1
|
Bergeron P, Dos Santos M, Sitterle L, Tarlet G, Lavigne J, Liu W, Gerbé de Thoré M, Clémenson C, Meziani L, Schott C, Mazzaschi G, Berthelot K, Benadjaoud MA, Milliat F, Deutsch E, Mondini M. Non-homogenous intratumor ionizing radiation doses synergize with PD1 and CXCR2 blockade. Nat Commun 2024; 15:8845. [PMID: 39397001 PMCID: PMC11471822 DOI: 10.1038/s41467-024-53015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/29/2024] [Indexed: 10/15/2024] Open
Abstract
The efficacy and side effects of radiotherapy (RT) depend on parameters like dose and the volume of irradiated tissue. RT induces modulations of the tumor immune microenvironment (TIME) that are dependent on the dose. Low dose RT (LDRT, i.e., single doses of 0.5-2 Gy) has been shown to promote immune infiltration into the tumor. Here we hypothesize that partial tumor irradiation combining the immunostimulatory/non-lethal properties of LDRT with cell killing/shrinkage properties of high dose RT (HDRT) within the same tumor mass could enhance anti-tumor responses when combined with immunomodulators. In models of colorectal and breast cancer in immunocompetent female mice, partial irradiation (PI) with millimetric precision to deliver LDRT (2 Gy) and HDRT (16 Gy) within the same tumor induces substantial tumor control when combined with anti-PD1. Using flow cytometry, cytokine profiling and single-cell RNA sequencing, we identify a crosstalk between the TIME of the differentially irradiated tumor volumes. PI reshapes tumor-infiltrating CD8+ T cells into more cytotoxic and interferon-activated phenotypes but also increases the infiltration of pro-tumor neutrophils driven by CXCR2. The combination of the CXCR2 antagonist SB225002 with PD1 blockade and PI improves tumor control and mouse survival. Our results suggest a strategy to reduce RT toxicity and improve the therapeutic index of RT and immune checkpoint combinations.
Collapse
Affiliation(s)
- Paul Bergeron
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Morgane Dos Santos
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Lisa Sitterle
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Georges Tarlet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Jeremy Lavigne
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Winchygn Liu
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | | | - Céline Clémenson
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Lydia Meziani
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Cathyanne Schott
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Giulia Mazzaschi
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Kevin Berthelot
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED, Fontenay-aux-Roses, France
| | - Fabien Milliat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Eric Deutsch
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Michele Mondini
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
2
|
Cai M, Wang Y, Ma H, Yang L, Xu Z. Advances and challenges in immunotherapy for locally advanced nasopharyngeal carcinoma. Cancer Treat Rev 2024; 131:102840. [PMID: 39426201 DOI: 10.1016/j.ctrv.2024.102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent malignant tumor of the head and neck, with approximately 70 % of patients being diagnosed at a locally advanced stage. Despite the responsiveness to radiotherapy and chemotherapy, the 5-year survival rate of locally advanced NPC (LANPC) remains at approximately 80 %. Hence, there is an urgent need for novel treatment strategies to improve the prognosis of patients with LANPC. Numerous studies have illustrated the efficacy of immune checkpoint inhibitors (ICIs) in recurrent/metastatic NPC. Hence, the potential of immunotherapy for LANPC is under investigation. Using the Web of Clinical Trials, we identified 84 relevant trials exploring immunotherapy for NPC, encompassing 17 trials focusing on ICIs for LANPC. Preliminary findings from several trials suggest that adding ICIs into the primary treatment for LANPC significantly enhances the objective response rate and progression-free survival, with manageable safety profiles. However, the type, dosage, and timing of integration (induction phase, concurrent phase, and adjuvant phase) of ICIs into standard primary treatment of LANPC varies among these trials and further researches are warranted. This review provides an overview of immunotherapy principles in NPC, discusses recent advances and challenges associated with ICIs in the primary treatment for LANPC derived from published and ongoing clinical trials, and outlines the current landscape of other immunotherapies in LANPC, such as adoptive cell therapy, immunomodulatory agents, and tumor vaccines in LANPC. These insights aim to inform clinical practice and guide future researches.
Collapse
Affiliation(s)
- Miaoying Cai
- Shenzhen University Medicine School, Shenzhen University, 518060, Shenzhen, Guangdong, China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, 518053, Shenzhen, Guangdong, China
| | - Yifu Wang
- Shenzhen University Medicine School, Shenzhen University, 518060, Shenzhen, Guangdong, China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, 518053, Shenzhen, Guangdong, China
| | - Huangrong Ma
- Shenzhen University Medicine School, Shenzhen University, 518060, Shenzhen, Guangdong, China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, 518053, Shenzhen, Guangdong, China
| | - Li Yang
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, 518053, Shenzhen, Guangdong, China
| | - Zhiyuan Xu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, 518053, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Jong D, Burns M, Chander S, Chesson T, Williams S, Yeo AU. Partially Ablative Body Radiation Therapy: A Widely Applicable Planning Technique for Palliation of Locally Advanced Unresectable Tumors. Pract Radiat Oncol 2024:S1879-8500(24)00271-6. [PMID: 39393770 DOI: 10.1016/j.prro.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024]
Abstract
Patients with locally advanced, bulky, and unresectable tumors frequently exhibit frailty and endure symptomatic burdens arising from the mass effect of their tumors. Conservative approaches may often fail to provide symptomatic benefits in relatively radioresistant, slower-growing tumors such as sarcomas. A novel technique termed partially ablative body radiation therapy (PABR) administers a highly centralized ablative dose through the utilization of a simultaneous integrated boost while delivering a low and safe palliative dose to the peripheral regions of tumors. The purpose of this paper was to describe a widely applicable radiation therapy protocol in detail for the PABR technique, of which clinical results are available in previous work.7 In summary, a PABR prescription of 20 Gy in 5 fractions is applied to the planning target volume and is planned for 95% of the volume to be covered by 95% of the prescribed dose. A dose of 50 Gy is planned to the boost target volume, with an allowed maximum dose of up to 65 to 70 Gy, using volumetric modulated arc therapy. Daily Cone-Beam Computed Tomography images are used for delivery verification and imaging study. The centrally located volume exceeding 50 Gy effectively achieved the desired outcomes of symptom relief and tumor size reduction. The PABR approach is widely accessible and can be readily implemented in a routine clinical setting to address a pressing need for the challenging palliative patient cohort.
