1
|
Rossi M, Belotti G, Mainardi L, Baroni G, Cerveri P. Feasibility of proton dosimetry overriding planning CT with daily CBCT elaborated through generative artificial intelligence tools. Comput Assist Surg (Abingdon) 2024; 29:2327981. [PMID: 38468391 DOI: 10.1080/24699322.2024.2327981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Radiotherapy commonly utilizes cone beam computed tomography (CBCT) for patient positioning and treatment monitoring. CBCT is deemed to be secure for patients, making it suitable for the delivery of fractional doses. However, limitations such as a narrow field of view, beam hardening, scattered radiation artifacts, and variability in pixel intensity hinder the direct use of raw CBCT for dose recalculation during treatment. To address this issue, reliable correction techniques are necessary to remove artifacts and remap pixel intensity into Hounsfield Units (HU) values. This study proposes a deep-learning framework for calibrating CBCT images acquired with narrow field of view (FOV) systems and demonstrates its potential use in proton treatment planning updates. Cycle-consistent generative adversarial networks (cGAN) processes raw CBCT to reduce scatter and remap HU. Monte Carlo simulation is used to generate CBCT scans, enabling the possibility to focus solely on the algorithm's ability to reduce artifacts and cupping effects without considering intra-patient longitudinal variability and producing a fair comparison between planning CT (pCT) and calibrated CBCT dosimetry. To showcase the viability of the approach using real-world data, experiments were also conducted using real CBCT. Tests were performed on a publicly available dataset of 40 patients who received ablative radiation therapy for pancreatic cancer. The simulated CBCT calibration led to a difference in proton dosimetry of less than 2%, compared to the planning CT. The potential toxicity effect on the organs at risk decreased from about 50% (uncalibrated) up the 2% (calibrated). The gamma pass rate at 3%/2 mm produced an improvement of about 37% in replicating the prescribed dose before and after calibration (53.78% vs 90.26%). Real data also confirmed this with slightly inferior performances for the same criteria (65.36% vs 87.20%). These results may confirm that generative artificial intelligence brings the use of narrow FOV CBCT scans incrementally closer to clinical translation in proton therapy planning updates.
Collapse
Affiliation(s)
- Matteo Rossi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Laboratory of Innovation in Sleep Medicine, Istituto Auxologico Italiano, Milan, Italy
| | - Gabriele Belotti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Bioengineering Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Pietro Cerveri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Laboratory of Innovation in Sleep Medicine, Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
2
|
Takaoka T, Yanagi T, Takahashi S, Shibamoto Y, Imai Y, Okazaki D, Niwa M, Torii A, Kita N, Takano S, Tomita N, Hiwatashi A. Comparing different boost concepts and beam configurations for proton therapy of pancreatic cancer. Phys Imaging Radiat Oncol 2024; 30:100583. [PMID: 38711921 PMCID: PMC11070341 DOI: 10.1016/j.phro.2024.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
Background and Purpose Interfractional geometrical and anatomical variations impact the accuracy of proton therapy for pancreatic cancer. This study investigated field-in-field (FIF) and simultaneous integrated boost (SIB) concepts for scanned proton therapy treatment with different beam configurations. Materials and Methods Robustly optimized treatment plans for fifteen patients were generated using FIF and SIB techniques with two, three, and four beams. The prescribed dose in 20 fractions was 60 Gy(RBE) for the internal gross tumor volume (IGTV) and 46 Gy(RBE) for the internal clinical target volume. Verification computed tomography (vCT) scans was performed on treatment days 1, 7, and 16. Initial treatment plans were recalculated on the rigidly registered vCTs. V100% and D95% for targets and D2cm3 for the stomach and duodenum were evaluated. Robustness evaluations (range uncertainty of 3.5 %) were performed to evaluate the stomach and duodenum dose-volume parameters. Results For all techniques, IGTV V100% and D95% decreased significantly when recalculating the dose on vCTs (p < 0.001). The median IGTV V100% and D95% over all vCTs ranged from 74.2 % to 90.2 % and 58.8 Gy(RBE) to 59.4 Gy(RBE), respectively. The FIF with two and three beams, and SIB with two beams maintained the highest IGTV V100% and D95%. In robustness evaluations, the ΔD2cm3 of stomach was highest in two beams plans, while the ΔD2cm3 of duodenum was highest in four beams plans, for both concepts. Conclusion Target coverage decreased when recalculating on CTs at different time for both concepts. The FIF with three beams maintained the highest IGTV coverage while sparing normal organs the most.
