1
|
Kashima M, Nomura Y, Nagano AJ. DeLTa-Seq: High-Throughput Targeted RNA-Seq of Rice Leaves Without RNA Purification. Methods Mol Biol 2025; 2869:113-121. [PMID: 39499472 DOI: 10.1007/978-1-0716-4204-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
DeLTa-seq is a high-throughput RNA-seq library preparation method that enables quantification of the expression of hundreds of arbitrarily selected genes without RNA purification. This method involves direct reverse transcription using rice leaf lysate and targeted RNA-seq library preparation. DeLTa-seq enables the precise quantification of gene expression with a small number of sequencing reads. This chapter provides detailed information on the design of gene-specific primers, sampling of rice leaves, preparation of lysates, direct-lysate reverse transcription, targeted RNA-seq library preparation, and bioinformatic analysis of DeLTa-seq data.
Collapse
Affiliation(s)
- Makoto Kashima
- Faculty of Science, Department of Molecular Biology, Toho University, Chiba, Japan
| | - Yasuyuki Nomura
- Research Institute for Food and Agriculture, Ryukoku University, Shiga, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Shiga, Japan.
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan.
| |
Collapse
|
2
|
Ueda Y. Development of an infiltration-based RNA preservation method for cryogen-free storage of leaves for gene expression analyses in field-grown plants. PLANT METHODS 2024; 20:187. [PMID: 39696461 DOI: 10.1186/s13007-024-01311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Gene expression is a fundamental process for plants to express their phenotype, and its analysis is the basis of molecular studies. However, the instability of RNA often poses an obstacle to analyzing plants grown in fields or remote locations where the availability of liquid nitrogen or dry ice is limited. To deepen our understanding of plant phenotypes and tolerance to field-specific stresses, it is crucial to develop methodologies to maintain plant RNA intact and safely transfer it for downstream analyses such as qPCR and RNA-seq. RESULTS In this study, the author developed a novel tissue preservation method that involved the infiltration of RNA preservation solution into the leaf apoplast using a syringe and subsequent storage at 4 °C. RNA-seq using samples stored for 5 d and principal component analyses showed that rice leaves treated with the infiltration method maintained the original transcriptome pattern better than those treated with the traditional method when the leaves were simply immersed in the solution. Additionally, it was also found that extracted RNA can be transported with minimum risk of degradation when it is bound to the membrane of RNA extraction kits. The developed infiltration method was applied to rice plants grown in a local farmer's field in northern Madagascar to analyze the expression of nutrient-responsive genes, suggesting nutrient imbalances in some of the fields examined. CONCLUSIONS This study showed that the developed infiltration method was effective in preserving the transcriptome status of rice and sorghum leaves when liquid nitrogen or a deep freezer is not available. The developed method was useful for diagnosing plants in the field based on the expression of nutrient-responsive marker genes. Moreover, the method used to protect RNA samples from degradation during transportation offers the possibility to use them for RNA-seq. This novel technique could pave the way for revealing the molecular basis of plant phenotypes by accelerating gene expression analyses using plant samples that are unique in the field.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
3
|
Asano R, Iizaka Y, Kashima M, Anzai Y, Yamaguchi S, Tada M. Unveiling dynamic hepatocyte plasticity in HepaRG cells with a dual CYP reporter system. PLoS One 2024; 19:e0308694. [PMID: 39527612 PMCID: PMC11554142 DOI: 10.1371/journal.pone.0308694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
Primary hepatocytes are widely utilized for investigating drug efficacy and toxicity, yet variations between batches and limited proliferation capacity present significant challenges. HepaRG cells are versatile cells, capable of maintaining an undifferentiated state and differentiating through dimethyl sulfoxide treatment, allowing for molecular analysis of hepatocyte plasticity. To elucidate the underlying molecular mechanisms of HepaRG cell plasticity, we used CYP3A4G/7R HepaRG cells engineered to express DsRed under the control of the fetus-specific CYP3A7 gene and EGFP under the adult-specific CYP3A4 gene promoter. In time-lapse imaging of CYP3A4G/7R HepaRG cells, we observed CYP3A7-DsRed expression transitioning from negative to positive during proliferation period and CYP3A4-GFP expression activating during differentiation. The de-differentiation potency of differentiated CYP3A4G/7R HepaRG cells was assessed using inhibitors and cytokines. It was found that Y-27632 (Y), A-83-01 (A), and CHIR99021 (C) (collectively referred to as YAC), which are known to promote liver regeneration in mice, did not induce CYP3A7-DsRed expression. Instead, these inhibitors increased CYP3A4-GFP expressing population. Furthermore, CHIR99021 alone increased CYP3A4-GFP-positive cells, while Wnt3a treatment increased CYP3A7-DsRed-positive cells, suggesting that Wnt signaling plays distinct roles in HepaRG cells. It was apparent that de-differentiated cells had increased CYP3A4 activity after a second round of differentiation, compared to differentiated cells after the first round. Transcriptomic analysis of HepaRG cells revealed distinct profiles between proliferative, differentiated, and de-differentiated states, highlighting their robust plasticity. Notably, hepatoblastic cells de-differentiated by YAC or C displayed transcriptome patterns similar to undifferentiated cells, whereas CYP3A7-DsRed and CYP3A4-GFP exhibited expression patterns different from those of undifferentiated cells. These findings underscore the dynamic nature of HepaRG cells while cautioning against solely relying on CYP3 family gene expression as a marker of differentiation.