Collapse
Affiliation(s)
- David Jong
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Mark Burns
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sarat Chander
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Therese Chesson
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Siena Williams
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Adam U Yeo
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia; School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Botti A, Finocchiaro D, Panico N, Trojani V, Paolani G, Iori F, Sghedoni R, Cagni E, Lambertini D, Ciammella P, Iotti C, Iori M. LatticeOpt: An automatic tool for planning optimisation of spatially fractionated stereotactic body radiotherapy. Phys Med 2024; 126:104823. [PMID: 39332099 DOI: 10.1016/j.ejmp.2024.104823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024] Open
Abstract
PURPOSE Lattice radiotherapy (LRT) is a three dimensional (3D) implementation of spatially fractionated radiation therapy, based on regular spatial distribution of high dose spheres (vertices) inside the target. Due to tumour shape heterogeneity, finding the best lattice arrangement is not trivial. The aim of this study was to develop the LatticeOpt tool to generate the best lattice structures on clinical cases for treatment planning. METHODS Developed in MATLAB, LatticeOpt finds the 3D-spatial configurations that maximize the number of vertices within the gross target volume (GTV). If organs at risk (OARs) are considered, it chooses the solution that minimizes the overlapping volume histograms (OVH). Otherwise, the lattice structure with the minimum Hausdorff distance between vertices and GTV boundary is chosen to avoid unpopulated regions. Different lattice structures were created for 20 patients, with (OVHopt) and without (OVHunopt) OVH minimization. Imported into TPS (Eclipse, Varian), corresponding plans were generated and evaluated in terms of OAR mean and maximum doses, GTV vertex coverage and dose gradients, as well as pre-clinical plan dosimetry. RESULTS Plans based on an optimized lattice structure (OVHopt, OVHunopt) had similar dose distributions in terms of vertex coverage and gradient index score. OAR sparing was observed in all patients, with a 4 % and 9 % difference for mean and max dose (both p-values <0.01), respectively. The best vertices dimensions and their relative distances were patient dependent. CONCLUSIONS LatticeOpt was able to reduce the time-consuming procedures of LRT, as well as to achieve standardized and reproducible results, useful for multicentre studies.
Collapse
Affiliation(s)
- Andrea Botti
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy.
| | - Domenico Finocchiaro
- Azienda Ospedaliero-Universitaria di Modena, Medical Physics Unit, Modena, Italy
| | - Nicola Panico
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Valeria Trojani
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Giulia Paolani
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Federico Iori
- Azienda USL-IRCCS di Reggio Emilia, Radiotherapy Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Roberto Sghedoni
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Elisabetta Cagni
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Daniele Lambertini
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Patrizia Ciammella
- Azienda USL-IRCCS di Reggio Emilia, Radiotherapy Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Cinzia Iotti
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| | - Mauro Iori
- Azienda USL-IRCCS di Reggio Emilia, Medical Physics Unit, Department of Advanced Technology, Reggio Emilia, Italy
| |
Collapse
|
5
|
McMillan MT, Khan AJ, Powell SN, Humm J, Deasy JO, Haimovitz-Friedman A. Spatially Fractionated Radiotherapy in the Era of Immunotherapy. Semin Radiat Oncol 2024; 34:276-283. [PMID: 38880536 DOI: 10.1016/j.semradonc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Spatially fractionated radiotherapy (SFRT) includes historical grid therapy approaches but more recently encompasses the controlled introduction of one or more cold dose regions using intensity modulation delivery techniques. The driving hypothesis behind SFRT is that it may allow for an increased immune response that is otherwise suppressed by radiation effects. With both two- and three-dimensional SFRT approaches, SFRT dose distributions typically include multiple dose cold spots or valleys. Despite its unconventional methods, reported clinical experience shows that SFRT can sometimes induce marked tumor regressions, even in patients with large hypoxic tumors. Preclinical models using extreme dose distributions (i.e., half-sparing) have been shown to nevertheless result in full tumor eradications, a more robust immune response, and systemic anti-tumor immunity. SFRT takes advantage of the complementary immunomodulatory features of low- and high-dose radiotherapy to integrate the delivery of both into a single target. Clinical trials using three-dimensional SFRT (i.e., lattice-like dose distributions) have reported both promising tumor and toxicity results, and ongoing clinical trials are investigating synergy between SFRT and immunotherapies.
Collapse
Affiliation(s)
| | | | | | - John Humm
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Joseph O Deasy
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | |
Collapse
|
6
|
Ginn J, Duriseti S, Mazur T, Spraker M, Kavanaugh J. A Dose Accumulation Assessment of Alignment Errors During Spatially Fractionated Radiation Therapy. Pract Radiat Oncol 2024; 14:e283-e290. [PMID: 38081359 DOI: 10.1016/j.prro.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024]
Abstract
PURPOSE Spatially fractionated radiation therapy (SFRT) techniques produce high-dose peaks and low-dose valleys within a tumor. Lattice stereotactic body radiation therapy (SBRT) is a form a SFRT delivered across 5 fractions. Because of the high spatial dose gradients associated with SFRT, it is critical for fractionated SFRT patients to be aligned correctly for treatment. Here we investigate the dosimetric effect of daily alignment uncertainty through a dose accumulation study. METHODS AND MATERIALS Dose accumulation was retrospectively performed for 10 patients enrolled on a phase 1 trial. Lattice stereotactic body radiation therapy was completed in 5 fractions with 20 Gy prescribed to the entire tumor and a simultaneous integrated boost of 66.7 Gy prescribed to a set of regularly spaced high-dose spheres. Daily alignment error was quantified through manually selected landmarks in both the planning computed tomography scan and daily cone beam computed tomography. The dosimetric effect of alignment errors was quantified by translating the isocenter in the treatment planning system by the daily average alignment error. Large errors were simulated by translating isocenter 5 and 10 mm for 1 and 2 fractions, independently assessing errors in the superior-inferior and axial directions. The reduction of dose gradients was quantified using the dose ratio (DR) of the mean dose in the high-dose and low-dose spheres. RESULTS The average alignment error was 1.8 mm across the patient population resulting in minor smoothing of the high- and low-dose distributions in the dose accumulation. Quantitatively, the DR decreased from 3.42 to 3.32 (P = .093) in the dose accumulation study. The simulated worst case was an inferior-superior shift of 10 mm for 2 fractions where the average DR decreased to 2.72 (P = .0001). CONCLUSIONS The dose accumulation study revealed on average DR only decreased from 3.42 to 3.32. However, setup errors >5 mm resulted in larger dosimetric degradation, reflecting a larger effect for individual high-dose spheres within regions exhibiting larger displacements.
Collapse
Affiliation(s)
- John Ginn
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Sai Duriseti
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Thomas Mazur
- Department of Radiation Oncology, Washington University in St Louis, St. Louis, Missouri
| | | | - James Kavanaugh
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
7
|
Tubin S. A Partial Tumor Irradiation Approach for Complex Bulky Disease. Semin Radiat Oncol 2024; 34:323-336. [PMID: 38880541 DOI: 10.1016/j.semradonc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
A large proportion of cancer patients present with unresectable bulky disease at baseline or following treatment failure. The data available in the literature suggest that the vast majority of these patients do not benefit from available standard therapies. Therefore the clinical outcomes are poor; patients are desperate and usually relegated to palliative or best supportive care as the only options. Large tumor masses are usually hypoxic, resistant to radiation and systemic therapy, with extensive regional infiltration of the surrounding critical organs, the presence of which makes it impossible to deliver a radical dose of radiation. Promising data in terms of improved therapeutic ratio where such complex tumors are concerned can be seen with the use of new emerging unconventional radiotherapy techniques known as spatially fractionated radiotherapies (SFRT). One of them is PATHY, or PArtial Tumor irradiation targeting HYpoxic segment, which is characterized by a very short treatment course offering a large spectrum of therapeutic benefits in terms of the symptom relief, quality of life, local tumor control, neoadjuvant and immunomodulatory effects.
