiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Mengxue Zhang
- School of Communication, Yunnan Normal University, Kunming, China
| |
Collapse
|
3
|
Dong J, Liu Y, Tan MK, Wahab RA, Nattier R, Chifflet-Belle P, Robillard T. Museomics allows comparative analyses of mitochondrial genomes in the family Gryllidae (Insecta, Orthoptera) and confirms its phylogenetic relationships. PeerJ 2024; 12:e17734. [PMID: 39131617 PMCID: PMC11317039 DOI: 10.7717/peerj.17734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/21/2024] [Indexed: 08/13/2024] Open
Abstract
Background Next-generation sequencing technology can now be used to sequence historical specimens from natural history collections, an approach referred to as museomics. The museomics allows obtaining molecular data from old museum-preserved specimens, a resource of biomolecules largely underexploited despite the fact that these specimens are often unique samples of nomenclatural types that can be crucial for resolving scientific questions. Despite recent technical progress, cricket mitogenomes are still scarce in the databases, with only a handful of new ones generated each year from freshly collected material. Methods In this study, we used the genome skimming method to sequence and assemble three new complete mitogenomes representing two tribes of the cricket subfamily Eneopterinae: two were obtained from old, historical type material of Xenogryllus lamottei (68 years old) and X. maniema (80 years old), the third one from a freshly collected specimen of Nisitrus vittatus. We compared their genome organization and base composition, and reconstructed the molecular phylogeny of the family Gryllidae. Results Our study not only confirmed that the genome skimming method used by next generation sequencing allows us to efficiently obtain the whole mitogenome from dry-pinned historical specimens, but we also confirmed how promising it is for large-scale comparative studies of mitogenomes using resources from natural history collections. Used in a phylogenetic context the new mitogenomes attest that the mitogenomic data contain valuable information and also strongly support phylogenetic relationships at multiple time scales.
Collapse
Affiliation(s)
- Jiajia Dong
- School of Life Sciences, Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Yong Liu
- School of Life Sciences, Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Ming Kai Tan
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE-SPL, UA, Paris, France
| | - Rodzay Abdul Wahab
- Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Jalan Universiti, Gadong, Brunei Darussalam
| | - Romain Nattier
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE-SPL, UA, Paris, France
| | - Pascaline Chifflet-Belle
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE-SPL, UA, Paris, France
| | - Tony Robillard
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE-SPL, UA, Paris, France
| |
Collapse
|
4
|
Mano H, Boltenkov EV, Marchuk EA, Nakamura K, Yoichi W. The complete chloroplast genome sequence of Hypecoum erectum L. (Papaveraceae). Mitochondrial DNA B Resour 2024; 9:1010-1014. [PMID: 39113749 PMCID: PMC11305052 DOI: 10.1080/23802359.2024.2386410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Hypecoum erectum L., a widespread species in northern Eurasia, is a valuable medicinal plant, but its chloroplast genome has not previously been reported. We determined its complete chloroplast genome using a high-throughput sequencing technique. Its total length was 169,241 bp, consisting of a large single-copy region of 93,301 bp and a small single-copy region of 17,316 bp, separated by a pair of inverted repeat regions of 29,312 bp. A total of 140 genes were annotated, including 91 protein coding genes, 41 tRNA genes, and eight rRNA genes. The phylogenetic analysis shows that H. erectum and H. zhukanum of the subfamily Hypecoideae are monophyletic with the highest support.
Collapse
Affiliation(s)
- Haruto Mano
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Eugeny V. Boltenkov
- Botanical Garden-Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Elena A. Marchuk
- Botanical Garden-Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Koh Nakamura
- Botanic Garden, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Watanabe Yoichi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| |
Collapse
|
5
|
Zhao Y, Chen YP, Drew BT, Zhao F, Almasi M, Turginov OT, Xiao JF, Karimi AG, Salmaki Y, Yu XQ, Xiang CL. Molecular phylogeny and taxonomy of Phlomoides (Lamiaceae subfamily Lamioideae) in China: Insights from molecular and morphological data. PLANT DIVERSITY 2024; 46:462-475. [PMID: 39280970 PMCID: PMC11390604 DOI: 10.1016/j.pld.2024.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 09/18/2024]
Abstract
Phlomoides, with 150-170 species, is the second largest and perhaps most taxonomically challenging genus within the subfamily Lamioideae (Lamiaceae). With about 60 species, China is one of three major biodiversity centers of Phlomoides. Although some Phlomoides species from China have been included in previous molecular phylogenetic studies, a robust and broad phylogeny of this lineage has yet to be completed. Moreover, given the myriad new additions to the genus, the existing infrageneric classification needs to be evaluated and revised. Here, we combine molecular and morphological data to investigate relationships within Phlomoides, with a focus on Chinese species. We observed that plastid DNA sequences can resolve relationships within Phlomoides better than nuclear ribosomal internal and external transcribed spacer regions (nrITS and nrETS). Molecular phylogenetic analyses confirm the monophyly of Phlomoides, but most previously defined infrageneric groups are not monophyletic. In addition, morphological analysis demonstrates the significant taxonomic value of eight characters to the genus. Based on our molecular phylogenetic analyses and morphological data, we establish a novel section Notochaete within Phlomoides, and propose three new combinations as well as three new synonyms. This study presents the first molecular phylogenetic analyses of Phlomoides in which taxa representative of the entire genus are included, and highlights the phylogenetic and taxonomic value of several morphological characters from species of Phlomoides from China. Our study suggests that a taxonomic revision and reclassification for the entire genus is necessary in the future.
Collapse
Affiliation(s)
- Yue Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010000, Inner Mongolia, China
| | - Ya-Ping Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Bryan T Drew
- Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Fei Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu 610042, Sichuan, China
| | - Maryam Almasi
- Center of Excellence in Phylogeny of Living Organisms, Department of Plant Science, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Orzimat T Turginov
- Institute of Botany, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100047, Uzbekistan
- Faculty of Biology, Department of Botany and Plant Physiology, National University of Uzbekistan named after Mirzo Ulugbek, Tashkent 100174, Uzbekistan
| | - Jin-Fei Xiao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Abdul G Karimi
- Faculty of Pharmacy, Kabul University, 1006 Kabul, Afghanistan
| | - Yasaman Salmaki
- Center of Excellence in Phylogeny of Living Organisms, Department of Plant Science, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Xiang-Qin Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| |
Collapse
|
6
|
Chen HY, Zhang ZR, Yao X, Ya JD, Jin XH, Wang L, Lu L, Li DZ, Yang JB, Yu WB. Plastid phylogenomics provides new insights into the systematics, diversification, and biogeography of Cymbidium (Orchidaceae). PLANT DIVERSITY 2024; 46:448-461. [PMID: 39280966 PMCID: PMC11390606 DOI: 10.1016/j.pld.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 09/18/2024]
Abstract
Cymbidium (Orchidaceae: Epidendroideae), with around 60 species, is widely-distributed across Southeast Asia, providing a nice system for studying the processes that underlie patterns of biodiversity in the region. However, phylogenetic relationships of Cymbidium have not been well resolved, hampering investigations of species diversification and the biogeographical history of this genus. In this study, we construct a plastome phylogeny of 56 Cymbidium species, with four well-resolved major clades, which provides a framework for biogeographical and diversification rate analyses. Molecular dating and biogeographical analyses show that Cymbidium likely originated in the region spanning northern Indo-Burma to the eastern Himalayas during the early Miocene (∼21.10 Ma). It then rapidly diversified into four major clades in East Asia within approximately a million years during the middle Miocene. Cymbidium spp. migration to the adjacent regions (Borneo, Philippines, and Sulawesi) primarily occurred during the Pliocene-Pleistocene period. Our analyses indicate that the net diversification rate of Cymbidium has decreased since its origin, and is positively associated with changes in temperature and monsoon intensity. Favorable hydrothermal conditions brought by monsoon intensification in the early Miocene possibly contributed to the initial rapid diversification, after which the net diversification rate was reduced with the cooling climate after the middle Miocene. The transition from epiphytic to terrestrial habits may have enabled adaptation to cooler environments and colonization of northern niches, yet without a significant effect on diversification rates. This study provides new insights into how monsoon activity and temperature changes affected the diversification dynamics of plants in Southeast Asia.
Collapse
Affiliation(s)
- Hai-Yao Chen
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Zhi-Rong Zhang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xin Yao
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Ji-Dong Ya
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiao-Hua Jin
- State Key Laboratory of Plant Diversity and Specility Crops, Institute of Botany, Chinese Academy of Sciences, Haidian District, Beijing 100093, China
| | - Lin Wang
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Lu Lu
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan 650500, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jun-Bo Yang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Wen-Bin Yu
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| |
Collapse
|
7
|
Zeng ZF, Xu M, Qiong L, Wang JW. The complete chloroplast genome of Meconopsis torquata (Papaveraceae), a traditional Tibetan medicine. Mitochondrial DNA B Resour 2024; 9:802-807. [PMID: 38895507 PMCID: PMC11185084 DOI: 10.1080/23802359.2024.2368208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Meconopsis torquata Prain 1906, a national second-class rare and endangered plant, is reported here for the first time for its complete chloroplast genome. The genome is 153,290 bp in length, comprising a large single-copy region (LSC, 83,918 bp), a small single-copy region (SSC, 17,740 bp), and two inverted repeat sequences (IRa and IRb, each 25,816 bp). The overall GC content is 38.7%, with the IR region having the highest content (43.1%). The genome is annotated with 112 unique genes, including 4 rRNA genes, 29 tRNA genes, and 79 protein-coding genes. Analysis of codon usage bias reveals that codons ending in A/T account for 96.7% of those with a Relative Synonymous Codon Usage (RSCU) value above 1. This predominance of A/T-ending codons might be indicative of M. torquata adaptation to high-altitude environments. Phylogenetic analysis reveals a close kinship between M. torquata and M. pinnatifolia and M. paniculata, indicating that the ancestral groups of these species might have a complex evolutionary history. This study uncovers the genetic characteristics and adaptive evolution of M. torquata, offering a new perspective in understanding the phylogenetic relationships within the genus. The findings not only provide a solid theoretical foundation for the conservation and sustainable use of this rare and endangered species but also offer significant scientific support for the conservation of biodiversity.
