1
|
Aizawa R, Ogata T, Goto T, Nakamura K, Takayama K, Ashida R, Kita Y, Sumiyoshi T, Murakami K, Mizuno K, Kobayashi T, Mizowaki T. Highly hypofractionated biaxially rotational dynamic radiation therapy (BROAD-RT) for high-risk prostate cancer. Cancer Sci 2025. [PMID: 39834115 DOI: 10.1111/cas.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025] Open
Abstract
To report clinical outcomes following highly hypofractionated biaxially rotational dynamic radiation therapy (BROAD-RT), a unique radiation therapy method that facilitates non-coplanar volumetric-modulated arc therapy (VMAT) without the need to rotate the couch or reposition the patient, for high-risk prostate cancer (PCa) with simultaneous integrated boost (SIB) for intra-prostatic dominant lesions (IPDLs), we performed a single-center prospective pilot study. In this study, patients with high-risk PCa according to the D'Amico classification or those with cT3aN0M0 PCa were eligible. VMAT was performed using BROAD-RT, and a dose of 54 Gy in 15 fractions was prescribed for the prostate in combination with SIB for IPDLs at a dose of 57 Gy in 15 fractions. Short-term neoadjuvant androgen-deprivation therapy (median: 6.9 months) was conducted. Neither adjuvant androgen-deprivation therapy nor fiducial marker implantation to the prostate was applied for any patient. In total, 26 patients were registered in this study between August 2018 and November 2020. Their median age was 73 years at the initiation of RT. The median follow-up period was 49.7 months. The 4-year cumulative incidence rates of grade 2 late GU and GI toxicities were 15.4 and 3.8%, respectively. No grade 3 or higher acute or late toxicities were observed. The 4-year biochemical failure-free survival rates were 87.7%. In conclusion, highly hypofractionated RT using BROAD-RT for high-risk PCa with SIB for IPDLs was feasible and facilitated favorable oncological outcomes. Therefore, this approach is considered a promising method to achieve safe dose escalation and shorten the treatment duration.
Collapse
Affiliation(s)
- Rihito Aizawa
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ogata
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyonao Nakamura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Radiation Oncology, Kyoto City Hospital, Kyoto, Japan
| | - Kenji Takayama
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Radiotherapy, Tenri Hospital, Tenri, Japan
| | - Ryo Ashida
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Radiation Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yuki Kita
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Sumiyoshi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaoru Murakami
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kei Mizuno
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Terabe M, Kamomae T, Taniguchi Y, Ichikawa H, Yamada T, Miyachi T, Miyauchi R, Ito J, Ishihara S. Comparison of single- and multi-isocenter planning with Dynamic WaveArc for multiple brain metastases. JOURNAL OF RADIATION RESEARCH 2024:rrae098. [PMID: 39724931 DOI: 10.1093/jrr/rrae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Indexed: 12/28/2024]
Abstract
Dynamic WaveArc (DWA) is a technique used for continuous, non-coplanar volumetric-modulated arc therapy on the Vero4DRT platform. This study aimed to evaluate the application of single-isocenter DWA (SI-DWA) for treating multiple brain metastases by comparing dose distribution and irradiation time with multi-isocenter DWA (MI-DWA) through retrospective treatment planning. Treatment plans were developed for SI-DWA and MI-DWA in 14 cases with 3-5 brain metastases. Parameters assessed included target dose indices, such as conformity index (CI) of the planning target volume (PTV), volumes of normal brain excluding gross tumor volumes (GTVs) receiving a single dose equivalent of 14 Gy (V14), V30%, V20%, V10%, volumes of normal brain, including GTVs receiving a single dose equivalent of 12 Gy (V12), D2% for other organs at risk, and beam-on time. SI-DWA showed inferior CI, V14, and V12 values for lesions with PTV volumes <1 cc, whereas it performed equivalently to MI-DWA for lesions with PTV volumes ≥1 cc. SI-DWA resulted in higher volumes of normal brain receiving low doses compared to MI-DWA. SI-DWA exhibited significantly shorter beam-on times than MI-DWA. In conclusion, SI-DWA is an effective method for treating multiple brain metastases with PTV volumes ≥1 cc, offering an index of radiation-induced brain necrosis comparable with MI-DWA while allowing for shorter irradiation times.
Collapse
Affiliation(s)
- Mitsuaki Terabe
- Department of Radiological Technology, Toyohashi Municipal Hospital, 50 Hakken-nishi, Aotake-cho, Toyohashi, Aichi, 441-8570, Japan
| | - Takeshi Kamomae
- Radioisotope Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yuki Taniguchi
- Department of Radiological Technology, Toyohashi Municipal Hospital, 50 Hakken-nishi, Aotake-cho, Toyohashi, Aichi, 441-8570, Japan
| | - Hajime Ichikawa
- Department of Radiological Technology, Toyohashi Municipal Hospital, 50 Hakken-nishi, Aotake-cho, Toyohashi, Aichi, 441-8570, Japan
- Department of Quantum Medical Technology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan
| | - Takehiro Yamada
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Takayuki Miyachi
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Risei Miyauchi
- Department of Radiology, Toyohashi Municipal Hospital, 50 Hakken-nishi, Aotake-cho, Toyohashi, Aichi, 441-8570, Japan
| | - Junji Ito
- Department of Radiology, Toyohashi Municipal Hospital, 50 Hakken-nishi, Aotake-cho, Toyohashi, Aichi, 441-8570, Japan
| | - Shunichi Ishihara
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
3
|
Xue X, Luan S, Ding Y, Li X, Li D, Wang J, Ma C, Jiang M, Wei W, Wang X. Treatment plan complexity quantification for predicting gamma passing rates in patient-specific quality assurance for stereotactic volumetric modulated arc therapy. J Appl Clin Med Phys 2024; 25:e14432. [PMID: 38889335 PMCID: PMC11492345 DOI: 10.1002/acm2.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
PURPOSE To investigate the beam complexity of stereotactic Volumetric Modulated Arc Therapy (VMAT) plans quantitively and predict gamma passing rates (GPRs) using machine learning. METHODS The entire dataset is exclusively made of stereotactic VMAT plans (301 plans with 594 beams) from Varian Edge LINAC. The GPRs were analyzed using Varian's portal dosimetry with 2%/2 mm criteria. A total of 27 metrics were calculated to investigate the correlation between metrics and GPRs. Random forest and gradient boosting models were developed and trained to predict the GPRs based on the extracted complexity features. The threshold values of complexity metric were obtained to predict a given beam to pass or fail from ROC curve analysis. RESULTS The three moderately significant values of Spearman's rank correlation to GPRs were 0.508 (p < 0.001), 0.445 (p < 0.001), and -0.416 (p < 0.001) for proposed metric LAAM, the ratio of the average aperture area over jaw area (AAJA) and index of modulation, respectively. The random forest method achieved 98.74% prediction accuracy with mean absolute error of 1.23% using five-fold cross-validation, and 98.71% with 1.25% for gradient boosting regressor method, respectively. LAAM, leaf travelling distance (LT), AAJA, LT modulation complexity score (LTMCS) and index of modulation, were the top five most important complexity features. The LAAM metric showed the best performance with AUC value of 0.801, and threshold value of 0.365. CONCLUSIONS The calculated metrics were effective in quantifying the complexity of stereotactic VMAT plans. We have demonstrated that the GPRs could be accurately predicted using machine learning methods based on extracted complexity metrics. The quantification of complexity and machine learning methods have the potential to improve stereotactic treatment planning and identify the failure of QA results promptly.