Collapse
Affiliation(s)
- Taiki Takaoka
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Yanagi
- Department of Radiation Oncology, Narita Memorial Proton Center, Toyohashi, Japan
| | - Shinsei Takahashi
- Department of Radiation Oncology, Narita Memorial Proton Center, Toyohashi, Japan
| | - Yuta Shibamoto
- Department of Radiation Oncology, Narita Memorial Proton Center, Toyohashi, Japan
| | - Yuto Imai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Radiation Oncology, Narita Memorial Proton Center, Toyohashi, Japan
| | - Dai Okazaki
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanari Niwa
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akira Torii
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nozomi Kita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Seiya Takano
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Natsuo Tomita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
3
|
Zhou Y, Sakai M, Li Y, Kubota Y, Okamoto M, Shiba S, Okazaki S, Matsui T, Ohno T. Robust Beam Selection Based on Water Equivalent Thickness Analysis in Passive Scattering Carbon-Ion Radiotherapy for Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15092520. [PMID: 37173985 PMCID: PMC10177227 DOI: 10.3390/cancers15092520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Carbon-ion radiotherapy (CIRT) is one of the most effective radiotherapeutic modalities. This study aimed to select robust-beam configurations (BC) by water equivalent thickness (WET) analysis in passive CIRT for pancreatic cancer. The study analyzed 110 computed tomography (CT) images and 600 dose distributions of eight patients with pancreatic cancer. The robustness in the beam range was evaluated using both planning and daily CT images, and two robust BCs for the rotating gantry and fixed port were selected. The planned, daily, and accumulated doses were calculated and compared after bone matching (BM) and tumor matching (TM). The dose-volume parameters for the target and organs at risk (OARs) were evaluated. Posterior oblique beams (120-240°) in the supine position and anteroposterior beams (0° and 180°) in the prone position were the most robust to WET changes. The mean CTV V95% reductions with TM were -3.8% and -5.2% with the BC for gantry and the BC for fixed ports, respectively. Despite ensuring robustness, the dose to the OARs increased slightly with WET-based BCs but remained below the dose constraint. The robustness of dose distribution can be improved by BCs that are robust to ΔWET. Robust BC with TM improves the accuracy of passive CIRT for pancreatic cancer.
Collapse
Affiliation(s)
- Yuan Zhou
- Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan
| | - Yang Li
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Yoshiki Kubota
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan
| | - Masahiko Okamoto
- Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan
| | - Shintaro Shiba
- Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan
| | - Shohei Okazaki
- Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan
| | - Toshiaki Matsui
- Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Tatsuya Ohno
- Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan
| |
Collapse
|
4
|
Chinniah S, Deisher AJ, Herman MG, Johnson JE, Mahajan A, Foote RL. Rotating Gantries Provide Individualized Beam Arrangements for Charged Particle Therapy. Cancers (Basel) 2023; 15:cancers15072044. [PMID: 37046705 PMCID: PMC10093456 DOI: 10.3390/cancers15072044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/12/2023] [Accepted: 03/25/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE This study evaluates beam angles used to generate highly individualized proton therapy treatment plans for patients eligible for carbon ion radiotherapy (CIRT). METHODS AND MATERIALS We retrospectively evaluated patients treated with pencil beam scanning intensity modulated proton therapy from 2015 to 2020 who had indications for CIRT. Patients were treated with a 190° rotating gantry with a robotic patient positioning system. Treatment plans were individualized to provide maximal prescription dose delivery to the tumor target volume while sparing organs at risk. The utilized beam angles were grouped, and anatomic sites with at least 10 different beam angles were sorted into histograms. RESULTS A total of 467 patients with 484 plans and 1196 unique beam angles were evaluated and characterized by anatomic treatment site and the number of beam angles utilized. The most common beam angles used were 0° and 180°. A wide range of beam angles were used in treating almost all anatomic sites. Only esophageal cancers had a predominantly unimodal grouping of beam angles. Pancreas cancers showed a modest grouping of beam angles. CONCLUSIONS The wide distribution of beam angles used to treat CIRT-eligible patients suggests that a rotating gantry is optimal to provide highly individualized beam arrangements.