Collapse
Affiliation(s)
- Zhe-Fei Zeng
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
- Yani Observation and Research Station for Wetland Ecosystem, Tibet Autonomous Region, Tibet, Nyingchi, China
| | - Min Xu
- Forestry Survey and Planning Research Institute of Tibet Autonomous Region, Lhasa, China
| | - La Qiong
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
- Yani Observation and Research Station for Wetland Ecosystem, Tibet Autonomous Region, Tibet, Nyingchi, China
| | - Jun-Wei Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
- Yani Observation and Research Station for Wetland Ecosystem, Tibet Autonomous Region, Tibet, Nyingchi, China
| |
Collapse
|
8
|
Zhang G, Yang J, Zhang C, Jiao B, Panero JL, Cai J, Zhang ZR, Gao LM, Gao T, Ma H. Nuclear phylogenomics of Asteraceae with increased sampling provides new insights into convergent morphological and molecular evolution. PLANT COMMUNICATIONS 2024; 5:100851. [PMID: 38409784 PMCID: PMC11211554 DOI: 10.1016/j.xplc.2024.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Convergent morphological evolution is widespread in flowering plants, and understanding this phenomenon relies on well-resolved phylogenies. Nuclear phylogenetic reconstruction using transcriptome datasets has been successful in various angiosperm groups, but it is limited to taxa with available fresh materials. Asteraceae, which are one of the two largest angiosperm families and are important for both ecosystems and human livelihood, show multiple examples of convergent evolution. Nuclear Asteraceae phylogenies have resolved relationships among most subfamilies and many tribes, but many phylogenetic and evolutionary questions regarding subtribes and genera remain, owing to limited sampling. Here, we increased the sampling for Asteraceae phylogenetic reconstruction using transcriptomes and genome-skimming datasets and produced nuclear phylogenetic trees with 706 species representing two-thirds of recognized subtribes. Ancestral character reconstruction supports multiple convergent evolutionary events in Asteraceae, with gains and losses of bilateral floral symmetry correlated with diversification of some subfamilies and smaller groups, respectively. Presence of the calyx-related pappus may have been especially important for the success of some subtribes and genera. Molecular evolutionary analyses support the likely contribution of duplications of MADS-box and TCP floral regulatory genes to innovations in floral morphology, including capitulum inflorescences and bilaterally symmetric flowers, potentially promoting the diversification of Asteraceae. Subsequent divergences and reductions in CYC2 gene expression are related to the gain and loss of zygomorphic flowers. This phylogenomic work with greater taxon sampling through inclusion of genome-skimming datasets reveals the feasibility of expanded evolutionary analyses using DNA samples for understanding convergent evolution.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Department of Biology, the Huck Institute of the Life Sciences, the Pennsylvania State University, State College, PA 16801, USA; State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Junbo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Caifei Zhang
- Wuhan Botanical Garden and Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Bohan Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - José L Panero
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Jie Cai
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhi-Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Lijiang National Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan 674100, China.
| | - Tiangang Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Hong Ma
- Department of Biology, the Huck Institute of the Life Sciences, the Pennsylvania State University, State College, PA 16801, USA.
| |
Collapse
|
9
|
Fu N, Xu Y, Jin L, Xiao TW, Song F, Yan HF, Chen YS, Ge XJ. Testing plastomes and nuclear ribosomal DNA sequences as the next-generation DNA barcodes for species identification and phylogenetic analysis in Acer. BMC PLANT BIOLOGY 2024; 24:445. [PMID: 38778277 PMCID: PMC11112886 DOI: 10.1186/s12870-024-05073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Acer is a taxonomically intractable and speciose genus that contains over 150 species. It is challenging to distinguish Acer species only by morphological method due to their abundant variations. Plastome and nuclear ribosomal DNA (nrDNA) sequences are recommended as powerful next-generation DNA barcodes for species discrimination. However, their efficacies were still poorly studied. The current study will evaluate the application of plastome and nrDNA in species identification and perform phylogenetic analyses for Acer. RESULT Based on a collection of 83 individuals representing 55 species (c. 55% of Chinese species) from 13 sections, our barcoding analyses demonstrated that plastomes exhibited the highest (90.47%) species discriminatory power among all plastid DNA markers, such as the standard plastid barcodes matK + rbcL + trnH-psbA (61.90%) and ycf1 (76.19%). And the nrDNA (80.95%) revealed higher species resolution than ITS (71.43%). Acer plastomes show abundant interspecific variations, however, species identification failure may be due to the incomplete lineage sorting (ILS) and chloroplast capture resulting from hybridization. We found that the usage of nrDNA contributed to identifying those species that were unidentified by plastomes, implying its capability to some extent to mitigate the impact of hybridization and ILS on species discrimination. However, combining plastome and nrDNA is not recommended given the cytonuclear conflict caused by potential hybridization. Our phylogenetic analysis covering 19 sections (95% sections of Acer) and 128 species (over 80% species of this genus) revealed pervasive inter- and intra-section cytonuclear discordances, hinting that hybridization has played an important role in the evolution of Acer. CONCLUSION Plastomes and nrDNA can significantly improve the species resolution in Acer. Our phylogenetic analysis uncovered the scope and depth of cytonuclear conflict in Acer, providing important insights into its evolution.
Collapse
Affiliation(s)
- Ning Fu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Xu
- Conghua Middle School, Guangzhou, 510920, China
| | - Lu Jin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Tian-Wen Xiao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Feng Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - You-Sheng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
10
|
Yang S, Chen J, Li Z, Huang X, Zhang X, Liu Q, Tojibaev K, Sun H, Deng T. Comparative chloroplast genomes of Dactylicapnos species: insights into phylogenetic relationships. BMC PLANT BIOLOGY 2024; 24:350. [PMID: 38684982 PMCID: PMC11059739 DOI: 10.1186/s12870-024-04989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Dactylicapnos is a climbing herbaceous vine, distributed from the Himalayas to southwestern China, and some of the species have important medicinal values. However, the chloroplast genomes of Dactylicapnos have never been investigated. In this study, chloroplast genomes of seven Dactylicapnos species covering all three sections and one informal group of Dactylicapnos were sequenced and assembled, and the detailed comparative analyses of the chloroplast genome structure were provided for the first time. RESULTS The results showed that the chloroplast genomes of Dactylicapnos have a typical quadripartite structure with lengths from 172,344 bp to 176,370 bp, encoding a total of 133-140 genes, containing 88-94 protein-coding genes, 8 rRNAs and 37-39 tRNAs. 31 codons were identified as relative synonymous codon usage values greater than one in the chloroplast genome of Dactylicapnos genus based on 80 protein-coding genes. The results of the phylogenetic analysis showed that seven Dactylicapnos species can be divided into three main categories. Phylogenetic analysis revealed that seven species form three major clades which should be treated as three sections. CONCLUSIONS This study provides the initial report of the chloroplast genomes of Dactylicapnos, their structural variation, comparative genomic and phylogenetic analysis for the first time. The results provide important genetic information for development of medical resources, species identification, infrageneric classification and diversification of Dactylicapnos.
Collapse
Affiliation(s)
- Shunquan Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Juntong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhimin Li
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Xianhan Huang
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Qun Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Komiljon Tojibaev
- Institute of Botany, Academy Sciences of Uzbekistan, Tashkent, 100125, Uzbekistan
| | - Hang Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Tao Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
11
|
Ruiz-Vargas N, Ramanauskas K, Tyszka AS, Bretz EC, Yeo MTS, Mason-Gamer RJ, Walker JF. Transcriptome data from silica-preserved leaf tissue reveal gene flow patterns in a Caribbean bromeliad. ANNALS OF BOTANY 2024; 133:459-472. [PMID: 38181407 PMCID: PMC11006539 DOI: 10.1093/aob/mcae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND AND AIMS Transcriptome sequencing is a cost-effective approach that allows researchers to study a broad range of questions. However, to preserve RNA for transcriptome sequencing, tissue is often kept in special conditions, such as immediate ultracold freezing. Here, we demonstrate that RNA can be obtained from 6-month-old, field-collected samples stored in silica gel at room temperature. Using these transcriptomes, we explore the evolutionary relationships of the genus Pitcairnia (Bromeliaceae) in the Dominican Republic and infer barriers to gene flow. METHODS We extracted RNA from silica-dried leaf tissue from 19 Pitcairnia individuals collected across the Dominican Republic. We used a series of macro- and micro-evolutionary approaches to examine the relationships and patterns of gene flow among individuals. KEY RESULTS We produced high-quality transcriptomes from silica-dried material and demonstrated that evolutionary relationships on the island match geography more closely than species delimitation methods. A population genetic examination indicates that a combination of ecological and geographical features presents barriers to gene flow in Pitcairnia. CONCLUSIONS Transcriptomes can be obtained from silica-preserved tissue. The genetic diversity among Pitcairnia populations does not warrant classification as separate species, but the Dominican Republic contains several barriers to gene flow, notably the Cordillera Central mountain range.
Collapse
Affiliation(s)
- Natalia Ruiz-Vargas
- Department of Biological Sciences, the University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Karolis Ramanauskas
- Department of Biological Sciences, the University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexa S Tyszka
- Department of Biological Sciences, the University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Eric C Bretz
- Department of Biological Sciences, the University of Illinois at Chicago, Chicago, IL 60607, USA
| | - May T S Yeo
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Roberta J Mason-Gamer
- Department of Biological Sciences, the University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Joseph F Walker
- Department of Biological Sciences, the University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
12
|
Ragupathy S, Thirugnanasambandam A, Vinayagam V, Newmaster SG. Nuclear Magnetic Resonance Fingerprints and Mini DNA Markers for the Authentication of Cinnamon Species Ingredients Used in Food and Natural Health Products. PLANTS (BASEL, SWITZERLAND) 2024; 13:841. [PMID: 38592863 PMCID: PMC10975438 DOI: 10.3390/plants13060841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Cinnamomum verum (syn C. zeylanicum) is considered 'true' cinnamon. However, it is reported that less expensive sources of cinnamon from C. cassia (syn C. aromaticum), C. loureiroi, and C. burmannii (toxic coumarin) may be used in the place of C. verum. We lack the quality assurance tools that are required to differentiate C. verum from other cinnamon species when verifying that the correct species is sourced from ingredient suppliers. The current research on cinnamon species authentication using DNA tools is limited to a few species and the use of high-quality DNA extracted from raw leaf materials. The cinnamon bark traded in the supply chain contains much less DNA and poorer-quality DNA than leaves. Our research advances DNA methods to authenticate cinnamon, as we utilized full-length chloroplast genomes via a genome skimming approach for C. burmannii and C. cassia to facilitate the design of optimal mini DNA markers. Furthermore, we developed and validated the use of NMR fingerprints for several commercial cinnamon species, including the quantification of 16 molecules. NMR fingerprints provided additional data that were useful for quality assessment in cinnamon extract powders and product consistency. Both the new mini DNA markers and NMR fingerprints were tested on commercial cinnamon products.
Collapse
Affiliation(s)
- Subramanyam Ragupathy
- Natural Health Products (NHP) Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (S.G.N.)
| | - Arunachalam Thirugnanasambandam
- Natural Health Products (NHP) Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (S.G.N.)
| | | | | |
Collapse
|
13
|
Dong L, Wang R, Liu H, Xia G, Quan J, Guo L, Chen M. The complete chloroplast genome sequence of Malus × adstringens Zabel 'Hopa' (Rosaceae). Mitochondrial DNA B Resour 2024; 9:173-177. [PMID: 38282982 PMCID: PMC10812852 DOI: 10.1080/23802359.2023.2292158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/03/2023] [Indexed: 01/30/2024] Open
Abstract
Malus × adstringens Zabel 'Hopa' is an important crabapple cultivar with significant ornamental value. Here, we assembled its complete chloroplast (cp) genome using the next-generation sequencing technology to clarify the phylogenetic relationships in Malus. The total length of the complete chloroplast genome was 160,230 base pairs (bp) with a GC content of 36.50%, consisting of a large single-copy (LSC) region with a sequence length of 88,310 bp, a small single-copy (SSC) region with a sequence length of 19,196 bp, and a pair of inverted repeat (IR) regions of 26,362 bp. The complete chloroplast genome contained 128 genes, namely 84 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. In addition, 73 SSRs were found in the M. 'Hopa' cp genome. The phylogenetic relationship of M. 'Hopa' in Malus is closely related to M. spectabilis (Aiton) Borkh. and then to M. sieversii (Lebed.) M. Roem. Our results demonstrate that it is feasible to resolve the phylogenetic relationships of crabapple cultivars and identify their putative maternal lineages using cp genomic data.