Collapse
Affiliation(s)
- Riku Asano
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Yohei Iizaka
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Makoto Kashima
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Yojiro Anzai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Shinpei Yamaguchi
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Masako Tada
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| |
Collapse
|
4
|
Serson WR, Gishini MFS, Stupar RM, Stec AO, Armstrong PR, Hildebrand D. Identification and Candidate Gene Evaluation of a Large Fast Neutron-Induced Deletion Associated with a High-Oil Phenotype in Soybean Seeds. Genes (Basel) 2024; 15:892. [PMID: 39062671 PMCID: PMC11276498 DOI: 10.3390/genes15070892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Since the dawn of agriculture, crops have been genetically altered for desirable characteristics. This has included the selection of natural and induced mutants. Increasing the production of plant oils such as soybean (Glycine max) oil as a renewable resource for food and fuel is valuable. Successful breeding for higher oil levels in soybeans, however, usually results in reduced seed protein. A soybean fast neutron population was screened for oil content, and three high oil mutants with minimal reductions in protein levels were found. Three backcross F2 populations derived from these mutants exhibited segregation for seed oil content. DNA was pooled from the high-oil and normal-oil plants within each population and assessed by comparative genomic hybridization. A deletion encompassing 20 gene models on chromosome 14 was found to co-segregate with the high-oil trait in two of the three populations. Eighteen genes in the deleted region have known functions that appear unrelated to oil biosynthesis and accumulation pathways, while one of the unknown genes (Glyma.14G101900) may contribute to the regulation of lipid droplet formation. This high-oil trait can facilitate the breeding of high-oil soybeans without protein reduction, resulting in higher meal protein levels.
Collapse
Affiliation(s)
- William R. Serson
- Department of Biology, Penn State University, Lehigh Valley, Center Valley, PA 18034, USA
| | | | - Robert M. Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA; (R.M.S.); (A.O.S.)
| | - Adrian O. Stec
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA; (R.M.S.); (A.O.S.)
| | - Paul R. Armstrong
- United States Department of Agriculture-Agricultural Research Service, Manhattan, KS 66502, USA
| | - David Hildebrand
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA;
| |
Collapse
|
5
|
Kawakatsu Y, Okada R, Hara M, Tsutsui H, Yanagisawa N, Higashiyama T, Arima A, Baba Y, Kurotani KI, Notaguchi M. Microfluidic Device for Simple Diagnosis of Plant Growth Condition by Detecting miRNAs from Filtered Plant Extracts. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0162. [PMID: 38572468 PMCID: PMC10988387 DOI: 10.34133/plantphenomics.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
Plants are exposed to a variety of environmental stress, and starvation of inorganic phosphorus can be a major constraint in crop production. In plants, in response to phosphate deficiency in soil, miR399, a type of microRNA (miRNA), is up-regulated. By detecting miR399, the early diagnosis of phosphorus deficiency stress in plants can be accomplished. However, general miRNA detection methods require complicated experimental manipulations. Therefore, simple and rapid miRNA detection methods are required for early plant nutritional diagnosis. For the simple detection of miR399, microfluidic technology is suitable for point-of-care applications because of its ability to detect target molecules in small amounts in a short time and with simple manipulation. In this study, we developed a microfluidic device to detect miRNAs from filtered plant extracts for the easy diagnosis of plant growth conditions. To fabricate the microfluidic device, verification of the amine-terminated glass as the basis of the device and the DNA probe immobilization method on the glass was conducted. In this device, the target miRNAs were detected by fluorescence of sandwich hybridization in a microfluidic channel. For plant stress diagnostics using a microfluidic device, we developed a protocol for miRNA detection by validating the sample preparation buffer, filtering, and signal amplification. Using this system, endogenous sly-miR399 in tomatoes, which is expressed in response to phosphorus deficiency, was detected before the appearance of stress symptoms. This early diagnosis system of plant growth conditions has a potential to improve food production and sustainability through cultivation management.
