1
|
Evans SE, Xu Y, Bergman ME, Ford SA, Liu Y, Sharkey TD, Phillips MA. Rubisco supplies pyruvate for the 2-C-methyl-D-erythritol-4-phosphate pathway. NATURE PLANTS 2024; 10:1453-1463. [PMID: 39367254 DOI: 10.1038/s41477-024-01791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/15/2024] [Indexed: 10/06/2024]
Abstract
RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (Rubisco) produces pyruvate in the chloroplast through β-elimination of the aci-carbanion intermediate1. Here we show that this side reaction supplies pyruvate for isoprenoid, fatty acid and branched-chain amino acid biosynthesis in photosynthetically active tissue. 13C labelling studies of intact Arabidopsis plants demonstrate that the total carbon commitment to pyruvate is too large for phosphoenolpyruvate to serve as a precursor. Low oxygen stimulates Rubisco carboxylase activity and increases pyruvate production and flux through the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, which supplies the precursors for plastidic isoprenoid biosynthesis2,3. Metabolome analysis of mutants defective in phosphoenolpyruvate or pyruvate import and biochemical characterization of isolated chloroplasts further support Rubisco as the main source of pyruvate in chloroplasts. Seedlings incorporated exogenous,13C-labelled pyruvate into MEP pathway intermediates, while adult plants did not, underscoring the developmental transition in pyruvate sourcing. Rubisco β-elimination leading to pyruvate constituted 0.7% of the product profile in in vitro assays, which translates to 2% of the total carbon leaving the Calvin-Benson-Bassham cycle. These insights solve the "pyruvate paradox"4, improve the fit of metabolic models for central metabolism and connect the MEP pathway directly to carbon assimilation.
Collapse
Affiliation(s)
- Sonia E Evans
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Yuan Xu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Matthew E Bergman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Scott A Ford
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Yingxia Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Michael A Phillips
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
2
|
Evans SE, Franks AE, Bergman ME, Sethna NS, Currie MA, Phillips MA. Plastid ancestors lacked a complete Entner-Doudoroff pathway, limiting plants to glycolysis and the pentose phosphate pathway. Nat Commun 2024; 15:1102. [PMID: 38321044 PMCID: PMC10847513 DOI: 10.1038/s41467-024-45384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
The Entner-Doudoroff (ED) pathway provides an alternative to glycolysis. It converts 6-phosphogluconate (6-PG) to glyceraldehyde-3-phosphate and pyruvate in two steps consisting of a dehydratase (EDD) and an aldolase (EDA). Here, we investigate its distribution and significance in higher plants and determine the ED pathway is restricted to prokaryotes due to the absence of EDD genes in eukaryotes. EDDs share a common origin with dihydroxy-acid dehydratases (DHADs) of the branched chain amino acid pathway (BCAA). Each dehydratase features strict substrate specificity. E. coli EDD dehydrates 6-PG to 2-keto-3-deoxy-6-phosphogluconate, while DHAD only dehydrates substrates from the BCAA pathway. Structural modeling identifies two divergent domains which account for their non-overlapping substrate affinities. Coupled enzyme assays confirm only EDD participates in the ED pathway. Plastid ancestors lacked EDD but transferred metabolically promiscuous EDA, which explains the absence of the ED pathway from the Viridiplantae and sporadic persistence of EDA genes across the plant kingdom.