Collapse
Affiliation(s)
- Leiming Dong
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, China
| | - Ruizhen Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, China
| | - Hengxing Liu
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, China
| | - Guowei Xia
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, China
| | - Jian Quan
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, China
| | - Ling Guo
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, China
| | - Minghui Chen
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, China
| |
Collapse
|
14
|
Ding Y, Li X, Yang Z, Wu Q, Zhao W. The complete chloroplast genome of Meconopsis bella Prain 1894 (Papaveraceae), a high-altitude plant distributed on the Qinghai-Tibet plateau. Mitochondrial DNA B Resour 2024; 9:195-199. [PMID: 38282978 PMCID: PMC10812850 DOI: 10.1080/23802359.2024.2306879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024] Open
Abstract
Meconopsis bella Prain 1894 (M. bella) is a rare herb within the family Papaveraceae of which unique and gorgeous purple flowers are blooming in the flowering phase. In this study, we reported the complete chloroplast (cp) genome of M. bella, which was mainly distributed on the Qinghai-Tibet plateau. The complete chloroplast genome sequence of M. bella was 153,073 bp in size and was characterized by a typical quadripartite structure consisting of a large single-copy (LSC) region of 83,562 bp, a small single-copy (SSC) region of 178,33 bp and two identical inverted repeats (IR) regions of 25,839 bp. The genome contained 133 genes, including 88 protein-encoding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. Phylogenetic analysis based on the maximum-likelihood (ML) method showed that M. bella was closely related to M. paniculate and M. pinnatifolia within the genus Meconopsis.
Collapse
Affiliation(s)
- Yali Ding
- Department of Science and Technology, Medical School, Tibet University, Lhasa, China
| | - Xinzhong Li
- School of Sciences, Tibet University, Lhasa, China
| | - Zhuoma Yang
- Department of Science and Technology, Medical School, Tibet University, Lhasa, China
| | - Qi Wu
- Institute of Chinese Herbal Medicines and Flowers, Sichuan Academy of Grassland Sciences, Chengdu, PR China
| | - Wenji Zhao
- Institute of Chinese Herbal Medicines and Flowers, Sichuan Academy of Grassland Sciences, Chengdu, PR China
| |
Collapse
|
15
|
Zhao YY, Chen MM, Duan BL, Xie QZ, Miao Q. The complete chloroplast genome sequence of Thladiantha nudiflora Hemsl. ex F.B.Forbes & Hemsl. 1887 (Cucurbitaceae). Mitochondrial DNA B Resour 2024; 9:138-142. [PMID: 38282981 PMCID: PMC10812858 DOI: 10.1080/23802359.2024.2305402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
Thladiantha nudiflora Hemsl. ex F.B.Forbes & Hemsl. 1887 (Cucurbitaceae) has been widely known as a traditional medicine plant. In this study, we sequenced, assembled, and annotated the complete chloroplast genome of T. nudiflora. The chloroplast genome of T. nudiflora is 156,824 base pair (bp) in length, containing a large single-copy region of 86,566 bp and a small single-copy region of 18,070 bp, separated by a pair of inverted repeats of 26,094 bp. The chloroplast genome contains 132 genes, including 87 protein-coding, 37 transfer RNA, and eight ribosomal RNA genes. Phylogenetic analysis of the chloroplast genome revealed that species of the genus Thladiantha were clustered together in the phylogenetic trees. This study will not only shed light on T. nudiflora's evolutionary position but also provide valuable chloroplast genomic information for future studies into the origins and diversification of the genus Thladiantha and the Cucurbitaceae family.
Collapse
Affiliation(s)
- Yan-Yan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Min-Min Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bai-Lin Duan
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing-Zhou Xie
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiang Miao
- Fuyang Center for Agro-technical Popularization of Hangzhou, Hangzhou, China
| |
Collapse
|
16
|
Chen Y, Zheng Y, Shi G, Wang P, Lin Y, Huang M, Zheng Y. The complete chloroplast genome and phylogenetic analysis of Elaeagnus oldhamii (Elaeagnaceae) from Fujian, southeastern China. Mitochondrial DNA B Resour 2024; 9:109-113. [PMID: 38249357 PMCID: PMC10798290 DOI: 10.1080/23802359.2024.2305399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Elaeagnus oldhamii Maximowicz 1870 is an important medicinal plant mainly distributing in the southeastern coastal region of China. However, the complete chloroplast genome of E. oldhamii has never been studied at present. We obtained the complete chloroplast genome of E. oldhamii, which was 152,283 bp in length, with a typical quadripartite structure that includes a large single-copy region of 82,229 bp, a small single-copy region of 18,256 bp, and 2 inverted repeat (IR) regions of 25,899 bp. The genome contained 128 unique genes with a GC content of 37%, including 83 protein-coding genes, 37 tRNAs, and 8 rRNAs. Phylogenetic analysis suggested that E. oldhamii was closely related to E. glabra and E. macrophylla.
Collapse
Affiliation(s)
- Yuan Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ying Zheng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Gongning Shi
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Pengfei Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, China
| | - Yanxiang Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yanfang Zheng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
17
|
Whitley BS, Li Z, Jones L, de Vere N. Mega-Barcoding Projects: Delivering National DNA Barcoding Initiatives for Plants. Methods Mol Biol 2024; 2744:445-473. [PMID: 38683335 DOI: 10.1007/978-1-0716-3581-0_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Plant DNA barcoding has a multitude of applications ranging from species detection and biomonitoring to investigating ecological networks and checking food quality. The ability to accurately identify species, using DNA barcoding, depends on the quality and comprehensiveness of the reference library that is used. This chapter describes how to create plant reference libraries using the rbcL, matK, and ITS2 DNA barcode regions. It covers the creation of species lists, the collection of specimens from the field and herbarium, DNA extraction, PCR amplification, and DNA sequencing. This methodology gives special attention to using samples from herbaria, as they represent important collections of easily accessible, taxonomically verified plant material.
Collapse
Affiliation(s)
- Brandon S Whitley
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Zhao Li
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Laura Jones
- National Botanic Garden of Wales, Llanarthne, UK
| | - Natasha de Vere
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Quatela AS, Cangren P, Jafari F, Michel T, de Boer HJ, Oxelman B. Retrieval of long DNA reads from herbarium specimens. AOB PLANTS 2023; 15:plad074. [PMID: 38130422 PMCID: PMC10735254 DOI: 10.1093/aobpla/plad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
High-throughput sequencing of herbarium specimens' DNA with short-read platforms has helped explore many biological questions. Here, for the first time, we investigate the potential of using herbarium specimens as a resource for long-read DNA sequencing technologies. We use target capture of 48 low-copy nuclear loci in 12 herbarium specimens of Silene as a basis for long-read sequencing using SMRT PacBio Sequel. The samples were collected between 1932 and 2019. A simple optimization of size selection protocol enabled the retrieval of both long DNA fragments (>1 kb) and long on-target reads for nine of them. The limited sampling size does not enable statistical evaluation of the influence of specimen age to the DNA fragmentation, but our results confirm that younger samples, that is, collected after 1990, are less fragmented and have better sequencing success than specimens collected before this date. Specimens collected between 1990 and 2019 yield between 167 and 3403 on-target reads > 1 kb. They enabled recovering between 34 loci and 48 (i.e. all loci recovered). Three samples from specimens collected before 1990 did not yield on-target reads > 1 kb. The four other samples collected before this date yielded up to 144 reads and recovered up to 25 loci. Young herbarium specimens seem promising for long-read sequencing. However, older ones have partly failed. Further exploration would be necessary to statistically test and understand the potential of older material in the quest for long reads. We would encourage greatly expanding the sampling size and comparing different taxonomic groups.
Collapse
Affiliation(s)
- Anne-Sophie Quatela
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Gothenburg, Sweden
- Gothenburg Global Biodiversity Center, Gothenburg, Box 463, 405 30, Sweden
| | - Patrik Cangren
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Gothenburg, Sweden
| | - Farzaneh Jafari
- Department of Biology, Faculty of Basic Sciences, Lorestan University, P.O. BOX 6815144316, Khorramabad, Iran
- Department of Plant Science, Center of Excellence in Phylogeny of Living Organisms, School of Biology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Thibauld Michel
- Tropical Diversity Research Department, Royal Botanic Garden of Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LRUK
| | - Hugo J de Boer
- Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Gothenburg, Sweden
- Gothenburg Global Biodiversity Center, Gothenburg, Box 463, 405 30, Sweden
| |
Collapse
|
19
|
Jin L, Shi HY, Li T, Zhao N, Xu Y, Xiao TW, Song F, Ma CX, Li QM, Lin LX, Shao XN, Li BH, Mi XC, Ren HB, Qiao XJ, Lian JY, Du H, Ge XJ. A DNA barcode library for woody plants in tropical and subtropical China. Sci Data 2023; 10:819. [PMID: 37993453 PMCID: PMC10665436 DOI: 10.1038/s41597-023-02742-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
The application of DNA barcoding has been significantly limited by the scarcity of reliable specimens and inadequate coverage and replication across all species. The deficiency of DNA barcode reference coverage is particularly striking for highly biodiverse subtropical and tropical regions. In this study, we present a comprehensive barcode library for woody plants in tropical and subtropical China. Our dataset includes a standard barcode library comprising the four most widely used barcodes (rbcL, matK, ITS, and ITS2) for 2,520 species from 4,654 samples across 49 orders, 144 families, and 693 genera, along with 79 samples identified at the genus level. This dataset also provides a super-barcode library consisting of 1,239 samples from 1,139 species, 411 genera, 113 families, and 40 orders. This newly developed library will serve as a valuable resource for DNA barcoding research in tropical and subtropical China and bordering countries, enable more accurate species identification, and contribute to the conservation and management of tropical and subtropical forests.
Collapse
Affiliation(s)
- Lu Jin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hao-You Shi
- Central South Academy of Inventory and Planning of NFGA, Changsha, 410014, China
| | - Ting Li
- Yiyang Forestry Bureau, Yiyang, 413000, China
| | - Nan Zhao
- Hunan Police Academy, Changsha, 410138, China
| | - Yong Xu
- Conghua Middle School, Guangzhou, 510900, China
| | - Tian-Wen Xiao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Feng Song
- College of Forestry, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Chen-Xin Ma
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qiao-Ming Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lu-Xiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Na Shao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bu-Hang Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiang-Cheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Bao Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiu-Juan Qiao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ju-Yu Lian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hu Du
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
20
|
Yao ST, Lu YB, Zhang ZJ, Li C, Wang PF, Qin XM. The complete chloroplast genome of Chloranthus nervosus Collett ex Hemsl. 1890 (Chloranthaceae). Mitochondrial DNA B Resour 2023; 8:1224-1228. [PMID: 38026494 PMCID: PMC10653614 DOI: 10.1080/23802359.2023.2278818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, we sequenced and assembled the complete chloroplast genome of Chloranthus nervosus Collett ex Hemsl. 1890. The total length of the complete chloroplast sequence was found to be 158,002 bp. It consisted of a large single-copy (LSC) region of 87,127 bp, a small single-copy (SSC) region of 18,541 bp, and a pair of inverted repeat (IR) regions, each with a length of 26,167 bp. The overall GC content of the complete chloroplast genome was 38.9%, with the LSC region, SSC region, and IR regions exhibiting GC contents of 37.4%, 34.1%, and 43.1%, respectively. The annotation of the chloroplast genome revealed a total of 131 genes, comprising 86 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis revealed that the seven sampled species of Chloranthus were divided into two clades. Within the clade characterized by long filamentous anther connectives, C. nervosus showed the closest relation to C. japonicus. These findings validated the previous preliminary results on the phylogenetic relationships of the seven species of Chloranthus with strong support.