Collapse
Affiliation(s)
- Siven Chinniah
- Mayo Clinic Alix School of Medicine, Jacksonville, FL 32224, USA
| | - Amanda J Deisher
- Department of Radiation Oncology, Division of Medical Physics, Rochester, MN 55905, USA
| | - Michael G Herman
- Department of Radiation Oncology, Division of Medical Physics, Rochester, MN 55905, USA
| | - Jedediah E Johnson
- Department of Radiation Oncology, Division of Medical Physics, Rochester, MN 55905, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Kawashima M, Tashiro M, Varnava M, Shiba S, Matsui T, Okazaki S, Li Y, Komatsu S, Kawamura H, Okamoto M, Ohno T. An adaptive planning strategy in carbon ion therapy of pancreatic cancer involving beam angle selection. Phys Imaging Radiat Oncol 2022; 21:35-41. [PMID: 35198743 PMCID: PMC8850338 DOI: 10.1016/j.phro.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Motohiro Kawashima
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
- Corresponding author at: 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511, Japan.
| | - Mutsumi Tashiro
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Maria Varnava
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Shintaro Shiba
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Toshiaki Matsui
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Shohei Okazaki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Yang Li
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Shuichiro Komatsu
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Masahiko Okamoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| |
Collapse
|
6
|
Zhou Y, Li Y, Kubota Y, Sakai M, Ohno T. Robust Angle Selection in Particle Therapy. Front Oncol 2021; 11:715025. [PMID: 34621672 PMCID: PMC8490826 DOI: 10.3389/fonc.2021.715025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
The popularity of particle radiotherapy has grown exponentially over recent years owing to the marked advantage of the depth–dose curve and its unique biological property. However, particle therapy is sensitive to changes in anatomical structure, and the dose distribution may deteriorate. In particle therapy, robust beam angle selection plays a crucial role in mitigating inter- and intrafractional variation, including daily patient setup uncertainties and tumor motion. With the development of a rotating gantry, angle optimization has gained increasing attention. Currently, several studies use the variation in the water equivalent thickness to quantify anatomical changes during treatment. This method seems helpful in determining better beam angles and improving the robustness of planning. Therefore, this review will discuss and summarize the robust beam angles at different tumor sites in particle radiotherapy.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yang Li
- Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Japan.,Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yoshiki Kubota
- Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Japan
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Japan
| |
Collapse
|
7
|
Abstract
Pancreatic cancer is the fourth most common cause of cancer-related morality worldwide, and the prognosis remains poor despite aggressive therapy. Carbon ion radiotherapy has favorable radiobiological and physical characteristics in the treatment, including a higher linear energy transfer and higher relative biological effectiveness, which increase the cell kill while potentially reducing toxicities to nearby normal tissues. Although small, early clinical studies have shown promise in both the resectable and unresectable settings to improve local control and overall survival while minimizing toxicities. Currently, there are several trials, including 2 sponsored by institutions in the United States, investigating the role of carbon ion radiotherapy for the treatment of locally advanced pancreatic cancer.
Collapse
|
8
|
Apisarnthanarax S, Bowen SR, Combs SE. Proton Beam Therapy and Carbon Ion Radiotherapy for Hepatocellular Carcinoma. Semin Radiat Oncol 2018; 28:309-320. [PMID: 30309641 DOI: 10.1016/j.semradonc.2018.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Charged particle therapy with proton beam therapy (PBT) and carbon ion radiotherapy (CIRT) has emerged as a promising radiation modality to minimize radiation hepatotoxicity while maintaining high rates of tumor local control. Both PBT and CIRT deposit the majority of their dose at the Bragg peak with little to no exit dose, resulting in superior sparing of normal liver tissue. CIRT has an additional biological advantage of increased relative biological effectiveness, which may allow for increased hypofractionation regimens. Retrospective and prospective studies have demonstrated encouragingly high rates of local control and overall survival and low rates of hepatotoxicity with PBT and CIRT. Ongoing randomized trials will evaluate the value of PBT over photons and other standard liver-directed therapies and future randomized trials are needed to assess the value of CIRT over PBT.