Collapse
Affiliation(s)
- Slavisa Tubin
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria; Heidelberg University Hospital, Department of Radiation Oncology and Radiation Therapy, Im Neuenheimer Feld 400 69120 Heidelberg; Montefiore Medical Center Radiation Oncology, 111 E 210th St, New York, NY, United States.
| |
Collapse
|
8
|
Yang J, Lu Q, Qi W, Kolb RD, Wang L, Li Y, Li S, Lin Y, Liu J, Mourad W, MirkhaghaniHaghighi F, Slavisa T, Wu X, You WC, Yang E, Hanlon A, Zhu A, Yan W. Stereotactic central/core ablative radiation therapy: results of a phase I study of a novel strategy to treat bulky tumor. Front Oncol 2024; 14:1364627. [PMID: 38854732 PMCID: PMC11157688 DOI: 10.3389/fonc.2024.1364627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose Bulky tumor remains as a challenge to surgery, chemotherapy and conventional radiation therapy. Hence, in efforts to overcome this challenge, we designed a novel therapeutic paradigm via strategy of Stereotactic Central/Core Ablative Radiation Therapy (SCART).), which is based on the principles of SBRT (stereotactic body radiation therapy and spatially fractionated radiation therapy (SFRT). We intend to safely deliver an ablative dose to the core of the tumor and with a low dose at tumor edge. The purpose of the phase 1 study was to determine dose-limiting toxicities (DLT)s and the Maximum Tolerated Dose (MTD) of SCART. Methods and materials We defined a SCART-plan volume inside the tumor, which is proportional to the dimension of tumor. VMAT/Cyberknife technique was adopted. In the current clinical trial; Patients with biopsy proven recurrent or metastatic bulky cancers were enrolled. The five dose levels were 15 Gy X1, 15Gy X3, 18GyX3, 21GyX3 and 24GyX3, while keeping the whole tumor GTV's border dose at 5Gy each fraction. There was no restriction on concurrent systemic chemotherapy agents. Results 21 patients were enrolled and underwent SCART. All 21 patients have eligible data for study follow-up. Radiotherapy was well tolerated with all treatment completed as scheduled. The dose was escalated for two patients to 24GyX3. No grade 3 or higher toxicity was observed in any of the enrolled patients. The average age of patients was 66 years (range: 14-85) and 13 (62%) patients were male. The median SCART dose was 18Gy (range: 15 - 24). Six out of the 18 patients with data for overall survival (OS) died, and the median time to death was 16.3 months (range: 1 - 25.6). The mean percent change for tumor shrinkage between first visit volumes and post-SCART volumes was 49.5% (SD: 40.89, p-value:0.009). Conclusion SCART was safely escalated to 24 GyX 3 fractions, which is the maximum Tolerated Dose (MTD) for SCART. This regimen will be used in future phase II trials.
Collapse
Affiliation(s)
- Jun Yang
- Departmentof Radiation Oncology, Junxin Oncology Group, Foshan, China
- Department of Radiation Oncology, Foshan Chancheng Central Hospital, Foshan, China
| | - Qiuxia Lu
- Departmentof Radiation Oncology, Junxin Oncology Group, Foshan, China
- Department of Radiation Oncology, Foshan Chancheng Central Hospital, Foshan, China
| | - Weihua Qi
- Departmentof Radiation Oncology, Junxin Oncology Group, Foshan, China
- Department of Radiation Oncology, Foshan Chancheng Central Hospital, Foshan, China
| | - Ryann D. Kolb
- Department of Statistics, Virginia Tech, Blacksburg, VA, United States
| | - Lei Wang
- Departmentof Radiation Oncology, Junxin Oncology Group, Foshan, China
- Department of Radiation Oncology, Quanzhou Binhai Hospital, Quanzhou, China
| | - Yuan Li
- Departmentof Radiation Oncology, Junxin Oncology Group, Foshan, China
- Department of Radiation Oncology, Foshan Chancheng Central Hospital, Foshan, China
| | - Sida Li
- Departmentof Radiation Oncology, Junxin Oncology Group, Foshan, China
- Department of Radiation Oncology, Foshan Chancheng Central Hospital, Foshan, China
| | - Yihui Lin
- Taichung Veterans General Hospital, Department of Radiation Oncology, Taichung, Taiwan
| | - Jiayi Liu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Waleed Mourad
- Department of Radiation Medicine, Markey Cancer Center – UK Chandler Medical Center, Lexington, KY, United States
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | | | - Tubin Slavisa
- Medaustron Center for Ion Therapy, Wiener Neustadt, Austria
- Department of Radiation Oncology and Radiation Therapy, Heidelberg University Hospital, Heidelberg, Germany
| | - Xiaodong Wu
- Department of Radiation Oncology, Executive Medical Physics Associates, Miami, FL, United States
| | - Wei-Ciang You
- Taichung Veterans General Hospital, Department of Radiation Oncology, Taichung, Taiwan
| | - Eddy Yang
- Department of Radiation Medicine, Markey Cancer Center – UK Chandler Medical Center, Lexington, KY, United States
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Alex Hanlon
- Department of Statistics, Virginia Tech, Blacksburg, VA, United States
| | - Alan Zhu
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
| | - Weisi Yan
- Department of Radiation Medicine, Markey Cancer Center – UK Chandler Medical Center, Lexington, KY, United States
- College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
9
|
Yu KK, Yeo A, Ngan S, Chu J, Chang D, Siva S, Wong A, Kron T, Hardcastle N, Gaudreault M, Chesson T, Williams S, Burns M, Chander S. Partially Ablative Body Radiotherapy (PABR): A novel approach for palliative radiotherapy of locally advanced bulky unresectable sarcomas. Radiother Oncol 2024; 194:110185. [PMID: 38412905 DOI: 10.1016/j.radonc.2024.110185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Locally advanced, bulky, unresectable sarcomas cause significant tumour mass effects, leading to burdensome symptoms. We have developed a novel Partially Ablative Body Radiotherapy (PABR) technique that delivers a high, ablative dose to the tumour core and a low, palliative dose to its periphery aiming to increase overall tumour response without significantly increasing treatment toxicity. AIM This study aims to report the safety and oncologic outcomes of PABR in patients with bulky, unresectable sarcomas. METHODS AND MATERIALS A total of 18 patients with histologically proven sarcoma treated with PABR from January 2020 to October 2023 were retrospectively reviewed. The primary endpoints were symptomatic and structural response rates. Secondary endpoints were overall survival, freedom from local progression, freedom from distant progression, and acute and late toxicity rates. RESULTS All patients had tumours ≥5 cm with a median tumour volume of 985 cc, and the most common symptom was pain. The median age is 72.5 years and 44.5 % were ECOG 2-3. The most common regimen used was 20 Gy in 5 fractions with an intratumoral boost dose of 50 Gy (83.3 %). After a median follow-up of 11 months, 88.9 % of patients exhibited a partial response with a mean absolute tumour volume reduction of 49.5 %. All symptomatic patients experienced symptom improvement. One-year OS, FFLP and FFDP were 61 %, 83.3 % and 34.8 %, respectively. There were no grade 3 or higher toxicities. CONCLUSION PABR for bulky, unresectable sarcomas appears to be safe and may provide good symptomatic response, tumour debulking, and local control. Further study is underway.