Collapse
Affiliation(s)
- Shu-Ting Yao
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Yong-Bin Lu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Zhan-Jiang Zhang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Cui Li
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Peng-Fei Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Xin-Mei Qin
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
21
|
Wang GS, Cai Q, Hao YJ, Bau T, Chen ZH, Li MX, David N, Kraisitudomsook N, Yang ZL. Phylogenetic and taxonomic updates of Agaricales, with an emphasis on Tricholomopsis. Mycology 2023; 15:180-209. [PMID: 38813470 PMCID: PMC11133883 DOI: 10.1080/21501203.2023.2263031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 05/31/2024] Open
Abstract
The order Agaricales was divided into eight suborders. However, the phylogenetic relationships among some suborders are largely unresolved, and the phylogenetic positions and delimitations of some taxa, such as Sarcomyxaceae and Tricholomopsis, remain unsettled. In this study, sequence data of 38 genomes were generated through genome skimming on an Illumina sequencing system. To anchor the systematic position of Sarcomyxaceae and Tricholomopsis, a phylogenetic analysis based on 555 single-copy orthologous genes from the aforementioned genomes and 126 publicly accessible genomes was performed. The results fully supported the clustering of Tricholomopsis with Phyllotopsis and Pleurocybella within Phyllotopsidaceae, which formed a divergent monophyletic major lineage together with Pterulaceae, Radulomycetaceae, and Macrotyphula in Agaricales. The analysis also revealed that Sarcomyxaceae formed a unique major clade. Therefore, two new suborders, Phyllotopsidineae and Sarcomyxineae, are proposed for the two major lineages. Analyses of 450 single-copy orthologous genes and four loci suggested that Tricholomopsis consisted of at least four clades. Tricholomopsis is subsequently subdivided into four distinct sections. Seventeen Tricholomopsis species in China, including six new species, are reported. Conoloma is established to accommodate T. mucronata. The substrate preference of Tricholomopsis species and the transitions of the pileate ornamentations among the species within the genus are discussed.
Collapse
Affiliation(s)
- Geng-Shen Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Cai
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yan-Jia Hao
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Tolgor Bau
- Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Zuo-Hong Chen
- Life Science College, Hunan Normal University, Changsha, China
| | - Mei-Xiang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Navarro David
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France
- INRAE, Aix Marseille Université, CIRM-CF, Marseille, France
| | - Nattapol Kraisitudomsook
- Department of Biology, Faculty of Science and Technology, Muban Chombueng Rajabhat University, Ratchaburi, Thailand
| | - Zhu-Liang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
22
|
Ferrari G, Esselens L, Hart ML, Janssens S, Kidner C, Mascarello M, Peñalba JV, Pezzini F, von Rintelen T, Sonet G, Vangestel C, Virgilio M, Hollingsworth PM. Developing the Protocol Infrastructure for DNA Sequencing Natural History Collections. Biodivers Data J 2023; 11:e102317. [PMID: 38327316 PMCID: PMC10848826 DOI: 10.3897/bdj.11.e102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 02/09/2024] Open
Abstract
Intentionally preserved biological material in natural history collections represents a vast repository of biodiversity. Advances in laboratory and sequencing technologies have made these specimens increasingly accessible for genomic analyses, offering a window into the genetic past of species and often permitting access to information that can no longer be sampled in the wild. Due to their age, preparation and storage conditions, DNA retrieved from museum and herbarium specimens is often poor in yield, heavily fragmented and biochemically modified. This not only poses methodological challenges in recovering nucleotide sequences, but also makes such investigations susceptible to environmental and laboratory contamination. In this paper, we review the practical challenges associated with making the recovery of DNA sequence data from museum collections more routine. We first review key operational principles and issues to address, to guide the decision-making process and dialogue between researchers and curators about when and how to sample museum specimens for genomic analyses. We then outline the range of steps that can be taken to reduce the likelihood of contamination including laboratory set-ups, workflows and working practices. We finish by presenting a series of case studies, each focusing on protocol practicalities for the application of different mainstream methodologies to museum specimens including: (i) shotgun sequencing of insect mitogenomes, (ii) whole genome sequencing of insects, (iii) genome skimming to recover plant plastid genomes from herbarium specimens, (iv) target capture of multi-locus nuclear sequences from herbarium specimens, (v) RAD-sequencing of bird specimens and (vi) shotgun sequencing of ancient bovid bone samples.
Collapse
Affiliation(s)
- Giada Ferrari
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Lore Esselens
- Royal Museum for Central Africa, Tervuren, BelgiumRoyal Museum for Central AfricaTervurenBelgium
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Michelle L Hart
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Steven Janssens
- Meise Botanic Garden, Meise, BelgiumMeise Botanic GardenMeiseBelgium
- Leuven Plant Institute, Department of Biology, Leuven, BelgiumLeuven Plant Institute, Department of BiologyLeuvenBelgium
| | - Catherine Kidner
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | - Joshua V Peñalba
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, GermanyMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Flávia Pezzini
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Thomas von Rintelen
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, GermanyMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Gontran Sonet
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Carl Vangestel
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Massimiliano Virgilio
- Royal Museum for Central Africa, Department of African Zoology, Tervuren, BelgiumRoyal Museum for Central Africa, Department of African ZoologyTervurenBelgium
| | - Peter M Hollingsworth
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| |
Collapse
|
23
|
Papalini S, Di Vittori V, Pieri A, Allegrezza M, Frascarelli G, Nanni L, Bitocchi E, Bellucci E, Gioia T, Pereira LG, Susek K, Tenaillon M, Neumann K, Papa R. Challenges and Opportunities behind the Use of Herbaria in Paleogenomics Studies. PLANTS (BASEL, SWITZERLAND) 2023; 12:3452. [PMID: 37836192 PMCID: PMC10575153 DOI: 10.3390/plants12193452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Paleogenomics focuses on the recovery, manipulation, and analysis of ancient DNA (aDNA) from historical or long-dead organisms to reconstruct and analyze their genomes. The aDNA is commonly obtained from remains found in paleontological and archaeological sites, conserved in museums, and in other archival collections. Herbarium collections represent a great source of phenotypic and genotypic information, and their exploitation has allowed for inference and clarification of previously unsolved taxonomic and systematic relationships. Moreover, herbarium specimens offered a new source for studying phenological traits in plants and for disentangling biogeography and evolutionary scenarios of species. More recently, advances in molecular technologies went in parallel with the decreasing costs of next-generation sequencing (NGS) approaches, which paved the way to the utilization of aDNA for whole-genome studies. Although many studies have been carried out combining modern analytic techniques and ancient samples, such as herbarium specimens, this research field is still relatively unexplored due to the need for improving strategies for aDNA manipulation and exploitation from ancient samples. The higher susceptibility of aDNA to degradation and contamination during herbarium conservation and manipulation and the occurrence of biochemical postmortem damage can result in a more challenging reconstruction of the original DNA sequence. Here, we review the methodological approaches that have been developed for the exploitation of historical herbarium plant materials, such as best practices for aDNA extraction, amplification, and genotyping. We also focus on some strategies to overcome the main problems related to the utilization of herbarium specimens for their exploitation in plant evolutionary studies.
Collapse
Affiliation(s)
- Simone Papalini
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (S.P.); (A.P.); (M.A.); (G.F.); (L.N.); (E.B.); (E.B.)
| | - Valerio Di Vittori
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (S.P.); (A.P.); (M.A.); (G.F.); (L.N.); (E.B.); (E.B.)
| | - Alice Pieri
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (S.P.); (A.P.); (M.A.); (G.F.); (L.N.); (E.B.); (E.B.)
| | - Marina Allegrezza
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (S.P.); (A.P.); (M.A.); (G.F.); (L.N.); (E.B.); (E.B.)
| | - Giulia Frascarelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (S.P.); (A.P.); (M.A.); (G.F.); (L.N.); (E.B.); (E.B.)
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (S.P.); (A.P.); (M.A.); (G.F.); (L.N.); (E.B.); (E.B.)
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (S.P.); (A.P.); (M.A.); (G.F.); (L.N.); (E.B.); (E.B.)
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (S.P.); (A.P.); (M.A.); (G.F.); (L.N.); (E.B.); (E.B.)
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy;
| | - Luis Guasch Pereira
- Spanish Plant Genetic Resources National Center, National Institute for Agricultural and Food Research and Technology (CRF-INIA-CSIC), 28805 Alcalá de Henares, Madrid, Spain;
| | - Karolina Susek
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland;
| | - Maud Tenaillon
- Génétique Quantitative et Evolution–Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, 91190 Gif-sur-Yvette, France;
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany;
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (S.P.); (A.P.); (M.A.); (G.F.); (L.N.); (E.B.); (E.B.)
| |
Collapse
|
24
|
Chen JT, Lidén M, Huang XH, Zhang L, Zhang XJ, Kuang TH, Landis JB, Wang D, Deng T, Sun H. An updated classification for the hyper-diverse genus Corydalis (Papaveraceae: Fumarioideae) based on phylogenomic and morphological evidence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2138-2156. [PMID: 37119474 DOI: 10.1111/jipb.13499] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
The genus Corydalis, with ca. 530 species, has long been considered taxonomically challenging because of its great variability. Previous molecular analyses, based on a few molecular markers and incomplete taxonomic sampling, were clearly inadequate to delimit sections and subgenera. We have performed phylogenetic analyses of Corydalis and related taxa, using 65 shared protein-coding plastid genes from 313 accessions (including 280 samples of ca. 226 species of Corydalis) and 152 universal low-copy nuclear genes from 296 accessions (including 271 samples of Corydalis) covering all 42 previously recognized sections and five independent "series". Phylogenetic trees were inferred using Bayesian Inference and Maximum Likelihood. Eight selected morphological characters were estimated using ancestral state reconstructions. Results include: (i) of the three subgenera of Corydalis, two are fully supported by both the plastid and nuclear data; the third, subg. Cremnocapnos, is weakly supported by plastid DNA only, whereas in the nuclear data the two included sections form successive outgroups to the rest of the genus; (ii) among all 42 sections and five "series", 25 sections and one "series" are resolved as monophyletic in both data sets; (iii) the common ancestor of Corydalis is likely to be a perennial plant with a taproot, yellow flowers with a short saccate spur, linear fruits with recurved fruiting pedicels, and seeds with elaiosomes; (iv) we provide a new classification of Corydalis with four subgenera (of which subg. Bipapillatae is here newly described), 39 sections, 16 of which are consistent with the previous classification, 16 sections have been recircumscribed, one section has been reinstated and six new sections are established. Characters associated with lifespan, underground structures, floral spur, fruit and elaiosomes are important for the recognition of subgenera and sections. These new phylogenetic analyses combined with ancestral character reconstructions uncovered previously unrecognized relationships, and greatly improved our understanding of the evolution of the genus.
Collapse
Affiliation(s)
- Jun-Tong Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Magnus Lidén
- Evolutionary Biology Centre, Systematic Biology, Uppsala University, Uppsala, 75236, Sweden
| | - Xian-Han Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Liang Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xin-Jian Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian-Hui Kuang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 14853, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - Dong Wang
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Tao Deng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
25
|
Chen Z, Zhou Z, Guo ZM, Van Do T, Sun H, Niu Y. Historical development of karst evergreen broadleaved forests in East Asia has shaped the evolution of a hemiparasitic genus Brandisia (Orobanchaceae). PLANT DIVERSITY 2023; 45:501-512. [PMID: 37936821 PMCID: PMC10625920 DOI: 10.1016/j.pld.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/14/2023] [Accepted: 03/17/2023] [Indexed: 11/09/2023]
Abstract
Brandisia is a shrubby genus of about eight species distributed basically in East Asian evergreen broadleaved forests (EBLFs), with distribution centers in the karst regions of Yunnan, Guizhou, and Guangxi in southwestern China. Based on the hemiparasitic and more or less liana habits of this genus, we hypothesized that its evolution and distribution were shaped by the development of EBLFs there. To test our hypothesis, the most comprehensive phylogenies of Brandisia hitherto were constructed based on plastome and nuclear loci (nrDNA, PHYA and PHYB); then divergence time and ancestral areas were inferred using the combined nuclear loci dataset. Phylogenetic analyses reconfirmed that Brandisia is a member of Orobanchaceae, with unstable placements caused by nuclear-plastid incongruences. Within Brandisia, three major clades were well supported, corresponding to the three subgenera based on morphology. Brandisia was inferred to have originated in the early Oligocene (32.69 Mya) in the Eastern Himalayas-SW China, followed by diversification in the early Miocene (19.45 Mya) in karst EBLFs. The differentiation dates of Brandisia were consistent with the origin of keystone species of EBLFs in this region (e.g., Fagaceae, Lauraceae, Theaceae, and Magnoliaceae) and the colonization of other characteristic groups (e.g., Gesneriaceae and Mahonia). These findings indicate that the distribution and evolution of Brandisia were facilitated by the rise of the karst EBLFs in East Asia. In addition, the woody and parasitic habits, and pollination characteristics of Brandisia may also be the important factors affecting its speciation and dispersal.