Collapse
Affiliation(s)
- Sonia E Evans
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Anya E Franks
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Matthew E Bergman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Nasha S Sethna
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Mark A Currie
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Michael A Phillips
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
3
|
Bergman ME, Evans SE, Kuai X, Franks AE, Despres C, Phillips MA. Arabidopsis TGA256 Transcription Factors Suppress Salicylic-Acid-Induced Sucrose Starvation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3284. [PMID: 37765448 PMCID: PMC10534317 DOI: 10.3390/plants12183284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Salicylic acid (SA) is produced by plants in response to pathogen infection. SA binds the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) family of receptors to regulate both positive (NPR1) and negative (NPR3/4) plant immune responses by interacting with the clade II TGACG (TGA) motif-binding transcription factors (TGA2, TGA5, and TGA6). Here, we report that the principal metabolome-level response to SA treatment in Arabidopsis is a reduction in sucrose and other free sugars. We observed nearly identical effects in the tga256 triple mutant, which lacks all clade II TGA transcription factors. The tga256 mutant presents reduced leaf blade development and elongated hypocotyls, roots, and petioles consistent with sucrose starvation. No changes were detected in auxin levels, and mutant seedling growth could be restored to that of wild-type by sucrose supplementation. Although the retrograde signal 2-C-methyl-D-erythritol-2,4-cyclodiphosphate is known to stimulate SA biosynthesis and defense signaling, we detected no negative feedback by SA on this or any other intermediate of the 2-C-methyl-D-erythritol-4-phosphate pathway. Trehalose, a proxy for the sucrose regulator trehalose-6-phosphate (T6P), was highly reduced in tga256, suggesting that defense-related reductions in sugar availability may be controlled by changes in T6P levels. We conclude that the negative regulatory roles of TGA2/5/6 include maintaining sucrose levels in healthy plants. Disruption of TGA2/5/6-NPR3/4 inhibitory complexes by mutation or SA triggers sucrose reductions in Arabidopsis leaves, consistent with the 'pathogen starvation' hypothesis. These findings highlight sucrose availability as a mechanism by which TGA2/5/6 balance defense and development.
Collapse
Affiliation(s)
- Matthew E. Bergman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; (M.E.B.); (S.E.E.); (A.E.F.)
| | - Sonia E. Evans
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; (M.E.B.); (S.E.E.); (A.E.F.)
| | - Xiahezi Kuai
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada (C.D.)
| | - Anya E. Franks
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; (M.E.B.); (S.E.E.); (A.E.F.)
| | - Charles Despres
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada (C.D.)
| | - Michael A. Phillips
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; (M.E.B.); (S.E.E.); (A.E.F.)
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
4
|
Bergman ME, Evans SE, Davis B, Hamid R, Bajwa I, Jayathilake A, Chahal AK, Phillips MA. An Arabidopsis GCMS chemical ionization technique to quantify adaptive responses in central metabolism. PLANT PHYSIOLOGY 2022; 189:2072-2090. [PMID: 35512197 PMCID: PMC9342981 DOI: 10.1093/plphys/kiac207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 05/06/2023]
Abstract
We present a methodology to survey central metabolism in 13CO2-labeled Arabidopsis (Arabidopsis thaliana) rosettes by ammonia positive chemical ionization-gas chromatography-mass spectrometry. This technique preserves the molecular ion cluster of methyloxime/trimethylsilyl-derivatized analytes up to 1 kDa, providing unambiguous nominal mass assignment of >200 central metabolites and 13C incorporation rates into a subset of 111 from the tricarboxylic acid (TCA) cycle, photorespiratory pathway, amino acid metabolism, shikimate pathway, and lipid and sugar metabolism. In short-term labeling assays, we observed plateau labeling of ∼35% for intermediates of the photorespiratory cycle except for glyoxylate, which reached only ∼4% labeling and was also present at molar concentrations several fold lower than other photorespiratory intermediates. This suggests photorespiratory flux may involve alternate intermediate pools besides the generally accepted route through glyoxylate. Untargeted scans showed that in illuminated leaves, noncyclic TCA cycle flux and citrate export to the cytosol revert to a cyclic flux mode following methyl jasmonate (MJ) treatment. MJ also caused a block in the photorespiratory transamination of glyoxylate to glycine. Salicylic acid treatment induced the opposite effects in both cases, indicating the antagonistic relationship of these defense signaling hormones is preserved at the metabolome level. We provide complete chemical ionization spectra for 203 Arabidopsis metabolites from central metabolism, which uniformly feature the unfragmented pseudomolecular ion as the base peak. This unbiased, soft ionization technique is a powerful screening tool to identify adaptive metabolic trends in photosynthetic tissue and represents an important advance in methodology to measure plant metabolic flux.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Sonia E Evans
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Benjamin Davis
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Rehma Hamid
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Ibadat Bajwa
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Amreetha Jayathilake
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Anmol Kaur Chahal
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | | |
Collapse
|