Collapse
Affiliation(s)
- Kelvin Ken Yu
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Benavides Cancer Institute, University of Santo Tomas Hospital, Manila, Philippines.
| | - Adam Yeo
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Samuel Ngan
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Julie Chu
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - David Chang
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Shankar Siva
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Aaron Wong
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Tomas Kron
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia; Centre for Medical Radiation Physics, University of Wollongong, NSW 2522, Australia
| | - Nicholas Hardcastle
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia; Centre for Medical Radiation Physics, University of Wollongong, NSW 2522, Australia
| | - Mathieu Gaudreault
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia; Centre for Medical Radiation Physics, University of Wollongong, NSW 2522, Australia
| | - Therese Chesson
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Siena Williams
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Mark Burns
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Sarat Chander
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
10
|
Castelluccia A, Sardaro A, Niccoli Asabella A, Pisani AR, Rubini D, Portaluri M, Tramacere F. Durable complete response to PET-CT driven stereotactic radiation therapy plus pembrolizumab for pleomorphic Pancoast cancer: Case report and literature review. Clin Case Rep 2024; 12:e8633. [PMID: 38585585 PMCID: PMC10996042 DOI: 10.1002/ccr3.8633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024] Open
Abstract
PET-driven SBRT plus pembrolizumab as first-line therapy against pleomorphic Pancoast cancer appears beneficial, probably due to high equivalent doses of SBRT on photopenic necrotic core and synergic immune system stimulation of immunoradiotherapy.
Collapse
Affiliation(s)
| | - Angela Sardaro
- Section of Radiology and Radiation Oncology, Interdisciplinary Department of MedicineUniversity of Bari “Aldo Moro”BariItaly
| | - Artor Niccoli Asabella
- Section of Nuclear Medicine, Interdisciplinary Department of MedicineUniversity of Bari Aldo MoroBariItaly
| | - Antonio Rosario Pisani
- Section of Nuclear Medicine, Interdisciplinary Department of MedicineUniversity of Bari Aldo MoroBariItaly
| | - Dino Rubini
- Department of Precision MedicineUniversità degli Studi della Campania Luigi VanvitelliNapoliCampaniaItaly
| | | | | |
Collapse
|
11
|
Modic Z, Markelc B, Jesenko T. Partial-Volume Irradiation of Murine Tumors. Methods Mol Biol 2024; 2773:97-104. [PMID: 38236540 DOI: 10.1007/978-1-0716-3714-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Radiotherapy is a widely used approach for cancer treatment. However, delivering a single high dose of radiation to bulky tumors can be challenging due to the toxicities induced in the surrounding healthy tissue. To overcome this issue, a nonuniform high dose can be delivered using partial-volume tumor irradiation or spatially fractionated radiotherapy (SFRT). Moreover, SFRT has the potential to induce a stronger antitumor immune response compared to traditional radiotherapy due to the preservation of immune cells in the unirradiated tumor regions. There are several SFRT approaches, including GRID therapy, three-dimensional GRID therapy (LATTICE), microbeam radiation therapy (MRT), and Stereotactic Body Radiation Therapy for PArtial Tumor irradiation targeting exclusively the HYpoxic segment (SBRT-PATHY). The following protocol describes partial-volume tumor irradiation, a technique that enables dose delivery to only a part of the tumor in mice using an X-ray generator and collimators of different dimensions that limit the size of the irradiation field.
Collapse
Affiliation(s)
- Ziva Modic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
12
|
Lu Q, Yan W, Zhu A, Tubin S, Mourad WF, Yang J. Combining spatially fractionated radiation therapy (SFRT) and immunotherapy opens new rays of hope for enhancing therapeutic ratio. Clin Transl Radiat Oncol 2024; 44:100691. [PMID: 38033759 PMCID: PMC10684810 DOI: 10.1016/j.ctro.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
Spatially Fractionated Radiation Therapy (SFRT) is a form of radiotherapy that delivers a single large dose of radiation within the target volume in a heterogeneous pattern with regions of peak dosage and regions of under dosage. SFRT types can be defined by how the heterogeneous pattern of radiation is obtained. Immune checkpoint inhibitors (ICIs) have been approved for various malignant tumors and are widely used to treat patients with metastatic cancer. The efficacy of ICI monotherapy is limited due to the "cold" tumor microenvironment. Fractionated radiotherapy can achieve higher doses per fraction to the target tumor, and induce immune activation (immodulate tumor immunogenicity and microenvironment). Therefore, coupling ICI therapy and fractionated radiation therapy could significantly improve the outcome of metastatic cancer. This review focuses on both preclinical and clinical studies that use a combination of radiotherapy and ICI therapy in cancer.
Collapse
Affiliation(s)
- Qiuxia Lu
- Foshan Fosun Chancheng Hospital, P.R. China
- Junxin Precision Oncology Group, P.R. China
| | - Weisi Yan
- Baptist Health System, Lexington, KY, United States
- Junxin Precision Oncology Group, P.R. China
| | - Alan Zhu
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
| | - Slavisa Tubin
- Albert Einstein Collage of Medicine New York, Center for Ion Therapy, Medaustron, Austria
| | - Waleed F. Mourad
- Department of Radiation Medicine Markey Cancer Center, University of Kentucky - College of Medicine, United States
| | - Jun Yang
- Foshan Fosun Chancheng Hospital, P.R. China
- Junxin Precision Oncology Group, P.R. China
| |
Collapse
|
13
|
Swamy K. Therapeutic In Situ Cancer Vaccine Using Pulsed Stereotactic Body Radiotherapy-A Translational Model. Vaccines (Basel) 2023; 12:7. [PMID: 38276666 PMCID: PMC10819354 DOI: 10.3390/vaccines12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Both radiation and cancer therapeutic vaccine research are more than 100 years old, and their potential is likely underexplored. Antiangiogenics, nanoparticle targeting, and immune modulators are some other established anticancer therapies. In the meantime, immunotherapy usage is gaining momentum in clinical applications. This article proposes the concept of a pulsed/intermittent/cyclical endothelial-sparing single-dose in situ vaccination (ISVRT) schedule distinguishable from the standard therapeutic stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS) plans. This ISVRT schedule can repeatedly generate tumor-specific neoantigens and epitopes for primary and immune modulation effects, augment supplementary immune enhancement techniques, activate long-term memory cells, avoid extracellular matrix fibrosis, and essentially synchronize with the vascular normalized immunity cycle. The core mechanisms of ISVRT impacting in situ vaccination would be optimizing cascading antigenicity and adjuvanticity. The present proposed hypothesis can be validated using the algorithm presented. The indications for the proposed concept are locally progressing/metastatic cancers that have failed standard therapies. Immunotherapy/targeted therapy, chemotherapy, antiangiogenics, and vascular-lymphatic normalization are integral to such an approach.