Collapse
Affiliation(s)
- Zhe Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, Yunnan, China
| | - Zhuo Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, Yunnan, China
| | - Ze-Min Guo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Truong Van Do
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay 10000, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay 10000, Hanoi, Vietnam
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, Yunnan, China
| | - Yang Niu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, Yunnan, China
| |
Collapse
|
26
|
Liang YN, Li H, Huang XY, Bin YJ, Zhen YM, Qin XM. The complete chloroplast genome and phylogenomic analysis of Camellia sinensis var. sinensis cultivar 'Liupao', a landrace from Guangxi, China. Mitochondrial DNA B Resour 2023; 8:921-926. [PMID: 37645477 PMCID: PMC10461518 DOI: 10.1080/23802359.2023.2250072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Liupao tea is one of the well-known Chinese tea brands and a famous local specialty in Wuzhou, Guangxi, China. However, the genetic background and phylogenetic relationship of the native resource plants of Liupao tea need study, especially at the genomic level. In this study, we reported the complete chloroplast (cp) genome sequence of Camellia sinensis var. sinensis cultivar 'Liupao' (LP, Liupao tea population) and inferred its phylogenetic relationship to other tea plant variants or cultivars. The cp genome had a total length of 157,097 bp and the overall GC content was 37.3%. The cp genome contained one LSC region (86,641 bp) and one SSC region (18,276 bp), which were separated by two IR regions (26,090 bp, respectively). Moreover, the cp genomes were composed of 130 genes, including 86 protein-coding genes, 36 tRNA genes, and eight rRNA genes. The phylogenetic analysis showed that LP was closely related to C. sinensis var. pabilimba cv. 'Lingyunbaihao'. This study will provide useful information for further investigating the genetic background, evolution, and breeding of LP as well as other tea cultivars and varieties.
Collapse
Affiliation(s)
- Yan-Ni Liang
- Modern Industry College of Liupao Tea, Wuzhou University, Wuzhou, China
| | - Hong Li
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Xi-Yang Huang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Yue-Jing Bin
- Modern Industry College of Liupao Tea, Wuzhou University, Wuzhou, China
| | - Yu-Mei Zhen
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Xin-Mei Qin
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
27
|
Yang Z, Ferguson DK, Yang Y. New insights into the plastome evolution of Lauraceae using herbariomics. BMC PLANT BIOLOGY 2023; 23:387. [PMID: 37563571 PMCID: PMC10413609 DOI: 10.1186/s12870-023-04396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The family Lauraceae possesses ca. 50 genera and 2,500-3,000 species that are distributed in the pantropics. Only half of the genera of the family were represented in previously published plastome phylogenies because of the difficulty of obtaining research materials. Plastomes of Hypodaphnideae and the Mezilaurus group, two lineages with unusual phylogenetic positions, have not been previously reported and thus limit our full understanding on the plastome evolution of the family. Herbariomics, promoted by next generation sequencing technology, can make full use of herbarium specimens, and provides opportunities to fill the sampling gap. RESULTS In this study, we sequenced five new plastomes (including four genera which are reported for the first time, viz. Chlorocardium, Hypodaphnis, Licaria and Sextonia) from herbarium specimens using genome skimming to conduct a comprehensive analysis of plastome evolution of Lauraceae as a means of sampling representatives of all major clades of the family. We identified and recognized six types of plastomes and revealed that at least two independent loss events at the IR-LSC boundary and an independent expansion of SSC occurred in the plastome evolution of the family. Hypodaphnis possesses the ancestral type of Lauraceae with trnI-CAU, rpl23 and rpl2 duplicated in the IR regions (Type-I). The Mezilaurus group shares the same plastome structure with the core Lauraceae group in the loss of trnI-CAU, rpl23 and rpl2 in the IRa region (Type-III). Two new types were identified in the Ocotea group: (1) the insertion of trnI-CAU between trnL-UAG and ccsA in the SSC region of Licaria capitata and Ocotea bracteosa (Type-IV), and (2) trnI-CAU and pseudogenizated rpl23 inserted in the same region of Nectandra angustifolia (Type-V). Our phylogeny suggests that Lauraceae are divided into nine major clades largely in accordance with the plastome types. The Hypodaphnideae are the earliest diverged lineage supported by both robust phylogeny and the ancestral plastome type. The monophyletic Mezilaurus group is sister to the core Lauraceae. CONCLUSIONS By using herbariomics, we built a more complete picture of plastome evolution and phylogeny of the family, thus providing a convincing case for further use of herbariomics in phylogenetic studies of the Lauraceae.
Collapse
Affiliation(s)
- Zhi Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Rd, Nanjing, 210037, China
| | | | - Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Rd, Nanjing, 210037, China.
| |
Collapse
|
28
|
Pezzini FF, Ferrari G, Forrest LL, Hart ML, Nishii K, Kidner CA. Target capture and genome skimming for plant diversity studies. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11537. [PMID: 37601316 PMCID: PMC10439825 DOI: 10.1002/aps3.11537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale whole-genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high-molecular-weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast-freeze newly collected living samples to conserve high-quality DNA can be complicated when plants are only found in remote areas. Therefore, short-read reduced-genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non-model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best-informed choice regarding reduced genome representation for evolutionary studies of non-model plants in cases where whole-genome sequencing remains impractical.
Collapse
Affiliation(s)
| | - Giada Ferrari
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | | | - Kanae Nishii
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Catherine A. Kidner
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
- School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
29
|
Zhou N, Tang L, Xie P, Miao K, Yang C, Liu H, Ji Y. Genome skimming as an efficient tool for authenticating commercial products of the pharmaceutically important Paris yunnanensis (Melanthiaceae). BMC PLANT BIOLOGY 2023; 23:344. [PMID: 37380980 DOI: 10.1186/s12870-023-04365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Paris yunnanensis (Melanthiaceae) is a traditional Chinese medicinal plant of significant pharmaceutical importance. Due to previous taxonomic confusion, a congeneric species, Paris liiana, has been mistaken for P. yunnanensis and cultivated on a large scale, leading to the mixing of commercial products (i.e., seedlings and processed rhizomes) of P. yunnanensis with those of P. liiana. This may have adverse effects on quality control in the standardization of P. yunnanensis productions. As the lack of PCR amplifiable genomic DNA within processed rhizomes is an intractable obstacle to the authentication of P. yunnanensis products using PCR-based diagnostic tools, this study aimed to develop a PCR-free method to authenticate commercial P. yunnanensis products, by applying genome skimming to generate complete plastomes and nrDNA arrays for use as the molecular tags. RESULTS Based on a dense intraspecies sampling of P. liiana and P. yunnanensis, the robustness of the proposed authentication systems was evaluated by phylogenetic inferences and experimental authentication of commercial seedling and processed rhizome samples. The results indicate that the genetic criteria of both complete plastomes and nrDNA arrays were consistent with the species boundaries to achieve accurate discrimination of P. yunnanensis and P. liinna. Owing to its desirable accuracy and sensitivity, genome skimming can serve as an effective and sensitive tool for monitoring and controlling the trade of P. yunnanensis products. CONCLUSION This study provides a new way to solve the long-standing problem of the molecular authentication of processed plant products due to the lack of PCR amplifiable genomic DNA. The proposed authentication system will support quality control in the standardization of P. yunnanensis products in cultivation and drug production. This study also provides molecular evidence to clarify the long-standing taxonomic confusion regarding the species delimitation of P. yunnanensis, which will contribute to the rational exploration and conservation of the species.
Collapse
Affiliation(s)
- Nian Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lilei Tang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Pingxuan Xie
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ke Miao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengjin Yang
- Yunnan Baiyao Group, Chinese Medicinal Resources Co. LTD, Kunming, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
30
|
Raclariu-Manolică AC, Mauvisseau Q, de Boer HJ. Horizon scan of DNA-based methods for quality control and monitoring of herbal preparations. Front Pharmacol 2023; 14:1179099. [PMID: 37214460 PMCID: PMC10193163 DOI: 10.3389/fphar.2023.1179099] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Herbal medicines and preparations are widely used in healthcare systems globally, but concerns remain about their quality and safety. New herbal products are constantly being introduced to the market under varying regulatory frameworks, with no global consensus on their definition or characterization. These biologically active mixtures are sold through complex globalized value chains, which create concerns around contamination and profit-driven adulteration. Industry, academia, and regulatory bodies must collaborate to develop innovative strategies for the identification and authentication of botanicals and their preparations to ensure quality control. High-throughput sequencing (HTS) has significantly improved our understanding of the total species diversity within DNA mixtures. The standard concept of DNA barcoding has evolved over the last two decades to encompass genomic data more broadly. Recent research in DNA metabarcoding has focused on developing methods for quantifying herbal product ingredients, yielding meaningful results in a regulatory framework. Techniques, such as loop-mediated isothermal amplification (LAMP), DNA barcode-based Recombinase Polymerase Amplification (BAR-RPA), DNA barcoding coupled with High-Resolution Melting (Bar-HRM), and microfluidics-based methods, offer more affordable tests for the detection of target species. While target capture sequencing and genome skimming are considerably increasing the species identification resolution in challenging plant clades, ddPCR enables the quantification of DNA in samples and could be used to detect intended and unwanted ingredients in herbal medicines. Here, we explore the latest advances in emerging DNA-based technologies and the opportunities they provide as taxa detection tools for evaluating the safety and quality of dietary supplements and herbal medicines.
Collapse
Affiliation(s)
- Ancuța Cristina Raclariu-Manolică
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamț, Romania
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
31
|
McAssey EV, Downs C, Yorkston M, Morden C, Heyduk K. A comparison of freezer-stored DNA and herbarium tissue samples for chloroplast assembly and genome skimming. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11527. [PMID: 37342160 PMCID: PMC10278930 DOI: 10.1002/aps3.11527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 06/22/2023]
Abstract
Premise The use of DNA from herbarium specimens is an increasingly important source for evolutionary studies in plant biology, particularly in cases where species are rare or difficult to obtain. Here we compare the utility of DNA from herbarium tissues to their freezer-stored DNA counterparts via the Hawaiian Plant DNA Library. Methods Plants collected for the Hawaiian Plant DNA Library were simultaneously accessioned as herbarium specimens at the time of collection, from 1994-2019. Paired samples were sequenced using short-read sequencing and assessed for chloroplast assembly and nuclear gene recovery. Results Herbarium specimen-derived DNA was statistically more fragmented than freezer-stored DNA derived from fresh tissue, leading to poorer chloroplast assembly and overall lower coverage. The number of nuclear targets recovered varied mostly by total sequencing reads per library and age of specimen, but not by storage method (herbarium or long-term freezer). Although there was evidence of DNA damage in the samples, there was no evidence that it was related to the length of time in storage, whether frozen or as herbarium specimens. Discussion DNA extracted from herbarium tissues will continue to be invaluable, despite being highly fragmented and degraded. Rare floras would benefit from both traditional herbarium storage methods and extracted DNA freezer banks.