Collapse
Affiliation(s)
- Xudong Xue
- Department of Radiation OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shunyao Luan
- Department of Radiation OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Optoelectronic EngineeringHuazhong University of Science and TechnologyWuhanChina
| | - Yi Ding
- Department of Radiation OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiangbin Li
- Department of Radiation OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Li
- Department of Radiation OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jingya Wang
- Department of Radiation OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chi Ma
- Department of Radiation OncologyRutgers‐Cancer Institute of New JerseyRutgers‐Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Man Jiang
- Department of Nuclear Engineering and TechnologySchool of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhanChina
| | - Wei Wei
- Department of Radiation OncologyHubei Cancer HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao Wang
- Department of Radiation OncologyRutgers‐Cancer Institute of New JerseyRutgers‐Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| |
Collapse
|
4
|
Cognition: development of a cognitive testing battery on the iPad for the evaluation of patients with brain Mets. Acta Neurol Belg 2022; 122:145-152. [PMID: 34302640 DOI: 10.1007/s13760-021-01744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
To make assessment of neurocognitive decline in patients with brain metastases more reliable and feasible, Brainlab AG developed an application 'Cognition' for the iPad by gamifying validated paper and pencil tests. This study aims at validating the computerized tests. We assessed reliability and comparability of 'Cognition' with similar well-established paper and pencil tests in two consecutive sessions per participant. The electronic tests used the same assignments with different stimuli than the paper and pencil tests. Domains involved are learning and memory, attention and processing speed, verbal fluency and executive functions. In total 5 employees and 25 cancer patients without disease in the CNS participated, of whom 24 completed both sessions. Reliability was found satisfying for the domains learning and memory (p = 0.08; p = 0.612; p = 0.4445) and verbal fluency (p = 0.064). A learning effect showed for attention and processing speed (p = 0.001) while executive functioning showed a significant decline, possibly due to radiotherapy-related fatigue (p = 0.013). Concerning comparability between electronic and paper results, a significant correlation was found for attention and processing speed (p = 0.000), for verbal fluency (p = 0.03), for executive functions (p = 0.000), but not for learning and memory (p = 0.41; p = 0.25). Overall 'Cognition' showed moderate comparability, probably caused by the consecution of tests during sessions and the unfamiliarity with electronic test in older patients. After improving its functionality, the application needs to be validated in patients with brain metastases before it can detect cognitive decline and possible early radiation toxicity or relapses.
Collapse
|
5
|
Wang G, Wang H, Zhuang H, Yang R. An Investigation of Non-Coplanar Volumetric Modulated Radiation Therapy for Locally Advanced Unresectable Pancreatic Cancer Using a Trajectory Optimization Method. Front Oncol 2021; 11:717634. [PMID: 34604054 PMCID: PMC8485751 DOI: 10.3389/fonc.2021.717634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE This study was conducted in order to develop a trajectory optimization algorithm for non-coplanar volumetric modulated arc therapy (VMAT) and investigate the potential of organs at risk (OARs) sparing in locally advanced pancreatic cancer patients using non-coplanar VMAT. METHODS AND MATERIALS Firstly, a cost map that represents the ray-OAR voxel intersections at each source position was generated using a ray-tracing algorithm. A graph search algorithm was then used to determine the least-cost path from the cost map. Lastly, full arcs or partial arcs were selected based on the least-cost path to generate the non-coplanar VMAT (ncVMAT) trajectories. Clinical coplanar VMAT (coVMAT) plans for 11 patients diagnosed with locally advanced unresectable pancreatic cancer (LAPC) receiving 45 to 70 Gy in 25 fractions were replanned using non-coplanar VMAT trajectories. Both coplanar and non-coplanar plans were normalized to cover 95% of the PTV45 Gy volume with a prescription dose of 45 Gy. The conformity index (CI), homogeneity index (HI), PTV coverage, and dose to the OARs were compared between coVMAT and ncVMAT plans. RESULTS With ncVMAT, the mean coverage of PTV50 Gy, PTV54 Gy, PTV60 Gy, and PTV70 Gy increased significantly. The mean conformity index of PTV45 Gy, PTV54 Gy, and PTV70 Gy was also improved in the ncVMAT plans. Compared with coVMAT plans, the ncVMAT plans resulted in significantly lower doses to the spinal cord, bilateral kidneys, stomach, and duodenum. The maximum dose to the spinal cord decreased by 6.11%. The mean dose to the left and right kidneys decreased by an average of 5.52% and 11.71%, respectively. The D max, D mean, and D 15% of the stomach were reduced by an average of 7.45%, 15.82%, and 16.79%, separately. The D 15% and D mean of the duodenum decreased 6.38% and 5.64%, respectively. CONCLUSION A trajectory optimization algorithm was developed for non-coplanar VMAT. Compared with conventional coplanar VMAT, non-coplanar VMAT resulted in improved coverage and conformity to the targets. The sparing of OARs was significantly improved in non-coplanar VMAT compared with coVMAT plans for locally advanced pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | - Ruijie Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Treatment planning comparison between dynamic wave arc and volumetric modulated arc therapies for prostate-cancer treatment. Med Dosim 2021; 47:48-53. [PMID: 34538693 DOI: 10.1016/j.meddos.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/05/2021] [Accepted: 08/08/2021] [Indexed: 11/21/2022]
Abstract
The aim of this study was to compare the quality of dynamic wave arc (DWA) and coplanar volumetric modulated arc therapy (co-VMAT) plans for the treatment of localized prostate cancer. The planning target volume (PTV)-rectum, a section of the PTV comprising the PTV minus that of the rectum, received 78 Gy in 39 fractions as the mean dose to the PTV-rectum. The DWA and co-VMAT plans were generated for each patient using the RayStation treatment planning system for the Vero4DRT system. The PTV-rectum dose (D95%: the percent dose irradiating 95% of the volume), homogeneity index (HI), conformity index (CI), as well as doses to the bladder wall, rectum wall (V10-70 Gy: the percent volume receiving 10-70 Gy), and bilateral femoral heads of the DWA and co-VMAT plans were compared. The output monitor unit (MU) and delivery time obtained for each set of plans were also investigated. In terms of target coverage, the DWA plans provided an average D95% of 75.5 Gy, which was comparable to the co-VMAT-plan D95% of 75.2 Gy (p < 0.05). The HI was significantly better with the DWA. As for the DWA plans, the bladder-wall volume receiving 10, 20, 30, and 40 Gy (V10-40 Gy) was significantly smaller than that of the co-VMAT plans, and the volume of the rectal wall receiving 10 Gy (V10Gy) was significantly larger than that of the co-VMAT plans. The DWA plans yielded a reduced dose to the bilateral femoral heads compared with the co-VMAT plans (p < 0.05). The values of the CI and MU, and the delivery time exhibited no significant differences between the DWA and co-VMAT plans. The DWA plan is a feasible treatment option for prostate cancer radiotherapy.