Collapse
|
14
|
Lukas L, Zhang H, Cheng K, Epstein A. Immune Priming with Spatially Fractionated Radiation Therapy. Curr Oncol Rep 2023; 25:1483-1496. [PMID: 37979032 PMCID: PMC10728252 DOI: 10.1007/s11912-023-01473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the current preclinical and clinical evidence of nontargeted immune effects of spatially fractionated radiation therapy (SFRT). We then highlight strategies to augment the immunomodulatory potential of SFRT in combination with immunotherapy (IT). RECENT FINDINGS The response of cancer to IT is limited by primary and acquired immune resistance, and strategies are needed to prime the immune system to increase the efficacy of IT. Radiation therapy can induce immunologic effects and can potentially be used to synergize the effects of IT, although the optimal combination of radiation and IT is largely unknown. SFRT is a novel radiation technique that limits ablative doses to tumor subvolumes, and this highly heterogeneous dose deposition may increase the immune-rich infiltrate within the targeted tumor with enhanced antigen presentation and activated T cells in nonirradiated tumors. The understanding of nontargeted effects of SFRT can contribute to future translational strategies to combine SFRT and IT. Integration of SFRT and IT is an innovative approach to address immune resistance to IT with the overall goal of improving the therapeutic ratio of radiation therapy and increasing the efficacy of IT.
Collapse
Affiliation(s)
- Lauren Lukas
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Hualin Zhang
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Karen Cheng
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alan Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Zhang Y, Huang C, Li S. Influence of treatment-related lymphopenia on the efficacy of immune checkpoint inhibitors in lung cancer: a meta-analysis. Front Oncol 2023; 13:1287555. [PMID: 38107070 PMCID: PMC10722281 DOI: 10.3389/fonc.2023.1287555] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Background Treatment-related lymphopenia (TRL) is common in patients with lung cancer, particularly in those with radiotherapy. However, the influence of TRL on the efficacy of immune checkpoint inhibitors (ICIs) for patients with lung cancer remains poorly understood. We performed a systematic review and meta-analysis to investigate the influence of TRL on survival of lung cancer patients on ICIs. Methods In order to accomplish the aim of the meta-analysis, a comprehensive search was conducted on databases including PubMed, Embase, Cochrane Library, and the Web of Science to identify observational studies with longitudinal follow-up. The Cochrane Q test was employed to evaluate heterogeneity among the included studies, while the I2 statistic was estimated. Random-effects models were utilized to merge the results, considering the potential impact of heterogeneity. Results Ten cohort studies with 1130 lung cancer patients who were treated with ICIs were included. Among them, 427 (37.8%) had TRL. Pooled results showed that compared to patients without TRL, patients with TRL were associated with poor progression-free survival (hazard ratio [HR]: 2.05, 95% confidence interval [CI]: 1.62 to 2.60, p < 0.001; I2 = 22%) and overall survival (HR: 2.69, 95% CI: 2.10 to 3.43, p < 0.001; I2 = 0%). Sensitivity analysis limited to patients with non-small cell lung cancer showed similar results (HR: 2.66 and 2.62, both p < 0.05). Moreover, subgroup analyses according to the diagnostic criteria of TRL, regression analysis model (univariate or multivariate), and indications of ICIs (for locally advanced or advanced lung cancer) showed consistent results (p for subgroup difference all > 0.05). Conclusion TRL was associated with poor survival of lung cancer patients who were treated with ICIs.
Collapse
Affiliation(s)
| | | | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Mathieu M, Budhu S, Nepali PR, Russell J, Powell SN, Humm J, Deasy JO, Haimovitz-Friedman A. Activation of STING in Response to Partial-Tumor Radiation Exposure. Int J Radiat Oncol Biol Phys 2023; 117:955-965. [PMID: 37244631 PMCID: PMC11334988 DOI: 10.1016/j.ijrobp.2023.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE To determine the mechanisms involved in partial volume radiation therapy (RT)-induced tumor response. METHODS AND MATERIALS We investigated 67NR murine orthotopic breast tumors in Balb/c mice and Lewis lung carcinoma (LLC cells; WT, Crispr/Cas9 Sting KO, and Atm KO) injected in the flank of C57Bl/6, cGAS, or STING KO mice. RT was delivered to 50% or 100% of the tumor volume using a 2 × 2 cm collimator on a microirradiator allowing precise irradiation. Tumors and blood were collected at 6, 24, and 48 hours post-RT and assessed for cytokine measurements. RESULTS There is a significant activation of the cGAS/STING pathway in the hemi-irradiated tumors compared with control and to 100% exposed 67NR tumors. In the LLC model, we determined that an ATM-mediated noncanonical activation of STING is involved. We demonstrated that the partial exposure RT-mediated immune response is dependent on ATM activation in the tumor cells and on the STING activation in the host, and cGAS is dispensable. Our results also indicate that partial volume RT stimulates a proinflammatory cytokine response compared with the anti-inflammatory profile induced by 100% tumor volume exposure. CONCLUSIONS Partial volume RT induces an antitumor response by activating STING, which stimulates a specific cytokine signature as part of the immune response. However, the mechanism of this STING activation, via the canonical cGAS/STING pathway or a noncanonical ATM-driven pathway, depends on the tumor type. Identifying the upstream pathways responsible for STING activation in the partial RT-mediated immune response in different tumor types would improve this therapy and its potential combination with immune checkpoint blockade and other antitumor therapies.
Collapse
Affiliation(s)
| | - Sadna Budhu
- Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | - James Russell
- Department of Medical Physics, New York City, NY, USA
| | | | - John Humm
- Department of Medical Physics, New York City, NY, USA
| | | | | |
Collapse
|
17
|
Sokol O, Durante M. Carbon Ions for Hypoxic Tumors: Are We Making the Most of Them? Cancers (Basel) 2023; 15:4494. [PMID: 37760464 PMCID: PMC10526811 DOI: 10.3390/cancers15184494] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoxia, which is associated with abnormal vessel growth, is a characteristic feature of many solid tumors that increases their metastatic potential and resistance to radiotherapy. Carbon-ion radiation therapy, either alone or in combination with other treatments, is one of the most promising treatments for hypoxic tumors because the oxygen enhancement ratio decreases with increasing particle LET. Nevertheless, current clinical practice does not yet fully benefit from the use of carbon ions to tackle hypoxia. Here, we provide an overview of the existing experimental and clinical evidence supporting the efficacy of C-ion radiotherapy in overcoming hypoxia-induced radioresistance, followed by a discussion of the strategies proposed to enhance it, including different approaches to maximize LET in the tumors.