Collapse
Affiliation(s)
- Yaichi Kawakatsu
- Bioscience and Biotechnology Center,
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ryo Okada
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mitsuo Hara
- Department of Molecular and Macromolecular Chemistry,
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Hiroki Tsutsui
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Naoki Yanagisawa
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute of Transformative Bio-Molecules,
Nagoya University, Nagoya 464-8601, Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute of Transformative Bio-Molecules,
Nagoya University, Nagoya 464-8601, Japan
- Department of Biological Sciences,
Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihide Arima
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Biomolecular Engineering,
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Ken-ichi Kurotani
- Bioscience and Biotechnology Center,
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center,
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Botany,
Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Kameoka H, Shimazaki S, Mashiguchi K, Watanabe B, Komatsu A, Yoda A, Mizuno Y, Kodama K, Okamoto M, Nomura T, Yamaguchi S, Kyozuka J. DIENELACTONE HYDROLASE LIKE PROTEIN1 negatively regulates the KAI2-ligand pathway in Marchantia polymorpha. Curr Biol 2023; 33:3505-3513.e5. [PMID: 37480853 DOI: 10.1016/j.cub.2023.06.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/25/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Karrikins are smoke-derived butenolides that induce seed germination and photomorphogenesis in a wide range of plants.1,2,3 KARRIKIN INSENSITIVE2 (KAI2), a paralog of a strigolactone receptor, perceives karrikins or their metabolized products in Arabidopsis thaliana.4,5,6,7 Furthermore, KAI2 is thought to perceive an unidentified plant hormone, called KAI2 ligand (KL).8,9 KL signal is transduced via the interaction between KAI2, MORE AXILLARY GROWTH2 (MAX2), and SUPPRESSOR of MORE AXILLARY GROWTH2 1 LIKE family proteins (SMXLs), followed by the degradation of SMXLs.4,7,10,11,12,13,14 This signaling pathway is conserved both in A. thaliana and the bryophyte Marchantia polymorpha.14 Although the KL signaling pathway is well characterized, the KL metabolism pathways remain poorly understood. Here, we show that DIENELACTONE HYDROLASE LIKE PROTEIN1 (DLP1) is a negative regulator of the KL pathway in M. polymorpha. The KL signal induces DLP1 expression. DLP1 overexpression lines phenocopied the Mpkai2a and Mpmax2 mutants, while dlp1 mutants phenocopied the Mpsmxl mutants. Mutations in the KL signaling genes largely suppressed these phenotypes, indicating that DLP1 acts upstream of the KL signaling pathway, although DLP1 also has KL pathway-independent functions. DLP1 exhibited enzymatic activity toward a potential substrate, suggesting the possibility that DLP1 works through KL inactivation. Investigation of DLP1 homologs in A. thaliana revealed that they do not play a major role in the KL pathway, suggesting different mechanisms for the KL signal regulation. Our findings provide new insights into the regulation of the KL signal in M. polymorpha and the evolution of the KL pathway in land plants.
Collapse
Affiliation(s)
- Hiromu Kameoka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan; PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| | - Shota Shimazaki
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kiyoshi Mashiguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Aino Komatsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Akiyoshi Yoda
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Yohei Mizuno
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kyoichi Kodama
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Masanori Okamoto
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Takahito Nomura
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
7
|
Tamotsu H, Koizumi K, Briones AV, Komiya R. Spatial distribution of three ARGONAUTEs regulates the anther phasiRNA pathway. Nat Commun 2023; 14:3333. [PMID: 37286636 DOI: 10.1038/s41467-023-38881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Argonaute protein (AGO) in association with small RNAs is the core machinery of RNA silencing, an essential mechanism for precise development and defense against pathogens in many organisms. Here, we identified two AGOs in rice anthers, AGO1b and AGO1d, that interact with phased small interfering RNAs (phasiRNAs) derived from numerous long non-coding RNAs. Moreover, 3D-immunoimaging and mutant analysis indicated that rice AGO1b and AGO1d cell type-specifically regulate anther development by acting as mobile carriers of these phasiRNAs from the somatic cell layers to the germ cells in anthers. Our study also highlights a new mode of reproductive RNA silencing via the specific nuclear and cytoplasmic localization of three AGOs, AGO1b, AGO1d, and MEL1, in rice pollen mother cells.
Collapse
Affiliation(s)
- Hinako Tamotsu
- Science and Technology Group, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Koji Koizumi
- Scientific Imaging Section, OIST, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | | | - Reina Komiya
- Science and Technology Group, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|