Collapse
|
7
|
Sharfo AWM, Rossi L, Dirkx MLP, Breedveld S, Aluwini S, Heijmen BJM. Complementing Prostate SBRT VMAT With a Two-Beam Non-Coplanar IMRT Class Solution to Enhance Rectum and Bladder Sparing With Minimum Increase in Treatment Time. Front Oncol 2021; 11:620978. [PMID: 33816253 PMCID: PMC8018286 DOI: 10.3389/fonc.2021.620978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Purpose Enhance rectum and bladder sparing in prostate SBRT with minimum increase in treatment time by complementing dual-arc coplanar VMAT with a two-beam non-coplanar IMRT class solution (CS). Methods For twenty patients, an optimizer for automated multi-criterial planning with integrated beam angle optimization (BAO) was used to generate dual-arc VMAT plans, supplemented with five non-coplanar IMRT beams with individually optimized orientations (VMAT+5). In all plan generations, reduction of high rectum dose had the highest priority after obtaining adequate PTV coverage. A CS with two most preferred directions in VMAT+5 and largest rectum dose reductions compared to dual-arc VMAT was then selected to define VMAT+CS. VMAT+CS was compared with automatically generated i) dual-arc coplanar VMAT plans (VMAT), ii) VMAT+5 plans, and iii) IMRT plans with 30 patient-specific non-coplanar beam orientations (30-NCP). Plans were generated for a 4 x 9.5 Gy fractionation scheme. Differences in PTV doses, healthy tissue sparing, and computation and treatment delivery times were quantified. Results For equal PTV coverage, VMAT+CS, consisting of dual-arc VMAT supplemented with two fixed, non-coplanar IMRT beams with fixed Gantry/Couch angles of 65°/30° and 295°/-30°, significantly reduced OAR doses and the dose bath, compared to dual-arc VMAT. Mean relative differences in rectum Dmean, D1cc, V40GyEq and V60GyEq were 19.4 ± 10.6%, 4.2 ± 2.7%, 34.9 ± 20.3%, and 39.7 ± 23.2%, respectively (all p<0.001). There was no difference in bladder D1cc, while bladder Dmean reduced by 17.9 ± 11.0% (p<0.001). Also, the clinically evaluated urethra D5%, D10%, and D50% showed small, but statistically significant improvements. All patient VX with X = 2, 5, 10, 20, and 30 Gy were reduced with VMAT+CS, with a maximum relative reduction for V10Gy of 19.0 ± 7.3% (p<0.001). Total delivery times with VMAT+CS only increased by 1.9 ± 0.7 min compared to VMAT (9.1 ± 0.7 min). The dosimetric quality of VMAT+CS plans was equivalent to VMAT+5, while optimization times were reduced by a factor of 25 due to avoidance of individualized BAO. Compared to VMAT+CS, the 30-NCP plans were only favorable in terms of dose bath, at the cost of much enhanced optimization and delivery times. Conclusions The proposed two-beam non-coplanar class solution to complement coplanar dual-arc VMAT resulted in substantial plan quality improvements for OARs (especially rectum) and reduced irradiated patient volumes with minor increases in treatment delivery times.
Collapse
Affiliation(s)
- Abdul Wahab M Sharfo
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Linda Rossi
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Maarten L P Dirkx
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Sebastiaan Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Shafak Aluwini
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, Netherlands
| | - Ben J M Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
8
|
Witulla B, Ziegler M, Brandt T, Prasetio H, Fietkau R, Bert C. Quality assurance for dynamic tumor tracking. Z Med Phys 2021; 31:388-393. [PMID: 33622568 DOI: 10.1016/j.zemedi.2021.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
The purpose of this work was to develop a treatment plan verification routine for a linear accelerator dedicated to SBRT treatments with gimbal based dynamic tumor tracking using three commercially available phantoms. The accelerator system has two special features: It operates with a rotation of the ring shaped gantry instead of a couch rotation and target motion can be compensated for via a gimbal system (dynamic tumor tracking, DTT). DTT plans were each measured with the three different phantoms. Afterwards the measured dose distribution was compared with the calculated dose distribution via global Gamma Index analysis (3mm / 3%, threshold: 10%). The global gamma pass rates were on average (93.5±7.2) % for ArcCHECK, (98.0±2.6) % for OCTAVIUS® 4D and (98.4±4.2) % for MatriXX Evolution. All three systems could be used for quality assurance with ring rotations and DTT, however, each with limitations.
Collapse
Affiliation(s)
- Barbara Witulla
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| | - Marc Ziegler
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| | - Tobias Brandt
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| | - Heru Prasetio
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany.
| |
Collapse
|
9
|
Hiraoka M, Mizowaki T, Matsuo Y, Nakamura M, Verellen D. The gimbaled-head radiotherapy system: Rise and downfall of a dedicated system for dynamic tumor tracking with real-time monitoring and dynamic WaveArc. Radiother Oncol 2020; 153:311-318. [PMID: 32659250 DOI: 10.1016/j.radonc.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
A gimbaled-head radiotherapy device was developed by industry-academic collaborations, with a concept of robust structures whilst maintaining high flexibilities, and its clinical application started in 2008. The unique structures with multi-image guidance functions initiated 2 new treatment modalities. One is dynamic tumor tracking radiotherapy with real time monitoring (DTTRM), which enables 4-D radiotherapy without prolongation of radiotherapy treatment time. This treatment has become clinically feasible for stereotactic body radiotherapy (SBRT) of lung cancers and liver tumors, and intensity-modulated radiotherapy (IMRT) for pancreatic cancers. The second one is Dynamic WaveArc therapy (DWA), the non-coplanar versatility of the SBRT system by combining the gantry-ring synchronized rotation with dynamic multileaf collimator optimization. DWA opens the possibility to create patient-individualized treatment plans, allowing additional flexibility in organ at risk sparing while preserving dosimetric robust delivery. The clinical usefulness of the DWA has been preliminary shown for those tumors in the prostate, breast and skull base. Prospective clinical trials are under way with a support of the national funding of Japan for DTTRM and DWA, respectively. Marketing of the system was terminated in 2016 due to a commercial decision. However, lessons can be learned from the development process of this device that might be useful for those who have interests in new technologies and clinical applications in radiation oncology. This review article aims to summarize the developments and achievements of a gimbaled-head radiotherapy device with a focus on DTTRM and DWA.