Collapse
Affiliation(s)
- Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
18
|
Nelson BE, Adashek JJ, Lin SH, Subbiah V. The abscopal effect in patients with cancer receiving immunotherapy. MED 2023; 4:233-244. [PMID: 36893753 PMCID: PMC10116408 DOI: 10.1016/j.medj.2023.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/08/2022] [Accepted: 02/07/2023] [Indexed: 03/10/2023]
Abstract
Interest in the abscopal effect has been rekindled over the past decade with the advent of immunotherapy. Although purportedly elusive, this phenomenon is being increasingly reported. Venturing further using a multimodality approach with an array of systemic agents and unconventional modalities is direly needed. In this perspective, we describe the fundamentals of abscopal responses (ARs), explore combinations with systemic therapies that hold promise in eliciting ARs, and reconnoiter unconventional modalities that may induce ARs. Finally, we scrutinize prospective agents and modalities that exhibit preclinical ability to elicit ARs and discuss prognostic biomarkers, their limitations, and pathways of abscopal resistance for reproducibility.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacob J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Yan W, Quan C, Waleed M, Yuan J, Shi Z, Yang J, Lu Q, Zhang J. Application of radiomics in lung immuno‐oncology. PRECISION RADIATION ONCOLOGY 2023. [DOI: 10.1002/pro6.1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Affiliation(s)
- Weisi Yan
- Baptist Health System Lexington Kentucky USA
| | - Chen Quan
- City of Hope Comprehensive Cancer Center Duarte California USA
| | - Mourad Waleed
- Department of Radiation Medicine University of Kentucky Lexington Kentucky USA
| | - Jianda Yuan
- Translational Oncology at Merck & Co Kenilworth New Jersey USA
| | | | - Jun Yang
- Foshan Chancheng Hospital Foshan Guangdong China
| | - Qiuxia Lu
- Foshan Chancheng Hospital Foshan Guangdong China
| | - Jie Zhang
- Department of Radiology University of Kentucky Lexington Kentucky USA
| |
Collapse
|
20
|
Abouelsayed A, Hezma AM, El-Bahy GS, Abdelrazzak AB. Modification of protein secondary structure as an indicator of radiation-induced abscopal effect: A spectroscopic investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122093. [PMID: 36375289 DOI: 10.1016/j.saa.2022.122093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
In this study, we investigate the abscopal effect induced in the brain, lung and kidney as a result of partial irradiation of experimental animals with 2 Gy γ-rays. Modifications in the protein secondary structure were used as indicator for the abscopal effect. FTIR spectroscopy and analysis of the amide I and amide II absorption bands suggested possible modifications in the protein secondary structure in the brain and kidney following irradiation. Significant shift in the amide I band was recorded only in the brain. However, the amide I/amide II band area ratio for the three organs examined varied differentially in the irradiated groups as compared with the sham-irradiated group. Employing the lorentzian model to analyze the amide I band of the FTIR spectra, we dissected the amide I band into its components, each component represents one form of the protein secondary structure. Calculation of the weight percentage contribution of each of the protein secondary structure revealed decrease in the α-helix contribution associated with equivalent increase in β-sheets and turns/random coils contributions in the brain and kidney, however the response was more evident in the brain. No change in the α-helix or β-sheets contributions was reported in the lung following irradiation. The data suggest the induction of abscopal effect in the brain and kidney rather than the lung in the form of protein conformation modification. The data also indicate that the abscopal effect is comparable to the effect of direct irradiation in both of the brain and kidney.
Collapse
Affiliation(s)
- A Abouelsayed
- Spectroscopy Department, Physics Research Institute, National Research Centre, Cairo 12622, Egypt; Molecular and Fluorescence Lab., Central Laboratories Network, National Research Centre, Cairo 12622, Egypt
| | - A M Hezma
- Spectroscopy Department, Physics Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Gamal S El-Bahy
- Spectroscopy Department, Physics Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Abdelrazek B Abdelrazzak
- Spectroscopy Department, Physics Research Institute, National Research Centre, Cairo 12622, Egypt.
| |
Collapse
|
21
|
Rowell NP. The abscopal effect and its implications for radiotherapy-immunotherapy combinations. Transl Cancer Res 2023; 12:8-12. [PMID: 36760386 PMCID: PMC9906065 DOI: 10.21037/tcr-22-2354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
|
22
|
Benkhaled S, Peters C, Jullian N, Arsenijevic T, Navez J, Van Gestel D, Moretti L, Van Laethem JL, Bouchart C. Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy? Cancers (Basel) 2023; 15:cancers15030768. [PMID: 36765726 PMCID: PMC9913158 DOI: 10.3390/cancers15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is a highly diverse disease with low tumor immunogenicity. PDAC is also one of the deadliest solid tumor and will remain a common cause of cancer death in the future. Treatment options are limited, and tumors frequently develop resistance to current treatment modalities. Since PDAC patients do not respond well to immune checkpoint inhibitors (ICIs), novel methods for overcoming resistance are being explored. Compared to other solid tumors, the PDAC's tumor microenvironment (TME) is unique and complex and prevents systemic agents from effectively penetrating and killing tumor cells. Radiotherapy (RT) has the potential to modulate the TME (e.g., by exposing tumor-specific antigens, recruiting, and infiltrating immune cells) and, therefore, enhance the effectiveness of targeted systemic therapies. Interestingly, combining ICI with RT and/or chemotherapy has yielded promising preclinical results which were not successful when translated into clinical trials. In this context, current standards of care need to be challenged and transformed with modern treatment techniques and novel therapeutic combinations. One way to reconcile these findings is to abandon the concept that the TME is a well-compartmented population with spatial, temporal, physical, and chemical elements acting independently. This review will focus on the most interesting advancements of RT and describe the main components of the TME and their known modulation after RT in PDAC. Furthermore, we will provide a summary of current clinical data for combinations of RT/targeted therapy (tRT) and give an overview of the most promising future directions.
Collapse
Affiliation(s)
- Sofian Benkhaled
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Department of Radiation Oncology, UNIL-CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Cedric Peters
- Department of Radiation Oncology, AZ Turnhout, Rubensstraat 166, 2300 Turnhout, Belgium
| | - Nicolas Jullian
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Julie Navez
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-25-413-800
| |
Collapse
|
23
|
Helm A, Totis C, Durante M, Fournier C. Are charged particles a good match for combination with immunotherapy? Current knowledge and perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:1-36. [PMID: 36997266 DOI: 10.1016/bs.ircmb.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Charged particle radiotherapy, mainly using protons and carbon ions, provides physical characteristics allowing for a volume conformal irradiation and a reduction of the integral dose to normal tissue. Carbon ion therapy additionally features an increased biological effectiveness resulting in peculiar molecular effects. Immunotherapy, mostly performed with immune checkpoint inhibitors, is nowadays considered a pillar in cancer therapy. Based on the advantageous features of charged particle radiotherapy, we review pre-clinical evidence revealing a strong potential of its combination with immunotherapy. We argue that the combination therapy deserves further investigation with the aim of translation in clinics, where a few studies have been set up already.