Collapse
Affiliation(s)
| | - Stephen R Bowen
- Departments of Radiation Oncology and Radiology, University of Washington, Seattle, WA
| | - Stephanie E Combs
- Department of Radiation Oncology, University Hospital Rechts der Isar, Technical University München, Munich, Germany; Institute of Innovative Radiotherapy, Helmholtzzentrum München, Munich, Germany
| |
Collapse
|
9
|
Stefanowicz S, Stützer K, Zschaeck S, Jakobi A, Troost EGC. Comparison of different treatment planning approaches for intensity-modulated proton therapy with simultaneous integrated boost for pancreatic cancer. Radiat Oncol 2018; 13:228. [PMID: 30466468 PMCID: PMC6249773 DOI: 10.1186/s13014-018-1165-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Neoadjuvant radio(chemo)therapy of non-metastasized, borderline resectable or unresectable locally advanced pancreatic cancer is complex and prone to cause side-effects, e.g., in gastrointestinal organs. Intensity-modulated proton therapy (IMPT) enables a high conformity to the targets while simultaneously sparing the normal tissue such that dose-escalation strategies come within reach. In this in silico feasibility study, we compared four IMPT planning strategies including robust multi-field optimization (rMFO) and a simultaneous integrated boost (SIB) for dose-escalation in pancreatic cancer patients. METHODS For six pancreatic cancer patients referred for adjuvant or primary radiochemotherapy, four rMFO-IMPT-SIB treatment plans each, consisting of two or three (non-)coplanar beam arrangements, were optimized. Dose values for both targets, i.e., the elective clinical target volume [CTV, prescribed dose Dpres = 51Gy(RBE)] and the boost target [Dpres = 66Gy(RBE)], for the organs at risk as well as target conformity and homogeneity indexes, derived from the dose volume histograms, were statistically compared. RESULTS All treatment plans of each strategy fulfilled the prescribed doses to the targets (Dpres(GTV,CTV) = 100%, D95%,(GTV,CTV) ≥ 95%, D2%,(GTV,CTV) ≤ 107%). No significant differences for the conformity index were found (p > 0.05), however, treatment plans with a three non-coplanar beam strategy were most homogenous to both targets (p < 0.045). The median value of all dosimetric results of the large and small bowel as well as for the liver and the spinal cord met the dose constraints with all beam arrangements. Irrespective of the planning strategies, the dose constraint for the duodenum and stomach were not met. Using the three-beam arrangements, the dose to the left kidney could be significant decreased when compared to a two-beam strategy (p < 0.045). CONCLUSION Based on our findings we recommend a three-beam configuration with at least one non-coplanar beam for dose-escalated SIB with rMFO-IMPT in advanced pancreatic cancer patients achieving a homogeneous dose distribution in the target while simultaneously minimizing the dose to the organs at risk. Further treatment planning studies on aspects of breathing and organ motion need to be performed.
Collapse
Affiliation(s)
- Sarah Stefanowicz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Kristin Stützer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Jakobi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany. .,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. .,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany. .,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
| |
Collapse
|
10
|
Simulation study of dosimetric effect in proton beam therapy using concomitant boost technique for unresectable pancreatic cancers. Jpn J Radiol 2018; 36:456-461. [DOI: 10.1007/s11604-018-0743-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/06/2018] [Indexed: 12/25/2022]
|
11
|
Dreher C, Habermehl D, Jäkel O, Combs SE. Effective radiotherapeutic treatment intensification in patients with pancreatic cancer: higher doses alone, higher RBE or both? Radiat Oncol 2017; 12:203. [PMID: 29282139 PMCID: PMC5745986 DOI: 10.1186/s13014-017-0945-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, especially in case of locally advanced stage has a poor prognosis. Radiotherapy in general can lead to tumor volume reduction, but further improvements, such as ion beam therapy have to be promoted in order to enable dose escalation, which in turn results in better local control rates and downsizing of the tumor itself. Ion beam therapy with its highly promising physical properties is also accompanied by distinct inter- and intrafractional challenges in case of robustness. First clinical results are promising, but further research in motion mitigation and biological treatment planning is necessary, in order to determine the best clinical rationales and conditions of ion beam therapy of pancreatic cancer. This review summarizes the current knowledge and studies on ion beam therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Constantin Dreher
- Department of Radiation Oncology, University Hospital Rechts der Isar, Technical University Munich (TUM), Ismaninger Str. 22 Munich, Germany
| | - Daniel Habermehl
- Department of Radiation Oncology, University Hospital Rechts der Isar, Technical University Munich (TUM), Ismaninger Str. 22 Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Oberschleißheim, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site München, München, Germany