Collapse
Affiliation(s)
- Masahiro Hiraoka
- Department of Radiation Oncology, Japanese Red Cross Wakayama Medical Center, Japan.
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Japan
| | - Mitsuhiro Nakamura
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan
| | - Dirk Verellen
- Iridium Kankernetwerk, Antwerp University, Faculty of Medicine and Health Sciences, Belgium
| |
Collapse
|
10
|
Ono T, Hirashima H, Iramina H, Mukumoto N, Miyabe Y, Nakamura M, Mizowaki T. Prediction of dosimetric accuracy for VMAT plans using plan complexity parameters via machine learning. Med Phys 2019; 46:3823-3832. [PMID: 31222758 DOI: 10.1002/mp.13669] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The dosimetric accuracies of volumetric modulated arc therapy (VMAT) plans were predicted using plan complexity parameters via machine learning. METHODS The dataset consisted of 600 cases of clinical VMAT plans from a single institution. The predictor variables (n = 28) for each plan included complexity parameters, machine type, and photon beam energy. Dosimetric measurements were performed using a helical diode array (ArcCHECK), and the dosimetric accuracy of the passing rates for a 5% dose difference (DD5%) and gamma index of 3%/3 mm (γ3%/3 mm) were predicted using three machine learning models: regression tree analysis (RTA), multiple regression analysis (MRA), and neural networks (NNs). First, the prediction models were applied to 500 cases of the VMAT plans. Then, the dosimetric accuracy was predicted using each model for the remaining 100 cases (evaluation dataset). The error between the predicted and measured passing rates was evaluated. RESULTS For the 600 cases, the mean ± standard deviation of the measured passing rates was 92.3% ± 9.1% and 96.8% ± 3.1% for DD5% and γ3%/3 mm, respectively. For the evaluation dataset, the mean ± standard deviation of the prediction errors for DD5% and γ3%/3 mm was 0.5% ± 3.0% and 0.6% ± 2.4% for RTA, 0.0% ± 2.9% and 0.5% ± 2.4% for MRA, and -0.2% ± 2.7% and -0.2% ± 2.1% for NN, respectively. CONCLUSIONS NNs performed slightly better than RTA and MRA in terms of prediction error. These findings may contribute to increasing the efficiency of patient-specific quality-assurance procedures.
Collapse
Affiliation(s)
- Tomohiro Ono
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hideaki Hirashima
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiraku Iramina
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuki Miyabe
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
11
|
Uto M, Ogura K, Mukumoto N, Miyabe Y, Nakamura M, Hirashima H, Katagiri T, Takehana K, Hiraoka M, Mizowaki T. Single-isocenter volumetric-modulated Dynamic WaveArc therapy for two brain metastases. Jpn J Radiol 2019; 37:619-625. [PMID: 31230185 DOI: 10.1007/s11604-019-00849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/16/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE A new irradiation technique, volumetric-modulated Dynamic WaveArc therapy (VMDWAT), based on sequential non-coplanar trajectories, can be performed using the Vero4DRT. This planning study compared the dose distribution and treatment time between single-isocenter volumetric-modulated arc therapy (VMAT) with multiple straight non-coplanar arcs and single-isocenter VMDWAT in patients with two brain metastases. MATERIALS AND METHODS Twenty patients with two planning target volumes exceeding 2.0 cm3 were included. Both VMAT and VMDWAT plans were created with single isocenter and a prescribed dose of 28 Gy delivered in five fractions. Target conformity was evaluated using indices modified from the RTOG-CI (mRTOG-CI) and IP-CI (mIP-CI). RESULTS VMDWAT significantly improved both mRTOG-CI and mIP-CI and reduced the volume of normal brain tissue receiving 25 and 28 Gy compared to VMAT. The two modalities did not significantly differ in terms of the volume of normal brain tissue receiving 5, 10, 12, 15, and 20 Gy. The mean treatment time was significantly shorter in the VMDWAT group. CONCLUSION VMDWAT significantly improved dose distribution in a shorter treatment time compared to VMAT in patients treated for two brain metastases. Single-isocenter VMDWAT may thus be a promising treatment for two brain metastases.
Collapse
Affiliation(s)
- Megumi Uto
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kengo Ogura
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Therapeutic Radiology, Kobe City Medical Center General Hospital, 2-2-1, Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuki Miyabe
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University Graduate School of Medicine, 53, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Hideaki Hirashima
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomohiro Katagiri
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Radiation Oncology, Shizuoka City Shizuoka Hospital, 10-93, Otemachi, Aoi-ku, Shizuoka, Shizuoka, Japan
| | - Keiichi Takehana
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Japanese Red Cross Wakayama Medical Center, 4-20, Komatsubara-dori, Wakayama, Wakayama, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
12
|
Smyth G, Evans PM, Bamber JC, Bedford JL. Recent developments in non-coplanar radiotherapy. Br J Radiol 2019; 92:20180908. [PMID: 30694086 PMCID: PMC6580906 DOI: 10.1259/bjr.20180908] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 11/05/2022] Open
Abstract
This paper gives an overview of recent developments in non-coplanar intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Modern linear accelerators are capable of automating motion around multiple axes, allowing efficient delivery of highly non-coplanar radiotherapy techniques. Novel techniques developed for C-arm and non-standard linac geometries, methods of optimization, and clinical applications are reviewed. The additional degrees of freedom are shown to increase the therapeutic ratio, either through dose escalation to the target or dose reduction to functionally important organs at risk, by multiple research groups. Although significant work is still needed to translate these new non-coplanar radiotherapy techniques into the clinic, clinical implementation should be prioritized. Recent developments in non-coplanar radiotherapy demonstrate that it continues to have a place in modern cancer treatment.