Collapse
Affiliation(s)
- A Helm
- Biophysics Department, GSI, Darmstadt, Germany
| | - C Totis
- Biophysics Department, GSI, Darmstadt, Germany
| | - M Durante
- Biophysics Department, GSI, Darmstadt, Germany.
| | - C Fournier
- Biophysics Department, GSI, Darmstadt, Germany
| |
Collapse
|
24
|
Impressive Results after "Metabolism-Guided" Lattice Irradiation in Patients Submitted to Palliative Radiation Therapy: Preliminary Results of LATTICE_01 Multicenter Study. Cancers (Basel) 2022; 14:cancers14163909. [PMID: 36010902 PMCID: PMC9406022 DOI: 10.3390/cancers14163909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: To evaluate feasibility, toxicities, and clinical response in Stage IV patients treated with palliative “metabolism-guided” lattice technique. Patients and Methods: From June 2020 to December 2021, 30 consecutive clinical stage IV patients with 31 bulky lesions were included in this study. All patients received palliative irradiation consisting of a spatially fractionated high radiation dose delivered in spherical deposits (vertices, Vs) within the bulky disease. The Vs were placed at the edges of tumor areas with different metabolisms at the PET exam following a non-geometric arrangement. Precisely, the Vs overlapped the interfaces between the tumor areas of higher 18F-FDG uptake (>75% SUV max) and areas with lower 18F-FDG uptake. A median dose of 15 Gy/1 fraction (range 10−27 Gy in 1/3 fractions) was delivered to the Vs. Within 7 days after the Vs boost, all the gross tumor volume (GTV) was homogeneously treated with hypo-fractionated radiation therapy (RT). Results: The rate of symptomatic response was 100%, and it was observed immediately after lattice RT delivery in 3/30 patients, while 27/30 patients had a symptomatic response within 8 days from the end of GTV irradiation. Radiation-related acute grade ≥1 toxicities were observed in 6/30 (20%) patients. The rate of overall clinical response was 89%, including 23% of complete remission. The 1-year overall survival rate was 86.4%. Conclusions: “Metabolism-guided” lattice radiotherapy is feasible and well-tolerated, being able to yield very impressive results both in terms of symptom relief and overall clinical response rate in stage IV bulky disease patients. These preliminary results seem to indicate that this kind of therapy could emerge as the best therapeutic option for this patient setting.
Collapse
|
25
|
Jin JY. Prospect of radiotherapy technology development in the era of immunotherapy. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:106-112. [PMID: 39034954 PMCID: PMC11256706 DOI: 10.1016/j.jncc.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022] Open
Abstract
Radiotherapy (RT) is one of the important modalities for cancer treatments. Mounting evidence suggests that the host immune system is involved in the tumor cell killing during RT, and future RT technology development should aim to minimize radiation dose to the immune system while maintaining a sufficient dose to the tumor. A brief history of RT technology development is first summarized. Three RT technologies, namely FLASH RT, proton therapy, and spatially fractionated RT (SFRT), are singled out for the era of immunotherapy. Besides the technical aspects, the mechanism of FLASH effect is discussed, which is likely the combined results of the recombination effect, oxygen depletion effect and immune sparing effect. The proton therapy should have the advantage of causing much less immune damage in comparison to X-ray based RT due to the Bragg peak. However, the relative biological effectiveness (RBE) uncertainty and range uncertainty may hinder the translation of this advantage into clinical benefit. Research approaches to overcome these two technical hurdles are discussed. Various SFRT approaches and their application are reviewed. These approaches are categorized as single-field 1D/2D SFRT, multi-field 3D SFRT and quasi-3D SFRT techniques. A 3D SFRT approach, which is achieved by placing the Bragg peak of a proton 2D SFRT field in discrete depths, may have special potential because all 3 technologies (FLASH RT, proton therapy and SFRT) may be used in this approach.
Collapse
Affiliation(s)
- Jian-Yue Jin
- Radiation Oncology, Seidman Cancer Center, University Hospitals, Case Western Reserve University, Cleveland, United States
| |
Collapse
|
26
|
Friedrich T, Scholz M, Durante M. A predictive biophysical model of the combined action of radiotherapy and immunotherapy in cancer. Int J Radiat Oncol Biol Phys 2022; 113:872-884. [DOI: 10.1016/j.ijrobp.2022.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
27
|
Moghaddasi L, Reid P, Bezak E, Marcu LG. Radiobiological and Treatment-Related Aspects of Spatially Fractionated Radiotherapy. Int J Mol Sci 2022; 23:3366. [PMID: 35328787 PMCID: PMC8954016 DOI: 10.3390/ijms23063366] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
The continuously evolving field of radiotherapy aims to devise and implement techniques that allow for greater tumour control and better sparing of critical organs. Investigations into the complexity of tumour radiobiology confirmed the high heterogeneity of tumours as being responsible for the often poor treatment outcome. Hypoxic subvolumes, a subpopulation of cancer stem cells, as well as the inherent or acquired radioresistance define tumour aggressiveness and metastatic potential, which remain a therapeutic challenge. Non-conventional irradiation techniques, such as spatially fractionated radiotherapy, have been developed to tackle some of these challenges and to offer a high therapeutic index when treating radioresistant tumours. The goal of this article was to highlight the current knowledge on the molecular and radiobiological mechanisms behind spatially fractionated radiotherapy and to present the up-to-date preclinical and clinical evidence towards the therapeutic potential of this technique involving both photon and proton beams.