Collapse
Affiliation(s)
- Edward V. McAssey
- School of Life SciencesUniversity of Hawaiʻi at MānoaHonoluluHawaiʻiUSA
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Cassidy Downs
- School of Life SciencesUniversity of Hawaiʻi at MānoaHonoluluHawaiʻiUSA
| | - Mitsuko Yorkston
- School of Life SciencesUniversity of Hawaiʻi at MānoaHonoluluHawaiʻiUSA
| | - Clifford Morden
- School of Life SciencesUniversity of Hawaiʻi at MānoaHonoluluHawaiʻiUSA
| | - Karolina Heyduk
- School of Life SciencesUniversity of Hawaiʻi at MānoaHonoluluHawaiʻiUSA
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
32
|
Holt SD, Sigel EM, Sutherland BL, Schwartsburd PB, Beck JB. What is Salvinia molesta (Salviniaceae)? Determining the maternal progenitor and genetic diversity of the clonal invasive fern giant salvinia. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
33
|
Rakotonasolo RA, Dransfield S, Haevermans T, Ralimanana H, Vorontsova MS, Zhou MY, Li DZ. New insights into intergeneric relationships of Hickeliinae (Poaceae: Bambusoideae) revealed by complete plastid genomes. PLANT DIVERSITY 2023; 45:125-132. [PMID: 37069926 PMCID: PMC10105074 DOI: 10.1016/j.pld.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/19/2023]
Abstract
The Hickeliinae (Poaceae: Bambusoideae) is an ecologically and economically significant subtribe of tropical bamboos restricted to Madagascar, Comoros, Reunion Island, and a small part of continental Africa (Tanzania). Because these bamboos rarely flower, field identification is challenging, and inferring the evolutionary history of Hickeliinae from herbarium specimens is even more so. Molecular phylogenetic work is critical to understanding this group of bamboos. Here, comparative analysis of 22 newly sequenced plastid genomes showed that members of all genera of Hickeliinae share evolutionarily conserved plastome structures. We also determined that Hickeliinae plastome sequences are informative for phylogenetic reconstructions. Phylogenetic analysis showed that all genera of Hickeliinae are monophyletic, except for Nastus, which is paraphyletic and forms two distant clades. The type species of Nastus (Clade II) is endemic to Reunion Island and is not closely related to other sampled species of Nastus endemic to Madagascar (Clade VI). Clade VI (Malagasy Nastus) is sister to the Sokinochloa + Hitchcockella clade (Clade V), and both clades have a clumping habit with short-necked pachymorph rhizomes. The monotypic Decaryochloa is remarkable in having the longest floret in Bambuseae and forms a distinct Clade IV. Clade III, which has the highest generic diversity, consists of Cathariostachys, Perrierbambus, Sirochloa, and Valiha, which are also morphologically diverse. This work provides significant resources for further genetic and phylogenomic studies of Hickeliinae, an understudied subtribe of bamboo.
Collapse
Affiliation(s)
- Rivontsoa A. Rakotonasolo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Department Flore, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo, 101, Madagascar
- Kew Madagascar Conservation Center, Antananarivo, 101, Madagascar
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Soejatmi Dransfield
- Comparative Plant and Fungal Biology, Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Thomas Haevermans
- Institut de Systématique Évolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Centre National de La Recherche Scientifique, École Pratique des Hautes Études, Université des Antilles, Sorbonne Université, 45 Rue Buffon, CP 50, 75005, Paris, France
| | | | - Maria S. Vorontsova
- Comparative Plant and Fungal Biology, Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Meng-Yuan Zhou
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Guo C, Luo Y, Gao LM, Yi TS, Li HT, Yang JB, Li DZ. Phylogenomics and the flowering plant tree of life. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:299-323. [PMID: 36416284 DOI: 10.1111/jipb.13415] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The advances accelerated by next-generation sequencing and long-read sequencing technologies continue to provide an impetus for plant phylogenetic study. In the past decade, a large number of phylogenetic studies adopting hundreds to thousands of genes across a wealth of clades have emerged and ushered plant phylogenetics and evolution into a new era. In the meantime, a roadmap for researchers when making decisions across different approaches for their phylogenomic research design is imminent. This review focuses on the utility of genomic data (from organelle genomes, to both reduced representation sequencing and whole-genome sequencing) in phylogenetic and evolutionary investigations, describes the baseline methodology of experimental and analytical procedures, and summarizes recent progress in flowering plant phylogenomics at the ordinal, familial, tribal, and lower levels. We also discuss the challenges, such as the adverse impact on orthology inference and phylogenetic reconstruction raised from systematic errors, and underlying biological factors, such as whole-genome duplication, hybridization/introgression, and incomplete lineage sorting, together suggesting that a bifurcating tree may not be the best model for the tree of life. Finally, we discuss promising avenues for future plant phylogenomic studies.
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
35
|
Waselkov K, Olsen KM. Herbaria reveal cost of the Green Revolution. Science 2022; 378:1053-1054. [PMID: 36480609 DOI: 10.1126/science.ade4615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid weed evolution is exposed by genome sequencing of natural history collections.
Collapse
Affiliation(s)
- Katherine Waselkov
- Department of Biology, California State University, Fresno, Fresno, CA 93740, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
36
|
Lu JM, Du XY, Kuo LY, Ebihara A, Perrie LR, Zuo ZY, Shang H, Chang YH, Li DZ. Plastome phylogenomic analysis reveals evolutionary divergences of Polypodiales suborder Dennstaedtiineae. BMC PLANT BIOLOGY 2022; 22:511. [PMID: 36319964 PMCID: PMC9628275 DOI: 10.1186/s12870-022-03886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Polypodiales suborder Dennstaedtiineae contain a single family Dennstaedtiaceae, eleven genera, and about 270 species, and include some groups that were previously placed in Dennstaedtiaceae, Hypolepidaceae, Monachosoraceae, and Pteridaceae. The classification and phylogenetic relationships among these eleven genera have been poorly understood. To explore the deep relationships within suborder Dennstaedtiineae and estimate the early diversification of this morphologically heterogeneous group, we analyzed complete plastomes of 57 samples representing all eleven genera of suborder Dennstaedtiineae using maximum likelihood and Bayesian inference. RESULTS The phylogenetic relationships of all the lineages in the bracken fern family Dennstaedtiaceae were well resolved with strong support values. All six genera of Hypolepidoideae were recovered as forming a monophyletic group with full support, and Pteridium was fully supported as sister to all the other genera in Hypolepidoideae. Dennstaedtioideae (Dennstaedtia s.l.) fell into four clades with full support: the Microlepia clade, the northern Dennstaedtia clade, the Dennstaedtia globulifera clade, and the Dennstaedtia s.s. clade. Monachosorum was strongly resolved as sister to all the remaining genera of suborder Dennstaedtiineae. Based on the well resolved relationships among genera, the divergence between Monachosorum and other groups of suborder Dennstaedtiineae was estimated to have occurred in the Early Cretaceous, and all extant genera (and clades) in Dennstaedtiineae, were inferred to have diversified since the Late Oligocene. CONCLUSION This study supports reinstating a previously published family Monachosoraceae as a segregate from Dennstaedtiaceae, based on unique morphological evidence, the shady habitat, and the deep evolutionary divergence from its closest relatives.
Collapse
Affiliation(s)
- Jin-Mei Lu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.
| | - Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Atsushi Ebihara
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| | - Leon R Perrie
- Museum of New Zealand Te Papa Tongarewa, Cable Street, Wellington, 6011, New Zealand
| | - Zheng-Yu Zuo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Hui Shang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yi-Han Chang
- Taiwan Forestry Research Institute, Taipei, 10066, Taiwan
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.
| |
Collapse
|
37
|
Kang JS, Kim BY, Yoo KO. The complete plastid genome sequence of Chloranthus fortunei (A. Gray) Solms-Laub. in Chloranthaceae. Mitochondrial DNA B Resour 2022; 7:1829-1833. [PMID: 36325282 PMCID: PMC9621198 DOI: 10.1080/23802359.2022.2132840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chloranthus fortunei (A. Gray) Solms-Laub. is a perennial herb in a basal angiosperm family Chloranthaceae. Here, we reported the complete plastid genome of C. fortunei using Illumina short-read data. The total genome size was 157,063 bp in length, containing 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. The gene content and order were consistent with previously reported Chloranthus plastid genomes. The overall GC content of the C. fortunei plastid genome was 39.0%. In the phylogenetic result, genus Chloranthus was monophyletic and divided into two subclades: C. japonicus+C. angustifolius+C. fortunei, and C. henryi+C. spicatus+C. erectus. Our phylogenetic result was consistent with previous phylogenetic studies, and was supported by a previously proposed infrageneric classification of the genus Chloranthus.
Collapse
Affiliation(s)
- Jong-Soo Kang
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea
| | - Bo-Yun Kim
- Plant Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Ki-Oug Yoo
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea,CONTACT Ki-Oug Yoo Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon-do, South Korea
| |
Collapse
|
38
|
Xu X, Li X, Wang D. New Insights Into the Backbone Phylogeny and Character Evolution of Corydalis (Papaveraceae) Based on Plastome Data. FRONTIERS IN PLANT SCIENCE 2022; 13:926574. [PMID: 35991421 PMCID: PMC9389321 DOI: 10.3389/fpls.2022.926574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 05/27/2023]
Abstract
A robust backbone phylogeny is fundamental for developing a stable classification and is instructive for further research. However, it was still not available for Corydalis DC., a species-rich (> 500 species), ecologically and medically important, but taxonomically notoriously difficult genus. Here, we constructed backbone phylogeny and estimated the divergence of Corydalis based on the plastome data from 39 Corydalis species (32 newly sequenced), which represent ca. 80% of sections and series across this genus. Our phylogenetic analyses recovered six fully supported main clades (I-VI) and provided full support for the majority of lineages within Corydalis. Section Archaeocapnos was unexpectedly turned out to be sister to the rest of the subg. Corydalis s. l. (clades IV-VI), thus treating as a distinct clade (clade III) to render all the main clades monophyletic. Additionally, some unusual plastome structural rearrangements were constantly detected within Corydalis and were proven to be lineage-specific in this study, which, in turn, provided further support to our phylogeny. A segment containing five genes (trnV-UAC-rbcL) in the plastome's LSC region was either normally located downstream of the ndhC gene in clade I species or translocated downstream of the atpH gene in clade II species or translocated to downstream of the trnK-UUU gene in clade III-VI species. The unique large inversion (ca. 50 kb) in the plastome LSC region of clade III species, representing an intermediate stage of the above translocation in clades IV-VI, firmly supported clade III as a distinct and early diverged clade within this large lineage (clades III-VI). Our phylogeny contradicted substantially with the morphology-based taxonomy, rejected the treatment of tuberous species as an independent evolutionary group, and proved that some commonly used diagnostic characters (e.g., root and rhizome) were results of convergent evolution, suggestive of unreliability in Corydalis. We dated the origin of crown Corydalis to the early Eocene (crown age 49.08 Ma) and revealed possible explosive radiation around 25 Ma, coinciding with the drastic uplift of the Qinghai-Tibetan Plateau in Oligocene and Miocene. This study provided the most reliable and robust backbone phylogeny of Corydalis to date and shed some new insights on the evolution of Corydalis.