| | - Oliver Jäkel
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, INF, 280 Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), INF 450, 69120 Heidelberg, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, University Hospital Rechts der Isar, Technical University Munich (TUM), Ismaninger Str. 22 Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Oberschleißheim, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site München, München, Germany
| |
Collapse
|
12
|
Maemura K, Mataki Y, Kurahara H, Kawasaki Y, Iino S, Sakoda M, Ueno S, Arimura T, Higashi R, Yoshiura T, Shinchi H, Natsugoe S. Comparison of proton beam radiotherapy and hyper-fractionated accelerated chemoradiotherapy for locally advanced pancreatic cancer. Pancreatology 2017; 17:833-838. [PMID: 28778480 DOI: 10.1016/j.pan.2017.07.191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/16/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES We compared the clinical outcomes of proton beam radiotherapy (PBRT) and those of conventional chemoradiotherapy via hyper-fractionated acceleration radiotherapy (HART) after induction chemotherapy in patients with locally advanced pancreatic cancer (LAPC). METHODS Twenty-five consecutive patients with LAPC received induction chemotherapy comprising gemcitabine and S-1 before radiotherapy. Of these, 15 and 10 were enrolled in the HART and PBRT groups, respectively. RESULTS Moderate hematological toxicities were observed only in the HART group, whereas two patients in the PBRT group developed duodenal ulcers. All patients underwent scheduled radiotherapy, with overall disease control rates of 93% and 80% in the HART and PBRT groups, respectively. Local progression was observed in 60% and 40% of patients in the HART and PBRT groups, respectively. However, there was no statistical significance between the two groups regarding the median time to progression (15.4 months in both) and the median overall survival (23.4 v.s. 22.3 months). CONCLUSIONS PBRT was feasible and tolerable, and scheduled protocols could be completed with careful attention to gastrointestinal ulcers. Despite the lower incidence of local recurrence, PBRT did not yield obvious progression control and survival benefits relative to conventional chemoradiotherapy.
Collapse
Affiliation(s)
- Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan.
| | - Yuko Mataki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan
| | - Yota Kawasaki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan
| | - Satoshi Iino
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan
| | - Masahiko Sakoda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan
| | - Shinichi Ueno
- Clinical Oncology, Kagoshima University, Kagoshima, Japan
| | - Takeshi Arimura
- Medipolis Proton Therapy and Research Center, Ibusuki, Japan
| | - Ryutaro Higashi
- Department of Radiology, Kagoshima University, Kagoshima, Japan
| | | | - Hiroyuki Shinchi
- Graduate School of Health Sciences, Kagoshima University, Kagoshima, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
13
|
Dreher C, Scholz C, Pommer M, Brons S, Prokesch H, Ecker S, Debus J, Jäkel O, Combs SE, Habermehl D. Optimization of Carbon Ion Treatment Plans by Integrating Tissue Specific α/β-Values for Patients with Non-Resectable Pancreatic Cancer. PLoS One 2016; 11:e0164473. [PMID: 27736917 PMCID: PMC5063341 DOI: 10.1371/journal.pone.0164473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 09/26/2016] [Indexed: 12/11/2022] Open
Abstract
Background The aim of the thesis is to improve treatment plans of carbon ion irradiation by integrating the tissues’ specific αβ-values for patients with locally advanced pancreatic cancer (LAPC). Material and Methods Five patients with LAPC were included in this study. By the use of the treatment planning system Syngo RT Planning (Siemens, Erlangen, Germany) treatment plans with carbon ion beams have been created. Dose calculation was based on αβ-values for both organs at risk (OAR) and the tumor. Twenty-five treatment plans and thirty-five forward calculations were created. With reference to the anatomy five field configurations were included. Single Beam Optimization (SBO) and Intensity Modulated Particle Therapy (IMPT) were used for optimization. The plans were analyzed with respect to both dose distributions and individual anatomy. The plans were evaluated using a customized index. Results With regard to the target, a field setup with one single posterior field achieves the highest score in our index. Field setups made up of three fields achieve good results in OAR sparing. Nevertheless, the field setup with one field is superior in complex topographic conditions. But, allocating an αβ-value of 2 Gy to the spinal cord leads to critical high maximum doses in the spinal cord. The evaluation of dose profiles showed significant dose peaks at borders of the αβ-gradient, especially in case of a single posterior field. Conclusion Optimization with specific αβ-values allows a more accurate view on dose distribution than previously. A field setup with one single posterior field achieves good results in case of difficult topographic conditions, but leads to high maximum doses to the spinal cord. So, field setups with multiple fields seem to be more adequate in case of LAPC, being surrounded by highly radiosensitive normal tissues.