Collapse
Affiliation(s)
- Gregory Smyth
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Jeffrey C Bamber
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - James L Bedford
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Hirashima H, Nakamura M, Miyabe Y, Mukumoto N, Ono T, Iramina H, Mizowaki T. Quality assurance of non-coplanar, volumetric-modulated arc therapy employing a C-arm linear accelerator, featuring continuous patient couch rotation. Radiat Oncol 2019; 14:62. [PMID: 30971273 PMCID: PMC6458733 DOI: 10.1186/s13014-019-1264-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To perform quality assurance of non-coplanar, volumetric-modulated arc therapy featuring continuous couch rotation (CCR-VMAT) using a C-arm linear accelerator. METHODS We planned and delivered CCR-VMAT using the TrueBeam Developer Mode. Treatment plans were created for both a C-shaped phantom and five prostate cancer patients using seven CCR trajectories that lacked collisions; we used RayStation software (ver. 4.7) to this end. Subsequently, verification plans were generated. The mean absolute error (MAE) between the center of an MV-imaged steel ball and the radiation field was calculated using the Winston-Lutz test. The MAEs between planned and actual irradiation values were also calculated from trajectory logs. In addition, correlation coefficients (r values) among the MAEs of gantry angle, couch angle, and multi-leaf collimator (MLC) position, and mechanical parameters including gantry speed, couch speed, MLC speed, and beam output, were estimated. The dosimetric accuracies of planned and measured values were also assessed using ArcCHECK. RESULTS The MAEs ±2 standard deviations as revealed by the Winston-Lutz test for all trajectories were 0.3 ± 0.3 mm in two dimensions. The MAEs of the gantry, couch, and MLC positions calculated from all trajectory logs were within 0.04°, 0.08°, and 0.02 mm, respectively. Deviations in the couch angle (r = 0.98, p < 0.05) and MLC position (r = 0.86, p < 0.05) increased significantly with speed. The MAE of the beam output error was less than 0.01 MU. The mean gamma passing rate ± 2 SD (range) of the 3%/3 mm, 3%/1 mm, and 5%/1 mm was 98.1 ± 1.9% (95.7-99.6%), 87.2 ± 2.8% (80.2-96.7%), and 96.3 ± 2.8% (93.9-99.6%), respectively. CONCLUSIONS CCR-VMAT delivered via the TrueBeam Developer Mode was associated with high-level geometric and mechanical accuracy, thus affording to high dosimetric accuracy. The CCR-VMAT performance was stable regardless of the trajectory chosen.
Collapse
Affiliation(s)
- Hideaki Hirashima
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Mitsuhiro Nakamura
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Yuki Miyabe
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Tomohiro Ono
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Hiraku Iramina
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
14
|
Comi S, Bazani A, Emiro F, Piperno G, Baldini F, Jereczek-Fossa B, Cattani F. 173. Dosimetrical evaluation of interplay effect for lung cancer treatments with Vero system: Comparison between three different techniques. Phys Med 2018. [DOI: 10.1016/j.ejmp.2018.04.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Tachibana H, Uchida Y, Miyakawa R, Yamashita M, Sato A, Kito S, Maruyama D, Noda S, Kojima T, Fukuma H, Shirata R, Okamoto H, Nakamura M, Takada Y, Nagata H, Hayashi N, Takahashi R, Kawai D, Itano M. Multi-institutional comparison of secondary check of treatment planning using computer-based independent dose calculation for non-C-arm linear accelerators. Phys Med 2018; 56:58-65. [PMID: 30527090 DOI: 10.1016/j.ejmp.2018.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/31/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022] Open
Abstract
PURPOSE This report covers the first multi-institutional study of independent monitor unit (MU)/dose calculation verification for the CyberKnife, Vero4DRT, and TomoTherapy radiotherapy delivery systems. METHODS A total of 973 clinical treatment plans were collected from 12 institutions. Commercial software employing the Clarkson algorithm was used for verification after a measurement validation study, and the doses from the treatment planning systems (TPSs) and verification programs were compared on the basis of the mean value ± two standard deviations. The impact of heterogeneous conditions was assessed in two types of sites: non-lung and lung. RESULTS The dose difference for all locations was 0.5 ± 7.2%. There was a statistically significant difference (P < 0.01) in dose difference between non-lung (-0.3 ± 4.4%) and lung sites (3.5 ± 6.7%). Inter-institutional comparisons showed that various systematic differences were associated with the proportion of different treatment sites and heterogeneity correction. CONCLUSIONS This multi-institutional comparison should help to determine the departmental action levels for CyberKnife, Vero4DRT, and TomoTherapy, as patient populations and treatment sites may vary between the modalities. An action level of ±5% could be considered for intensity-modulated radiation therapy (IMRT), non-IMRT, and volumetric modulated arc radiotherapy using these modalities in homogenous and heterogeneous conditions with a large treatment field applied to a large region of homogeneous media. There were larger systematic differences in heterogeneous conditions with a small treatment field because of differences in heterogeneity correction with the different dose calculation algorithms of the primary TPS and verification program.
Collapse
Affiliation(s)
- Hidenobu Tachibana
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 277-8577 Chiba, Japan; Radiation Safety and Quality Assurance Division, Hospital East, National Cancer Center, 277-8577 Chiba, Japan.
| | - Yukihiro Uchida
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 277-8577 Chiba, Japan.
| | - Ryuta Miyakawa
- Department of Radiology, Saiseikai Yokohamashi Tobu Hospital, 230-8765 Kanagawa, Japan.
| | - Mikiko Yamashita
- Department of Radiological Technology, Kobe City Medical Center General Hospital, 650-0047 Hyogo, Japan.
| | - Aya Sato
- Department of Radiology, Itabashi Chuo Medical Center, 174-0051 Tokyo, Japan
| | - Satoshi Kito
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 113-8677 Tokyo, Japan.
| | - Daiki Maruyama
- Department of Medical Technology, Japanese Red Cross Medical Center, 150-8935 Tokyo, Japan.
| | - Shigetoshi Noda
- Department of Radiology, Kitasato University Hospital, 252-0375 Kanagawa, Japan.
| | - Toru Kojima
- Department of Radiation Oncology, Saitama Cancer Center, 362-0806 Saitama, Japan
| | - Hiroshi Fukuma
- Department of Radiology, Nagoya City University Hospital, 467-8602 Aichi, Japan
| | - Ryosuke Shirata
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 247-8533 Kanagawa, Japan.
| | - Hiroyuki Okamoto
- Department of Radiation Oncology, The National Cancer Center, 104-0045 Tokyo, Japan.
| | - Mitsuhiro Nakamura
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, 606-8507 Kyoto, Japan.
| | - Yuma Takada
- Department of Radiology, Ogaki Tokushukai Hospital, 503-0015 Gifu, Japan.