Collapse
Affiliation(s)
- Xiaodong Xu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xuexiu Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Dong Wang
- School of Life Sciences, Central China Normal University, Wuhan, China
- Bio-Resources key Laboratory of Shaanxi Province, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
39
|
Wang WJ, Liu R, Wu Y, Wang H, Yu WB. The complete chloroplast genomes of two Pedicularis species (Orobanchaceae) from Southwest China. Mitochondrial DNA B Resour 2022; 7:971-973. [PMID: 35712543 PMCID: PMC9196808 DOI: 10.1080/23802359.2022.2080018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We report the complete chloroplast genome (plastome) sequences of Pedicularis cephalantha (147,087 bp) and P. nigra (145,726 bp), endemic to southwestern China. Both plastomes have typical quadripartite structures with one large-single copy region, one small-single copy region, and two inverted repeat regions. Both plastome sequences contained 37 tRNA genes and eight rRNA genes, but they differed in the numbers of protein-coding genes: P. cephalantha had 76 functional genes and 12 pseudogenes while P. nigra had 74 functional genes and 13 pseudogenes. Phylogenetic analysis shows that P. cephalantha and P. nigra are closely related, then sister to P. oederi in the family Orobanchaceae.
Collapse
Affiliation(s)
- Wei-Jia Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rong Liu
- University of Chinese Academy of Sciences, Beijing, China
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - You Wu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Science, Nay Pyi Taw, Myanmar
| |
Collapse
|
40
|
Garrett P, Becher H, Gussarova G, dePamphilis CW, Ness RW, Gopalakrishnan S, Twyford AD. Pervasive Phylogenomic Incongruence Underlies Evolutionary Relationships in Eyebrights ( Euphrasia, Orobanchaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:869583. [PMID: 35720561 PMCID: PMC9197813 DOI: 10.3389/fpls.2022.869583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Disentangling the phylogenetic relationships of taxonomically complex plant groups is often mired by challenges associated with recent speciation, hybridization, complex mating systems, and polyploidy. Here, we perform a phylogenomic analysis of eyebrights (Euphrasia), a group renowned for taxonomic complexity, with the aim of documenting the extent of phylogenetic discordance at both deep and at shallow phylogenetic scales. We generate whole-genome sequencing data and integrate this with prior genomic data to perform a comprehensive analysis of nuclear genomic, nuclear ribosomal (nrDNA), and complete plastid genomes from 57 individuals representing 36 Euphrasia species. The species tree analysis of 3,454 conserved nuclear scaffolds (46 Mb) reveals that at shallow phylogenetic scales postglacial colonization of North Western Europe occurred in multiple waves from discrete source populations, with most species not being monophyletic, and instead combining genomic variants from across clades. At a deeper phylogenetic scale, the Euphrasia phylogeny is structured by geography and ploidy, and partially by taxonomy. Comparative analyses show Southern Hemisphere tetraploids include a distinct subgenome indicative of independent polyploidy events from Northern Hemisphere taxa. In contrast to the nuclear genome analyses, the plastid genome phylogeny reveals limited geographic structure, while the nrDNA phylogeny is informative of some geographic and taxonomic affinities but more thorough phylogenetic inference is impeded by the retention of ancestral polymorphisms in the polyploids. Overall our results reveal extensive phylogenetic discordance at both deeper and shallower nodes, with broad-scale geographic structure of genomic variation but a lack of definitive taxonomic signal. This suggests that Euphrasia species either have polytopic origins or are maintained by narrow genomic regions in the face of extensive homogenizing gene flow. Moreover, these results suggest genome skimming will not be an effective extended barcode to identify species in groups such as Euphrasia, or many other postglacial species groups.
Collapse
Affiliation(s)
- Phen Garrett
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Hannes Becher
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Galina Gussarova
- Natural History Museum, University of Oslo, Oslo, Norway
- Botany Department, Faculty of Biology and Soil Science, St Petersburg State University, St Petersburg, Russia
- Tromsø University Museum, University of Tromsø, Tromsø, Norway
| | - Claude W. dePamphilis
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Rob W. Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | - Alex D. Twyford
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
41
|
Du XY, Kuo LY, Zuo ZY, Li DZ, Lu JM. Structural Variation of Plastomes Provides Key Insight Into the Deep Phylogeny of Ferns. FRONTIERS IN PLANT SCIENCE 2022; 13:862772. [PMID: 35645990 PMCID: PMC9134734 DOI: 10.3389/fpls.2022.862772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 06/02/2023]
Abstract
Structural variation of plastid genomes (plastomes), particularly large inversions and gene losses, can provide key evidence for the deep phylogeny of plants. In this study, we investigated the structural variation of fern plastomes in a phylogenetic context. A total of 127 plastomes representing all 50 recognized families and 11 orders of ferns were sampled, making it the most comprehensive plastomic analysis of fern lineages to date. The samples included 42 novel plastomes of 15 families with a focus on Hymenophyllales and Gleicheniales. We reconstructed a well-supported phylogeny of all extant fern families, detected significant structural synapomorphies, including 9 large inversions, 7 invert repeat region (IR) boundary shifts, 10 protein-coding gene losses, 7 tRNA gene losses or anticodon changes, and 19 codon indels (insertions or deletions) across the deep phylogeny of ferns, particularly on the backbone nodes. The newly identified inversion V5, together with the newly inferred expansion of the IR boundary R5, can be identified as a synapomorphy of a clade composed of Dipteridaceae, Matoniaceae, Schizaeales, and the core leptosporangiates, while a unique inversion V4, together with an expansion of the IR boundary R4, was verified as a synapomorphy of Gleicheniaceae. This structural evidence is in support of our phylogenetic inference, thus providing key insight into the paraphyly of Gleicheniales. The inversions of V5 and V7 together filled the crucial gap regarding how the "reversed" gene orientation in the IR region characterized by most extant ferns (Schizaeales and the core leptosporangiates) evolved from the inferred ancestral type as retained in Equisetales and Osmundales. The tRNA genes trnR-ACG and trnM-CAU were assumed to be relicts of the early-divergent fern lineages but intact in most Polypodiales, particularly in eupolypods; and the loss of the tRNA genes trnR-CCG, trnV-UAC, and trnR-UCU in fern plastomes was much more prevalent than previously thought. We also identified several codon indels in protein-coding genes within the core leptosporangiates, which may be identified as synapomorphies of specific families or higher ranks. This study provides an empirical case of integrating structural and sequence information of plastomes to resolve deep phylogeny of plants.
Collapse
Affiliation(s)
- Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Zheng-Yu Zuo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jin-Mei Lu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
42
|
Marinček P, Wagner ND, Tomasello S. Ancient DNA extraction methods for herbarium specimens: When is it worth the effort? APPLICATIONS IN PLANT SCIENCES 2022; 10:e11477. [PMID: 35774991 PMCID: PMC9215277 DOI: 10.1002/aps3.11477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 06/15/2023]
Abstract
Premise Herbaria harbor a tremendous number of plant specimens that are rarely used for molecular systematic studies, largely due to the difficulty in extracting sufficient amounts of high-quality DNA from the preserved plant material. Methods We compared the standard Qiagen DNeasy Plant Mini Kit and a specific protocol for extracting ancient DNA (aDNA) (the N-phenacylthiazolium bromide and dithiothreitol [PTB-DTT] extraction method) from two different plant genera (Xanthium and Salix). The included herbarium materials covered about two centuries of plant collections. To analyze the success of DNA extraction using each method, a subset of samples was subjected to a standard library preparation as well as target-enrichment approaches. Results The PTB-DTT method produced a higher DNA yield of better quality than the Qiagen kit; however, extracts from the Qiagen kit over a certain DNA yield and quality threshold produced comparable sequencing results. The sequencing resulted in high proportions of endogenous reads. We were able to successfully sequence 200-year-old samples. Discussion This method comparison revealed that, for younger specimens, DNA extraction using a standard kit might be sufficient. For old and precious herbarium specimens, aDNA extraction methods are better suited to meet the requirements for next-generation sequencing.
Collapse
Affiliation(s)
- Pia Marinček
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of Göttingen, Untere Karspüle 237073GöttingenGermany
| | - Natascha D. Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of Göttingen, Untere Karspüle 237073GöttingenGermany
| | - Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of Göttingen, Untere Karspüle 237073GöttingenGermany
| |
Collapse
|
43
|
Guzmán-Díaz S, Núñez FAA, Veltjen E, Asselman P, Larridon I, Samain MS. Comparison of Magnoliaceae Plastomes: Adding Neotropical Magnolia to the Discussion. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030448. [PMID: 35161429 PMCID: PMC8838774 DOI: 10.3390/plants11030448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 05/13/2023]
Abstract
Chloroplast genomes are considered to be highly conserved. Nevertheless, differences in their sequences are an important source of phylogenetically informative data. Chloroplast genomes are increasingly applied in evolutionary studies of angiosperms, including Magnoliaceae. Recent studies have focused on resolving the previously debated classification of the family using a phylogenomic approach and chloroplast genome data. However, most Neotropical clades and recently described species have not yet been included in molecular studies. We performed sequencing, assembly, and annotation of 15 chloroplast genomes from Neotropical Magnoliaceae species. We compared the newly assembled chloroplast genomes with 22 chloroplast genomes from across the family, including representatives from each genus and section. Family-wide, the chloroplast genomes presented a length of about 160 kb. The gene content in all species was constant, with 145 genes. The intergenic regions showed a higher level of nucleotide diversity than the coding regions. Differences were higher among genera than within genera. The phylogenetic analysis in Magnolia showed two main clades and corroborated that the current infrageneric classification does not represent natural groups. Although chloroplast genomes are highly conserved in Magnoliaceae, the high level of diversity of the intergenic regions still resulted in an important source of phylogenetically informative data, even for closely related taxa.
Collapse
Affiliation(s)
- Salvador Guzmán-Díaz
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
- Correspondence:
| | - Fabián Augusto Aldaba Núñez
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
| | - Emily Veltjen
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
- Ghent University Botanical Garden, Ghent University, 9000 Gent, Belgium
| | - Pieter Asselman
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
| | - Isabel Larridon
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Marie-Stéphanie Samain
- Instituto de Ecología, A.C., Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro 61600, Mexico; (F.A.A.N.); (M.-S.S.)
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, 9000 Gent, Belgium; (E.V.); (P.A.); (I.L.)
| |
Collapse
|
44
|
Kress WJ, Soltis DE, Kersey PJ, Wegrzyn JL, Leebens-Mack JH, Gostel MR, Liu X, Soltis PS. Green plant genomes: What we know in an era of rapidly expanding opportunities. Proc Natl Acad Sci U S A 2022; 119:e2115640118. [PMID: 35042803 PMCID: PMC8795535 DOI: 10.1073/pnas.2115640118] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Green plants play a fundamental role in ecosystems, human health, and agriculture. As de novo genomes are being generated for all known eukaryotic species as advocated by the Earth BioGenome Project, increasing genomic information on green land plants is essential. However, setting standards for the generation and storage of the complex set of genomes that characterize the green lineage of life is a major challenge for plant scientists. Such standards will need to accommodate the immense variation in green plant genome size, transposable element content, and structural complexity while enabling research into the molecular and evolutionary processes that have resulted in this enormous genomic variation. Here we provide an overview and assessment of the current state of knowledge of green plant genomes. To date fewer than 300 complete chromosome-scale genome assemblies representing fewer than 900 species have been generated across the estimated 450,000 to 500,000 species in the green plant clade. These genomes range in size from 12 Mb to 27.6 Gb and are biased toward agricultural crops with large branches of the green tree of life untouched by genomic-scale sequencing. Locating suitable tissue samples of most species of plants, especially those taxa from extreme environments, remains one of the biggest hurdles to increasing our genomic inventory. Furthermore, the annotation of plant genomes is at present undergoing intensive improvement. It is our hope that this fresh overview will help in the development of genomic quality standards for a cohesive and meaningful synthesis of green plant genomes as we scale up for the future.