Collapse
Affiliation(s)
- Constantin Dreher
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Radiooncology, Klinikum rechts der Isar, Munich, Germany
- * E-mail:
| | - Christian Scholz
- Imaging & Therapy Division, Healthcare Sector, Siemens AG, Mannheim, Germany
| | - Mira Pommer
- Hottinger Baldwin Messtechnik GmbH, Darmstadt, Germany
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg, Germany
| | - Hannah Prokesch
- Heidelberg Ion Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg, Germany
| | - Swantje Ecker
- Heidelberg Ion Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Jäkel
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie E. Combs
- Department of Radiooncology, Klinikum rechts der Isar, Munich, Germany
- Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, München, Germany
| | - Daniel Habermehl
- Department of Radiooncology, Klinikum rechts der Isar, Munich, Germany
- Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, München, Germany
| |
Collapse
|
14
|
Steitz J, Naumann P, Ulrich S, Haefner MF, Sterzing F, Oelfke U, Bangert M. Worst case optimization for interfractional motion mitigation in carbon ion therapy of pancreatic cancer. Radiat Oncol 2016; 11:134. [PMID: 27717378 PMCID: PMC5055683 DOI: 10.1186/s13014-016-0705-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The efficacy of radiation therapy treatments for pancreatic cancer is compromised by abdominal motion which limits the spatial accuracy for dose delivery - especially for particles. In this work we investigate the potential of worst case optimization for interfractional offline motion mitigation in carbon ion treatments of pancreatic cancer. METHODS We implement a worst case optimization algorithm that explicitly models the relative biological effectiveness of carbon ions during inverse planning. We perform a comparative treatment planning study for seven pancreatic cancer patients. Treatment plans that have been generated using worst case optimization are compared against (1) conventional intensity-modulated carbon ion therapy, (2) single field uniform dose carbon ion therapy, and (3) an ideal yet impractical scenario relying on daily re-planning. The dosimetric quality and robustness of the resulting treatment plans is evaluated using reconstructions of the daily delivered dose distributions on fractional control CTs. RESULTS Idealized daily re-planning consistently gives the best dosimetric results with regard to both target coverage and organ at risk sparing. The absolute reduction of D 95 within the gross tumor volume during fractional dose reconstruction is most pronounced for conventional intensity-modulated carbon ion therapy. Single field uniform dose optimization exhibits no substantial reduction for six of seven patients and values for D 95 for worst case optimization fall in between. The treated volume (D>95 % prescription dose) outside of the gross tumor volume is reduced by a factor of two by worst case optimization compared to conventional optimization and single field uniform dose optimization. Single field uniform dose optimization comes at an increased radiation exposure of normal tissues, e.g. ≈2 Gy (RBE) in the mean dose in the kidneys compared to conventional and worst case optimization and ≈4 Gy (RBE) in D 1 in the spinal cord compared to worst case optimization. CONCLUSION Interfractional motion substantially deteriorates dose distributions for carbon ion treatments of pancreatic cancer patients. Single field uniform dose optimization mitigates the negative influence of motion on target coverage at an increased radiation exposure of normal tissue. Worst case optimization enables an exploration of the trade-off between robust target coverage and organ at risk sparing during inverse treatment planning beyond margin concepts.
Collapse
Affiliation(s)
- Julian Steitz
- German Cancer Reserach Center - DKFZ, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Patrick Naumann
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Silke Ulrich
- German Cancer Reserach Center - DKFZ, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Matthias F Haefner
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Sterzing
- German Cancer Reserach Center - DKFZ, Im Neuenheimer Feld 280, Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Uwe Oelfke
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Mark Bangert
- German Cancer Reserach Center - DKFZ, Im Neuenheimer Feld 280, Heidelberg, Germany.
| |
Collapse
|