1
|
Akasaka H, Mizonobe K, Oki Y, Uehara K, Nakayama M, Tamura S, Munetomo Y, Kawaguchi H, Ishida J, Harada A, Ishihara T, Kubota H, Kawaguchi H, Sasaki R, Mayahara H. Fiducial marker position affects target volume in stereotactic lung irradiation. J Appl Clin Med Phys 2022; 23:e13596. [PMID: 35377962 PMCID: PMC9195037 DOI: 10.1002/acm2.13596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Abstract
Purpose Real‐time tracking systems of moving respiratory targets such as CyberKnife, Radixact, or Vero4DRT are an advanced robotic radiotherapy device used to deliver stereotactic body radiotherapy (SBRT). The internal target volume (ITV) of lung tumors is assessed through a fiducial marker fusion using four‐dimensional computed tomography (CT). It is important to minimize the ITV to protect normal lung tissue from exposure to radiation and the associated side effects post SBRT. However, the ITV may alter if there is a change in the position of the fiducial marker with respect to the tumor. This study investigated the relationship between fiducial marker position and the ITV in order to prevent radiation exposure of normal lung tissue, and correct target coverage. Materials and methods This study retrospectively reviewed 230 lung cancer patients who received a fiducial marker for SBRT between April 2015 and September 2021. The distance of the fiducial marker to the gross tumor volume (GTV) in the expiratory (dex) and inspiratory (din) CT, and the ratio of the ITV/V(GTVex), were investigated. Results Upon comparing each lobe, although there was no significant difference in the ddiff and the ITV/V(GTVex) between all lobes for dex < 10 mm, there was significant difference in the ddiff and the ITV/V(GTVex) between the lower and upper lobes for dex ≥ 10 mm (p < 0.05). Moreover, there was significant difference in the ddiff and the ITV/V(GTVex) between dex ≥10 mm and dex < 10 mm in all lung regions (p < 0.05). Conclusion The ITV that had no margin from GTVs increased when dex was ≥10 mm for all lung regions (p < 0.05). Furthermore, the increase in ITV tended to be greater in the lower lung lobe. These findings can help decrease the possibility of adverse events post SBRT, and correct target coverage.
Collapse
Affiliation(s)
- Hiroaki Akasaka
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan.,Division of Radiation Oncology, Kobe University Graduate School of Medicine, Chuo-ku Kobe, Hyogo, Japan
| | - Kazufusa Mizonobe
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Yuya Oki
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Kazuyuki Uehara
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Masao Nakayama
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Chuo-ku Kobe, Hyogo, Japan.,Division of Radiation Therapy, Kita-Harima Medical Center, Hyogo, Japan
| | - Shuhei Tamura
- Division of Radiological Technology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Yoshiki Munetomo
- Division of Radiological Technology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Haruna Kawaguchi
- Department of Radiology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Jun Ishida
- Department of Radiology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Aya Harada
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| | - Takeaki Ishihara
- Division of Radiation Oncology, Kobe University Hospital, Chuo-ku Kobe, Hyogo, Japan
| | - Hikaru Kubota
- Division of Radiation Oncology, Kobe University Hospital, Chuo-ku Kobe, Hyogo, Japan
| | - Hiroki Kawaguchi
- Division of Radiation Oncology, Kobe University Hospital, Chuo-ku Kobe, Hyogo, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Hospital, Chuo-ku Kobe, Hyogo, Japan
| | - Hiroshi Mayahara
- Division of Radiation Oncology, Kobe Minimally Invasive Cancer Center, Chuo-ku Kobe, Hyogo, Japan
| |
Collapse
|
2
|
He Y, Cazoulat G, Wu C, Peterson C, McCulloch M, Anderson B, Pollard‐Larkin J, Balter P, Liao Z, Mohan R, Brock K. Geometric and dosimetric accuracy of deformable image registration between average-intensity images for 4DCT-based adaptive radiotherapy for non-small cell lung cancer. J Appl Clin Med Phys 2021; 22:156-167. [PMID: 34310827 PMCID: PMC8364273 DOI: 10.1002/acm2.13341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Re-planning for four-dimensional computed tomography (4DCT)-based lung adaptive radiotherapy commonly requires deformable dose mapping between the planning average-intensity image (AVG) and the newly acquired AVG. However, such AVG-AVG deformable image registration (DIR) lacks accuracy assessment. The current work quantified and compared geometric accuracies of AVG-AVG DIR and corresponding phase-phase DIRs, and subsequently investigated the clinical impact of such AVG-AVG DIR on deformable dose mapping. METHODS AND MATERIALS Hybrid intensity-based AVG-AVG and phase-phase DIRs were performed between the planning and mid-treatment 4DCTs of 28 non-small cell lung cancer patients. An automated landmark identification algorithm detected vessel bifurcation pairs in both lungs. Target registration error (TRE) of these landmark pairs was calculated for both DIR types. The correlation between TRE and respiratory-induced landmark motion in the planning 4DCT was analyzed. Global and local dose metrics were used to assess the