Collapse
Affiliation(s)
- W John Kress
- National Museum of Natural History, Smithsonian Institution, Department of Botany, Washington, DC 20013-7012;
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
- Arnold Arboretum, Harvard University, Boston, MA 02130
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
- Biodiversity Institute, University of Florida, Gainesville, FL 32611
- Department of Biology, University of Florida, Gainesville, FL 32611
| | - Paul J Kersey
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, Institute for Systems Genomics: Computational Biology Core, University of Connecticut, Storrs, CT 06269-3214
| | - James H Leebens-Mack
- Department of Plant Biology, 2101 Miller Plant Sciences, University of Georgia, Athens, GA 30602-7271
| | - Morgan R Gostel
- Botanical Research Institute of Texas, Fort Worth, TX 76107-3400
| | - Xin Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
- Biodiversity Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
45
|
Li F, Xie X, Huang R, Tian E, Li C, Chao Z. Chloroplast genome sequencing based on genome skimming for identification of Eriobotryae Folium. BMC Biotechnol 2021; 21:69. [PMID: 34895202 PMCID: PMC8666020 DOI: 10.1186/s12896-021-00728-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Background Whole chloroplast genome (cpDNA) sequence is becoming widely used in the phylogenetic studies of plant and species identification, but in most cases the cpDNA were acquired from silica gel dried fresh leaves. So far few reports have been available to describe cpDNA acquisition from crude drugs derived from plant materials, the DNA of which usually was seriously damaged during their processing. In this study, we retrieved cpDNA from the commonly used crude drug Eriobotryae Folium (Pipaye in Chinese, which is the dried leaves of Eriobotrya japonica, PPY) using genome skimming technique. Results We successfully recovered cpDNA sequences and rDNA sequences from the crude drug PPY, and bioinformatics analysis showed a high overall consistency between the cpDNA obtained from the crude drugs and fresh samples. In the ML tree, each species formed distinct monophyletic clades based on cpDNA sequence data, while the phylogenetic relationships between Eriobotrya species were poorly resolved based on ITS and ITS2. Conclusion Our results demonstrate that both cpDNA and ITS/ITS2 are effective for identifying PPY and its counterfeits derived from distantly related species (i.e. Dillenia turbinata and Magnolia grandiflora), but cpDNA is more effective for distinguishing the counterfeits derived from the close relatives of Eriobotrya japonica, suggesting the potential of genome skimming for retrieving cpDNA from crude drugs used in Traditional Chinese Medicine for their identification. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00728-0.
Collapse
Affiliation(s)
- Fang Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.,Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xuena Xie
- Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rong Huang
- Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Enwei Tian
- Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chan Li
- Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhi Chao
- Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China.
| |
Collapse
|
46
|
Ferrari G, Atmore LM, Jentoft S, Jakobsen KS, Makowiecki D, Barrett JH, Star B. An accurate assignment test for extremely low-coverage whole-genome sequence data. Mol Ecol Resour 2021; 22:1330-1344. [PMID: 34779123 DOI: 10.1111/1755-0998.13551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Genomic assignment tests can provide important diagnostic biological characteristics, such as population of origin or ecotype. Yet, assignment tests often rely on moderate- to high-coverage sequence data that can be difficult to obtain for fields such as molecular ecology and ancient DNA. We have developed a novel approach that efficiently assigns biologically relevant information (i.e., population identity or structural variants such as inversions) in extremely low-coverage sequence data. First, we generate databases from existing reference data using a subset of diagnostic single nucleotide polymorphisms (SNPs) associated with a biological characteristic. Low-coverage alignment files are subsequently compared to these databases to ascertain allelic state, yielding a joint probability for each association. To assess the efficacy of this approach, we assigned haplotypes and population identity in Heliconius butterflies, Atlantic herring, and Atlantic cod using chromosomal inversion sites and whole-genome data. We scored both modern and ancient specimens, including the first whole-genome sequence data recovered from ancient Atlantic herring bones. The method accurately assigns biological characteristics, including population membership, using extremely low-coverage data (as low as 0.0001x) based on genome-wide SNPs. This approach will therefore increase the number of samples in evolutionary, ecological and archaeological research for which relevant biological information can be obtained.
Collapse
Affiliation(s)
- Giada Ferrari
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Lane M Atmore
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Daniel Makowiecki
- Department of Environmental Archaeology and Human Paleoecology, Institute of Archaeology, Nicolaus Copernicus University, Torun, Poland
| | - James H Barrett
- McDonald Institute for Archaeological Research, Department of Archaeology, University of Cambridge, Cambridge, UK.,Department of Archaeology and Cultural History, NTNU University Museum, Trondheim, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
47
|
Hu JL, Ci XQ, Liu ZF, Dormontt EE, Conran JG, Lowe AJ, Li J. Assessing candidate DNA barcodes for Chinese and internationally traded timber species. Mol Ecol Resour 2021; 22:1478-1492. [PMID: 34752673 DOI: 10.1111/1755-0998.13546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
Accurate identification of species from timber is an essential step to help control illegal logging and forest loss. However, current approaches to timber identification based on morphological and anatomical characteristics have limited species resolution. DNA barcoding is a proven tool for plant species identification, but there is a need to build reliable reference data across broad taxonomic and spatial scales. Here, we construct a species barcoding library consisting of 1550 taxonomically diverse timber species from 656 genera and 124 families, representing a comprehensive genetic reference data set for Chinese timber species and international commercial traded timber species, using four barcodes (rbcL, matK, trnH-psbA, and ITS2). The ITS2 fragment was found to be the most efficient locus for Chinese timber species identification among the four barcodes tested, both at the species and genus level, despite its low recovery rate. Nevertheless, the barcode combination matK+trnH-psbA+ITS2 was required as a complementary barcode to distinguish closely related species in complex data sets involving internationally traded timber species. Comparative analyses of family-level discrimination and species/genus ratios indicated that the inclusion of closely related species is an important factor affecting the resolution ability of barcodes for timber species verification. Our study indicates that although nuclear ITS2 is the most efficient single barcode for timber species authentication in China, complementary combinations like matK+trnH-psbA+ITS2 are required to provide broader discrimination power. These newly-generated sequences enrich the existing publicly available databases, especially for tropical and subtropical evergreen timber trees and this current timber species barcode reference library can serve as an important genetic resource for forestry monitoring, illegal logging prosecution and biodiversity projects.
Collapse
Affiliation(s)
- Jian-Lin Hu
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Qin Ci
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| | - Zhi-Fang Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Eleanor E Dormontt
- Advanced DNA, Identification and Forensic Facility, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - John G Conran
- Australian Centre for Evolutionary Biology and Biodiversity (ACEBB) and Sprigg Geobiology Centre (SGC), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew J Lowe
- Advanced DNA, Identification and Forensic Facility, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jie Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
48
|
Sleith RS, Karol KG. Global high-throughput genotyping of organellar genomes reveals insights into the origin and spread of invasive starry stonewort (Nitellopsis obtusa). Biol Invasions 2021. [DOI: 10.1007/s10530-021-02591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
AbstractAquatic invasive species are damaging to native ecosystems. Preventing their spread and achieving comprehensive control measures requires an understanding of the genetic structure of an invasive population. Organellar genomes (plastid and mitochondrial) are useful for population level analyses of invasive plant distributions. In this study we generate complete organellar reference genomes using PacBio sequencing, then use these reference sequences for SNP calling of high-throughput, multiplexed, Illumina based organellar sequencing of fresh and historical samples from across the native and invasive range of Nitellopsis obtusa (Desv. in Loisel.) J.Groves, an invasive macroalgae. The data generated by the analytical pipeline we develop indicate introduction to North America from Western Europe. A single nucleotide transversion in the plastid genome separates a group of five samples from Michigan and Wisconsin that either resulted from introductions of two closely related genotypes or a mutation that has arisen in the invasive range. This transversion will serve as a useful tool to understand how Nitellopsis obtusa moves across the landscape. The methods and analyses described here are broadly applicable to invasive and native plant and algae species, and allow efficient genotyping of variable quality samples, including 100-year-old herbarium specimens, to determine population structure and geographic distributions.
Collapse
|
49
|
Li L, Liu GM, Zhang ZR, Corlett RT, Yu WB. Characteristics of the complete chloroplast genome sequences of Stylidium debile and Stylidium petiolare (Stylidiaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3134-3136. [PMID: 34660891 PMCID: PMC8519543 DOI: 10.1080/23802359.2021.1985403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We report complete chloroplast genome (plastome) sequences of Stylidium debile (150,105 bp) and Stylidium petiolare (150,998 bp). Both plastomes had the typical quadripartite structure, with large single-copy (LSC) and small single-copy (SSC) regions separated by two inverted repeat (IR) regions. Both plastomes have lost the rps19 and ycf15 CDS genes, and had infA-like, rps22-like, and rps7-like pseudogenes. Moreover, IR regions were expanded by having trnH GUG tRNA and the rps22-like pseudogene. Plastome phylogenomic analyses showed that the two Stylidium species formed a monophyletic clade (BS = 100), sister to the Argophyllaceae (BS = 86/83). Sequence differences between the two Stylidium plastomes were 5011 sites, including 2166 variable sites and 2845 indels, with the petA-psbJ spacer the most variable region, followed by the trnK UUU-matK intron and trnG UUG-rps16 spacer.
Collapse
Affiliation(s)
- Lin Li
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, China
| | - Guo-Ming Liu
- Chinese Carnivorous Plants Garden, Tongxiang, China
| | - Zhi-Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, China
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Science, Nay Pyi Taw, Myanmar
| |
Collapse
|
50
|
Straube N, Preick M, Naylor GJP, Hofreiter M. Mitochondrial DNA sequencing of a wet-collection syntype demonstrates the importance of type material as genetic resource for lantern shark taxonomy (Chondrichthyes: Etmopteridae). ROYAL SOCIETY OPEN SCIENCE 2021; 8:210474. [PMID: 34540250 PMCID: PMC8441122 DOI: 10.1098/rsos.210474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
After initial detection of target archival DNA of a 116-year-old syntype specimen of the smooth lantern shark, Etmopterus pusillus, in a single-stranded DNA library, we shotgun-sequenced additional 9 million reads from this same DNA library. Sequencing reads were used for extracting mitochondrial sequence information for analyses of mitochondrial DNA characteristics and reconstruction of the mitochondrial genome. The archival DNA is highly fragmented. A total of 4599 mitochondrial reads were available for the genome reconstruction using an iterative mapping approach. The resulting genome sequence has 12 times coverage and a length of 16 741 bp. All 37 vertebrate mitochondrial loci plus the control region were identified and annotated. The mitochondrial NADH2 gene was subsequently used to place the syntype haplotype in a network comprising multiple E. pusillus samples from various distant localities as well as sequences from a morphological similar species, the shortfin smooth lantern shark Etmopterus joungi. Results confirm the almost global distribution of E. pusillus and suggest E. joungi to be a junior synonym of E. pusillus. As mitochondrial DNA often represents the only available reference information in non-model organisms, this study illustrates the importance of mitochondrial DNA from an aged, wet collection type specimen for taxonomy.
Collapse
Affiliation(s)
- Nicolas Straube
- Department of Natural History, University Museum of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Michaela Preick
- Evolutionary and Adaptive Genomics, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Gavin J. P. Naylor
- Florida Museum of Natural History, University of Florida, Cultural Plaza, 3215 Hull Road, Gainesville, FL 32611-2710, USA
| | - Michael Hofreiter
- Evolutionary and Adaptive Genomics, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|