| | - Hironori Nagata
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 247-8533 Kanagawa, Japan
| | - Naoki Hayashi
- School of Health Sciences, Fujita Health University, 470-1192 Aichi, Japan.
| | - Ryo Takahashi
- Department of Radiation Oncology, The Cancer Institute Hospital of Japanese Foundation of Cancer Research, 135-8550 Tokyo, Japan.
| | - Daisuke Kawai
- Division of Radiation Oncology, Kanagawa Cancer Center, 241-0815 Kanagawa, Japan
| | - Masanobu Itano
- Department of Radiation Oncology, Funabashi Municipal Medical Center, 273-8588 Chiba, Japan.
| |
Collapse
|
16
|
Uto M, Mizowaki T, Ogura K, Mukumoto N, Katagiri T, Takehana K, Hiraoka M. Dosimetric comparison between dual-isocentric dynamic conformal arc therapy and mono-isocentric volumetric-modulated arc therapy for two large brain metastases. JOURNAL OF RADIATION RESEARCH 2018; 59:774-781. [PMID: 30102325 PMCID: PMC6251429 DOI: 10.1093/jrr/rry064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Mono-isocentric volumetric-modulated arc therapy (VMAT) can be used to treat multiple brain metastases. It remains unknown whether mono-isocentric VMAT can improve the dose distribution compared with dual-isocentric dynamic conformal arc therapy (DCAT), especially for two brain metastases. We compared the dose distribution between dual-isocentric DCAT and mono-isocentric VMAT for two large brain metastases, and analyzed the relationship between the distance between the two targets and the difference in dose distribution. A total of 19 patients, each with two large brain metastases, were enrolled. The dose prescribed for each planning target volume (PTV) was 28 Gy in five fractions (D99.8 = 100%). We created new indices derived from conformity indices suggested by the Radiation Therapy Oncology Group (RTOG; mRTOG-CI) and Paddick et al. (mIP-CI), using the dosimetric parameters of the sum of the two PTVs. The median PTV was 5.05 cm3 (range, 2.10-28.47). VMAT significantly improved mRTOG-CI and mIP-CI compared with DCAT. In all cases, VMAT was able to improve mRTOG-CI and mIP-CI compared with DCAT. Whereas the normal brain volume receiving 5 Gy was similar between the two modalities, the normal brain receiving 10, 12, 15, 20, 25 and 28 Gy (V10-V28) was significantly smaller in VMAT. The mean beam-on times were 213.3 s and 121.9 s in DCAT and VMAT, respectively (P < 0.001). Mono-isocentric VMAT improved the target conformity and reduced the beam-on time and V10-V28 of the normal brain for not only two close metastases but also two distant metastases. Mono-isocentric VMAT seems to be a promising treatment technique for two large brain metastases.
Collapse
Affiliation(s)
- Megumi Uto
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Kengo Ogura
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Tomohiro Katagiri
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Keiichi Takehana
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
17
|
Yu VY, Landers A, Woods K, Nguyen D, Cao M, Du D, Chin RK, Sheng K, Kaprealian TB. A Prospective 4π Radiation Therapy Clinical Study in Recurrent High-Grade Glioma Patients. Int J Radiat Oncol Biol Phys 2018; 101:144-151. [PMID: 29619962 DOI: 10.1016/j.ijrobp.2018.01.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/27/2017] [Accepted: 01/12/2018] [Indexed: 11/21/2022]
Abstract
PURPOSE To evaluate the feasibility, safety, dosimetric benefits, delivery efficiency, and patient comfort in the clinical implementation of 4π radiation therapy. METHODS AND MATERIALS Eleven patients with recurrent high-grade glioma were recruited for the trial. 4π plans integrating beam orientation and fluence-map optimization were created using an in-house column-generation algorithm. The collision-free beam solution space throughout the 4π steradian was determined using a computer-aided-design model of the Varian TrueBeam system and a human subject. Twenty beams were optimized for each case and imported into Eclipse for intensity modulated radiation therapy planning. Beam orientations with neighboring couch kicks were merged for increased delivery efficiency, generating plans with an average of 16 beam orientations. Volumetric modulated arc therapy (VMAT) plans with 3-4 arcs were also generated for each case, and the plan achieving superior dosimetric quality was selected for treatment. Patient comfort was surveyed after every fraction. Multiple 2-dimensional X-ray images were obtained to measure intrafractional motion. RESULTS Of 11 patients, 9 were treated with 4π. Mean and maximum organ at risk doses were equal or significantly lower (P < .05) with 4π than with VMAT. Particularly substantial dose reduction of 2.92 Gy in the average accumulated brainstem maximum dose enabled treatments that would otherwise not satisfy safe dose constraints with VMAT. One patient was not treated because neither plan met the dosimetric criteria. The other was treated with VMAT owing to comparable dosimetry resulting from a planning target volume located in a separate co-plane superior to organs at risk. Treatments were well tolerated, with an average patient comfort score of 8.6/10. Intrafractional motion was <1.5 mm for all delivered fractions, and the average delivery time was 34.1 minutes. CONCLUSIONS The feasibility, safety, dosimetric benefits, delivery efficiency, and patient comfort of 4π radiation therapy have been clinically demonstrated with a prospective clinical trial. The results elucidate the potential and challenges of wider clinical implementations.
Collapse
Affiliation(s)
- Victoria Y Yu
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Angelia Landers
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Kaley Woods
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dan Nguyen
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Minsong Cao
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dongsu Du
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Robert K Chin
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ke Sheng
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Tania B Kaprealian
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
18
|
Ono Y, Yoshimura M, Hirata K, Ono T, Hirashima H, Mukumoto N, Nakamura M, Inoue M, Hiraoka M, Mizowaki T. Dosimetric advantages afforded by a new irradiation technique, Dynamic WaveArc, used for accelerated partial breast irradiation. Phys Med 2018; 48:103-110. [PMID: 29728221 DOI: 10.1016/j.ejmp.2018.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To identify dosimetric advantages of the novel Dynamic WaveArc (DWA) technique for accelerated partial breast irradiation (APBI), compared with non-coplanar three-dimensional conformal radiotherapy (nc3D-CRT) and coplanar tangential volumetric modulated arc therapy (tVMAT) with dual arcs of 45-65°. METHODS Vero4DRT enables DWA by continuous gantry rotation and O-ring skewing with movement of the multi-leaf collimator. We compared the dose distributions of DWA, nc3D-CRT and tVMAT in 24 consecutive left-sided breast cancer patients treated with APBI (38.5 Gy in 10 fractions). The average doses and volumes to the planning target volume (PTV) and organs at risk, especially heart and left anterior descending artery (LAD) were compared among DWA, nc3D-CRT and tVMAT. RESULTS The doses and volumes to the PTVs did not differ significantly among the three plans. For the DWA plans, the mean dose to the heart was 0.2 ± 0.1 Gy, less than those of the nc3D-CRT and tVMAT plans. The D2% values of the planning organ at risk volume of the LAD were 9.3 ± 10.9%, 28.2 ± 31.9% and 20.3 ± 25.7% for DWA, nc3D-CRT and tVMAT, respectively. The V20Gy and V10Gy of the ipsilateral lung for the DWA plans were also significantly lower. CONCLUSIONS DWA allowed to find a better compromise for OAR which overlapped with the PTV. Use of the DWA for APBI improved the dose distributions compared with those of nc3D-CRT and tVMAT.