clinical implications of AVG-AVG deformable dose mapping with both DIR types. RESULTS TRE of AVG-AVG and phase-phase DIRs averaged 3.2 ± 1.0 and 2.6 ± 0.8 mm respectively (p < 0.001). Using AVG-AVG DIR, TREs for landmarks with <10 mm motion averaged 2.9 ± 2.0 mm, compared to 3.1 ± 1.9 mm for the remaining landmarks (p < 0.01). Comparatively, no significant difference was demonstrated for phase-phase DIRs. Dosimetrically, no significant difference in global dose metrics was observed between doses mapped with AVG-AVG DIR and the phase-phase DIR, but a positive linear relationship existed (p = 0.04) between the TRE of AVG-AVG DIR and local dose difference. CONCLUSIONS When the region of interest experiences <10 mm respiratory-induced motion, AVG-AVG DIR may provide sufficient geometric accuracy; conversely, extra attention is warranted, and phase-phase DIR is recommended. Dosimetrically, the differences in geometric accuracy between AVG-AVG and phase-phase DIRs did not impact global lung-based metrics. However, as more localized dose metrics are needed for toxicity assessment, phase-phase DIR may be required as its lower mean TRE improved voxel-based dosimetry.
Collapse
Affiliation(s)
- Yulun He
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Guillaume Cazoulat
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Carol Wu
- Department of Diagnostic RadiologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Christine Peterson
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Molly McCulloch
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Brian Anderson
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Julianne Pollard‐Larkin
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Peter Balter
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Zhongxing Liao
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Radhe Mohan
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Kristy Brock
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| |
Collapse
|
3
|
Yan Y, Lu Z, Liu Z, Luo W, Shao S, Tan L, Ma X, Liu J, Drokow EK, Ren J. Dosimetric comparison between three- and four-dimensional computerised tomography radiotherapy for breast cancer. Oncol Lett 2019; 18:1800-1814. [PMID: 31423248 PMCID: PMC6607180 DOI: 10.3892/ol.2019.10467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
At present, methods of radiotherapy simulation for breast cancer based on four-dimensional computerised tomography (4D-CT) or three-dimensional CT (3D-CT) simulation remain controversial. In the present study, 7 patients with residual breast tissue received whole breast radiotherapy based on 3D-CT and 4D-CT simulation. For the 4D-CT plan, four types of CT images were produced, including images of the end of inspiration and the end of expiration, and images acquired by the maximal intensity projection (MIP) and average intensity projection (AIP). In the 3D-CT plan, the clinical target volume (CTV) and plan target volume (PTV) were marginally higher compared with the 4D-CT plan. In addition, the minimum point dose of the target volume (Dmin), the maximum point dose of the target volume (Dmax) and the mean point dose of the target volume (Dmean) of the CTV and PTV in the MIP and AIP plans were marginally higher compared with the 3D-CT plan. For the contralateral breast (C-B), volumes of the 4D-CT plan were markedly lower compared with the 3D-CT plan. Furthermore, Dmin, Dmax and Dmean of the 3D-CT plan were higher compared with the AIP and MIP plans. For the ipsilateral lungs (I-L), volumes of the 3D-CT and AIP plans were higher compared with the MIP plan. Furthermore, when breast lesions were on the left side, for the heart, the volume receiving no less than 40% of the prescription dose (V40) and the volume receiving no less than 30% of the prescription dose (V30) of the MIP and AIP plans were slightly lower compared with those of the 3D plan. In conclusion, 4D-CT radiotherapy based on the MIP and AIP plans provides a slightly smaller radiation area and slightly higher radiotherapy dosage of the CTV and PTV compared with 3D-CT radiotherapy for breast radiotherapy. Therefore, the MIP and AIP plans prevent C-B radiation exposure and improve sparing of the heart and I-L.
Collapse
Affiliation(s)
- Yanli Yan
- Department of Radiotherapy, Oncology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhou Lu
- Department of Radiotherapy, Oncology Department, Xi'an Gaoxin Hospital, Xi'an, Shaanxi 710075, P.R. China
| | - Zi Liu
- Department of Radiotherapy, Oncology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Luo
- Department of Radiotherapy, Oncology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuai Shao
- Department of Radiotherapy, Oncology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li Tan
- Department of Radiotherapy, Oncology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaowei Ma
- Department of Radiotherapy, Oncology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiaxin Liu
- Department of Radiotherapy, Oncology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Emmanuel Kwateng Drokow
- Department of Radiotherapy, Oncology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Juan Ren
- Department of Radiotherapy, Oncology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|