Collapse
Affiliation(s)
- Yuka Ono
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Kimiko Hirata
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomohiro Ono
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hideaki Hirashima
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Minoru Inoue
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
19
|
Hirashima H, Miyabe Y, Nakamura M, Mukumoto N, Mizowaki T, Hiraoka M. Quality assurance of geometric accuracy based on an electronic portal imaging device and log data analysis for Dynamic WaveArc irradiation. J Appl Clin Med Phys 2018; 19:234-242. [PMID: 29633542 PMCID: PMC5978977 DOI: 10.1002/acm2.12324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/28/2017] [Accepted: 03/02/2018] [Indexed: 11/26/2022] Open
Abstract
The purpose of this study was to develop a simple verification method for the routine quality assurance (QA) of Dynamic WaveArc (DWA) irradiation using electronic portal imaging device (EPID) images and log data analysis. First, an automatic calibration method utilizing the outermost multileaf collimator (MLC) slits was developed to correct the misalignment between the center of the EPID and the beam axis. Moreover, to verify the detection accuracy of the MLC position according to the EPID images, various positions of the MLC with intentional errors in the range 0.1–1 mm were assessed. Second, to validate the geometric accuracy during DWA irradiation, tests were designed in consideration of three indices. Test 1 evaluated the accuracy of the MLC position. Test 2 assessed dose output consistency with variable dose rate (160–400 MU/min), gantry speed (2.2–6°/s), and ring speed (0.5–2.7°/s). Test 3 validated dose output consistency with variable values of the above parameters plus MLC speed (1.6–4.2 cm/s). All tests were delivered to the EPID and compared with those obtained using a stationary radiation beam with a 0° gantry angle. Irradiation log data were recorded simultaneously. The 0.1‐mm intentional error on the MLC position could be detected by the EPID, which is smaller than the EPID pixel size. In Test 1, the MLC slit widths agreed within 0.20 mm of their exposed values. The averaged root‐mean‐square error (RMSE) of the dose outputs was less than 0.8% in Test 2 and Test 3. Using log data analysis in Test 3, the RMSE between the planned and recorded data was 0.1 mm, 0.12°, and 0.07° for the MLC position, gantry angle, and ring angle, respectively. The proposed method is useful for routine QA of the accuracy of DWA.
Collapse
Affiliation(s)
- Hideaki Hirashima
- Department of Radiation Oncology and Image-applied therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Miyabe
- Department of Radiation Oncology and Image-applied therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-applied therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Hirashima H, Nakamura M, Miyabe Y, Uto M, Nakamura K, Mizowaki T. Monitoring of mechanical errors and their dosimetric impact throughout the course of non-coplanar continuous volumetric-modulated arc therapy. Radiat Oncol 2018; 13:27. [PMID: 29444693 PMCID: PMC5813375 DOI: 10.1186/s13014-018-0972-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Volumetric-modulated Dynamic WaveArc therapy (VMDWAT) is a non-coplanar continuous volumetric modulated radiation therapy (VMAT) delivery technique. Here, we monitored mechanical errors and their impact on dose distributions in VMDWAT using logfiles throughout the course of treatment. METHODS Fifteen patients were enrolled (2 skull base tumor patients and 13 prostate cancer patients). VMDWAT plans were created for the enrolled patients. The prescribed dose for the skull base tumor was set as 54 Gy at 1.8 Gy per fraction, and that for the prostate cancer was set as 72 to 78 Gy at 2 Gy per fraction. We acquired logfiles to monitor mechanical errors and their impact on dose distribution in each fraction. The root mean square error (RMSE) in the multi-leaf collimator (MLC), gantry angle, O-ring angle and monitor unit (MU) were calculated using logfiles throughout the course of VMDWAT for each patient. The dosimetric impact of mechanical errors throughout the course of VMDWAT was verified using a logfile-based dose reconstruction method. Dosimetric errors between the reconstructed plans and the original plans were assessed. RESULTS A total of 517 datasets, including 55 datasets for the 2 skull base tumor patients and 462 datasets for the 13 prostate cancer patients, were acquired. The RMSE values were less than 0.1 mm, 0.2°, 0.1°, and 0.4 MU for MLC position, gantry angle, O-ring angle, and MU, respectively. For the skull base tumors, the absolute mean dosimetric errors and two standard deviations throughout the course of treatment were less than 1.4% and 1.1%, respectively. For prostate cancer, these absolute values were less than 0.3% and 0.5%, respectively. The largest dosimetric error of 2.5% was observed in a skull base tumor patient. The resultant dosimetric error in the accumulated daily delivered dose distribution, in the patient with the largest error, was up to 1.6% for all dose-volumetric parameters relative to the planned dose distribution. CONCLUSIONS MLC position, gantry rotation, O-ring rotation and MU were highly accurate and stable throughout the course of treatment. The daily dosimetric errors due to mechanical errors were small. VMDWAT provided high delivery accuracy and stability throughout the course of treatment. TRIAL REGISTRATION UMIN000023870 . Registered: 1 October 2016.
Collapse
Affiliation(s)
- Hideaki Hirashima
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. .,Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yuki Miyabe
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Megumi Uto
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kiyonao Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
21
|
Hirashima H, Nakamura M, Miyabe Y, Mukumoto N, Uto M, Nakamura K, Mizowaki T, Hiraoka M. Geometric and dosimetric quality assurance using logfiles and a 3D helical diode detector for Dynamic WaveArc. Phys Med 2017; 43:107-113. [PMID: 29195552 DOI: 10.1016/j.ejmp.2017.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/20/2017] [Accepted: 10/26/2017] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To conduct patient-specific geometric and dosimetric quality assurance (QA) for the Dynamic WaveArc (DWA) using logfiles and ArcCHECK (Sun Nuclear Inc., Melbourne, FL, USA). METHODS Twenty DWA plans, 10 for pituitary adenoma and 10 for prostate cancer, were created using RayStation version 4.7 (RaySearch Laboratories, Stockholm, Sweden). Root mean square errors (RMSEs) between the actual and planned values in the logfiles were evaluated. Next, the dose distributions were reconstructed based on the logfiles. The differences between dose-volumetric parameters in the reconstructed plans and those in the original plans were calculated. Finally, dose distributions were assessed using ArcCHECK. In addition, the reconstructed dose distributions were compared with planned ones. RESULTS The means of RMSEs for the gantry, O-ring, MLC position, and MU for all plans were 0.2°, 0.1°, 0.1 mm, and 0.4 MU, respectively. Absolute means of the change in PTV D99% were 0.4 ± 0.4% and 0.1 ± 0.1% points between the original and reconstructed plans for pituitary adenoma and prostate cancer, respectively. The mean of the gamma passing rate (3%/3 mm) between the measured and planned dose distributions was 97.7%. In addition, that between the reconstructed and planned dose distributions was 99.6%. CONCLUSIONS We have demonstrated that the geometric accuracy and gamma passing rates were within AAPM 119 and 142 criteria during DWA. Dose differences in the dose-volumetric parameters using the logfile-based dose reconstruction method were also clinically acceptable in DWA.
Collapse
Affiliation(s)
- Hideaki Hirashima
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | - Yuki Miyabe
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Megumi Uto
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kiyonao Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
22
|
Ono T, Miyabe Y, Takahashi K, Akimoto M, Mukumoto N, Ishihara Y, Nakamura M, Mizowaki T, Hiraoka M. Geometric and dosimetric accuracy of dynamic tumor tracking during volumetric-modulated arc therapy using a gimbal mounted linac. Radiother Oncol 2017; 129:166-172. [PMID: 29137808 DOI: 10.1016/j.radonc.2017.10.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim was to examine the feasibility of a dynamic tumor-tracking volumetric modulated arc therapy (DTT-VMAT) technique using a gimbal-mounted linac and assess its positional, mechanical and dosimetric accuracy. MATERIALS AND METHODS DTT-VMAT was performed using a surrogated signal-based technique. The positional tracking accuracy was evaluated as the difference between the predicted and detected target positions for various wave patterns. Mechanical accuracy measurements included gantry, multileaf collimator (MLC) and gimbal positions. The differences between the command and the measured positions were evaluated for various wave patterns. Dosimetric verification was performed using Gafchromic EBT3 films in the benchmark phantom and two clinical cases. RESULTS The root mean square error (RMSE) of the positional accuracy was within 0.31 mm. The RMSE of mechanical accuracy was within 0.14° for the gantry, 0.11 ± 0.02 mm for the MLC and 0.13 mm for the gimbal positions. The passing rate of the 3%/3 mm gamma index was greater than 83.3% and 91.2% for the benchmark phantom and two clinical cases, respectively. CONCLUSIONS The positional, mechanical and dosimetric accuracy of DTT-VMAT were evaluated. DTT-VMAT with a gimbal-mounted linac had sufficient accuracy and presents a new strategy for treatment of several tumors with respiratory motion.
Collapse
Affiliation(s)
- Tomohiro Ono
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Japan; Department of Radiation Oncology, Wakayama Red Cross Hospital, Japan
| | - Yuki Miyabe
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Japan.
| | - Kunio Takahashi
- Advanced Mechanical Systems Department, Mitsubishi Heavy Industries Ltd, Hiroshima, Japan
| | - Mami Akimoto
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Japan
| | - Yoshitomo Ishihara
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Japan; Department of Radiation Oncology, Wakayama Red Cross Hospital, Japan
| |
Collapse
|
23
|
Uto M, Mizowaki T, Ogura K, Miyabe Y, Nakamura M, Mukumoto N, Hirashima H, Hiraoka M. Volumetric modulated Dynamic WaveArc therapy reduces the dose to the hippocampus in patients with pituitary adenomas and craniopharyngiomas. Pract Radiat Oncol 2017; 7:382-387. [PMID: 28666908 DOI: 10.1016/j.prro.2017.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/26/2017] [Accepted: 04/08/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Reducing the radiation dose to the hippocampus is important to preserve cognitive function in patients with brain tumors. The Vero4DRT system can realize a new irradiation technique, termed volumetric-modulated Dynamic WaveArc therapy (VMDWAT), which allows the safe use of sequential noncoplanar volumetric-modulated beams without couch rotation. Because VMDWAT appears to reduce the hippocampal dose in patients with pituitary adenomas and craniopharyngiomas, we performed a planning study to compare the dose distribution of volumetric-modulated arc therapy using only a coplanar arc (coVMAT) and VMDWAT. METHODS AND MATERIALS CoVMAT and VMDWAT plans were created for 30 patients with pituitary adenomas and craniopharyngiomas. The prescription dose was 52.2 Gy in 29 fractions, with 99% of each planning target volume covered by 90% of the prescribed dose. Optimization was performed for maximal reduction of the dose to the hippocampus. Treatment time was defined as the beam-on time. RESULTS The mean equivalent dose in 2 Gy fractions to 40% of the volume of the bilateral hippocampus (EQD40%) for coVMAT/VMDWAT were 9.90/5.31 Gy, respectively (P < .001). The mean EQD40% in VMDWAT was less than 7.3 Gy, which is the threshold for predicting cognitive impairment. Although the volume of normal brain receiving 5 Gy (V5) was significantly larger in VMDWAT, compared with coVMAT, the normal brain volume receiving 10, 15, 20, 25, 30, 35, 40, 45, and 50 Gy (V10-50) was significantly smaller in VMDWAT. The conformity and homogeneity indices were significantly better in VMDWAT. The mean VMDWAT treatment time was longer compared with coVMAT (70.1 vs 67.1 seconds, respectively). CONCLUSIONS Although VMDWAT increased brain V5 and the treatment time compared with coVMAT, it significantly reduced the dose to the hippocampus and brain V10 to V50 and improved target conformity and homogeneity. VMDWAT could be a promising treatment technique for pituitary adenomas and craniopharyngiomas.
Collapse
Affiliation(s)
- Megumi Uto
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan.
| | - Kengo Ogura
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yuki Miyabe
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Hideaki Hirashima
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
24
|
Burghelea M, Verellen D, Dhont J, Hung C, Gevaert T, Van den Begin R, Collen C, Poels K, Tournel K, Boussaer M, Jaudet C, Reynders T, Simon V, de Ridder M. Treating patients with Dynamic Wave Arc: First clinical experience. Radiother Oncol 2017; 122:347-351. [DOI: 10.1016/j.radonc.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 11/30/2022]
|