Collapse
Affiliation(s)
- Leyla Moghaddasi
- Department of Medical Physics, Austin Health, Ballarat, VIC 3350, Australia;
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
| | - Paul Reid
- Radiation Health, Environment Protection Authority, Adelaide, SA 5000, Australia;
| | - Eva Bezak
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Loredana G. Marcu
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Faculty of Informatics and Science, University of Oradea, 1 Universitatii Str., 410087 Oradea, Romania
| |
Collapse
|
28
|
Ferini G, Castorina P, Valenti V, Illari SI, Sachpazidis I, Castorina L, Marrale M, Pergolizzi S. A Novel Radiotherapeutic Approach to Treat Bulky Metastases Even From Cutaneous Squamous Cell Carcinoma: Its Rationale and a Look at the Reliability of the Linear-Quadratic Model to Explain Its Radiobiological Effects. Front Oncol 2022; 12:809279. [PMID: 35280772 PMCID: PMC8904747 DOI: 10.3389/fonc.2022.809279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction Metastatic cutaneous squamous cell carcinoma (cSCC) is a very rare condition. The lack of definition of an oligometastatic subgroup means that there is no consensus for its treatment, unlike the mucosal head and neck counterpart. Like the latter, the cutaneous form is able to develop bulky tumor masses. When this happens, the classic care approach is just for palliative intent due to a likely unfavorable benefit–risk balance typical of aggressive treatments. Here we proposed a novel radiotherapy (RT) technique to treat bulky metastases from cSCC in the context of an overall limited tumor burden and tried to explain its clinical outcome by the currently available mathematical radiobiological and ad hoc developed models. Methods We treated a case of facial cSCC with three metastases: two of them by classic stereotactic RT and the other by lattice RT supported by metabolic imaging (18F-FDG PET) due to its excessively large dimensions. For the latter lesion, we compared four treatment plans with different RT techniques in order to define the best approach in terms of normal tissue complication probability (NTCP) and tumor control probability (TCP). Moreover, we developed an ad hoc mathematical radiobiological model that could fit better with the characteristics of heterogeneity of this bulky metastasis for which, indeed, a segmentation of normoxic, hypoxic, and necrotic subvolumes might have been assumed. Results We observed a clinical complete response in all three disease sites; the bulky metastasis actually regressed more rapidly than the other two treated by stereotactic RT. For the large lesion, NTCP predictions were good for all four different plans but even significantly better for the lattice RT plan. Neither the classic TCP nor the ad hoc developed radiobiological models could be totally adequate to explain the reported outcome. This finding might support a key role of the host immune system. Conclusions PET-guided lattice RT might be safe and effective for the treatment of bulky lesions from cSCC. There might be some need for complex mathematical radiobiological models that are able to take into account any immune system’s role in order to explain the possible mechanisms of the tumor response to radiation and the relevant key points to enhance it.
Collapse
Affiliation(s)
- Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, Viagrande, Italy
| | - Paolo Castorina
- Istituto Oncologico del Mediterraneo, Viagrande, Italy.,Faculty of Mathematics and Physics, Charles University, Prague, Czechia.,Istituto Nazionale Fisica Nucleare, Catania, Italy
| | - Vito Valenti
- Department of Radiation Oncology, REM Radioterapia srl, Viagrande, Italy
| | | | - Ilias Sachpazidis
- Department of Radiation Oncology, Division of Medical Physics, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Research & Development, Medical Innovation and Technology P. C., Mesolongi, Greece
| | - Luigi Castorina
- Department of Radiation Oncology, REM Radioterapia srl, Viagrande, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry, "Emilio Segrè" ATeN Center, University of Palermo, Palermo, Italy.,Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Catania, Catania, Italy
| | - Stefano Pergolizzi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, Messina, Italy
| |
Collapse
|
29
|
Johnson TR, Bassil AM, Williams NT, Brundage S, Kent CL, Palmer G, Mowery YM, Oldham M. An investigation of kV mini-GRID spatially fractionated radiation therapy: dosimetry and preclinical trial. Phys Med Biol 2022; 67:10.1088/1361-6560/ac508c. [PMID: 35100573 PMCID: PMC9167045 DOI: 10.1088/1361-6560/ac508c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
Objective. To develop and characterize novel methods of extreme spatially fractionated kV radiation therapy (including mini-GRID therapy) and to evaluate efficacy in the context of a pre-clinical mouse study.Approach. Spatially fractionated GRIDs were precision-milled from 3 mm thick lead sheets compatible with mounting on a 225 kVp small animal irradiator (X-Rad). Three pencil-beam GRIDs created arrays of 1 mm diameter beams, and three 'bar' GRIDs created 1 × 20 mm rectangular fields. GRIDs projected 20 × 20 mm2fields at isocenter, and beamlets were spaced at 1, 1.25, and 1.5 mm, respectively. Peak-to-valley ratios and dose distributions were evaluated with Gafchromic film. Syngeneic transplant tumors were induced by intramuscular injection of a soft tissue sarcoma cell line into the gastrocnemius muscle of C57BL/6 mice. Tumor-bearing mice were randomized to four groups: unirradiated control, conventional irradiation of entire tumor, GRID therapy, and hemi-irradiation (half-beam block, 50% tumor volume treated). All irradiated mice received a single fraction of 15 Gy.Results. High peak-to-valley ratios were achieved (bar GRIDs: 11.9 ± 0.9, 13.6 ± 0.4, 13.8 ± 0.5; pencil-beam GRIDs: 18.7 ± 0.6, 26.3 ± 1.5, 31.0 ± 3.3). Pencil-beam GRIDs could theoretically spare more intra-tumor immune cells than bar GRIDs, but they treat less tumor tissue (3%-4% versus 19%-23% area receiving 90% prescription, respectively). Bar GRID and hemi-irradiation treatments significantly delayed tumor growth (P < 0.05), but not as much as a conventional treatment (P < 0.001). No significant difference was found in tumor growth delay between GRID and hemi-irradiation.Significance. High peak-to-valley ratios were achieved with kV grids: two-to-five times higher than values reported in literature for MV grids. GRID irradiation and hemi-irradiation delayed tumor growth, but neither was as effective as conventional whole tumor uniform dose treatment. Single fraction GRID therapy could not initiate an anti-cancer immune response strong enough to match conventional RT outcomes, but follow-up studies will evaluate the combination of mini-GRID with immune checkpoint blockade.
Collapse
Affiliation(s)
- Timothy R Johnson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Alex M Bassil
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Nerissa T Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Simon Brundage
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Collin L Kent
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Greg Palmer
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, United States of America
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
30
|
Swamy K. Stereotactic Body Radiotherapy Immunological Planning-A Review With a Proposed Theoretical Model. Front Oncol 2022; 12:729250. [PMID: 35155221 PMCID: PMC8826062 DOI: 10.3389/fonc.2022.729250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022] Open
Abstract
In the stereotactic body radiotherapy (SBRT) and immunotherapy era, we are moving toward an “immunological radiation plan”, i.e., radiation scheduling with abscopal effect as a vital endpoint as well. The literature review of part A enumerates the advantages of the intermediate dose of SBRT 6–10 Gy per fraction, appropriate use of dose painting, proper timing with immunotherapy, and the potential of immunoadjuvants to maximize cell kill in the irradiated lesions, found to have improved the abscopal effects. Part B summarizes part A, primarily the findings of animal trials, forming the basis of the tenets of the proposed model given in part C to realize the true abscopal potential of the SBRT tumor cell kill of the index lesions. Part C proposes a theoretical model highlighting tumor vasculature integrity as the central theme for converting “abscopal effect by chance” to “abscopal effect by design” using a harmonized combinatorial approach. The proposed model principally deals with the use of SBRT in strategizing increased cell kill in irradiated index tumors along with immunomodulators as a basis for improving the consistency of the abscopal effect. Included is the possible role of integrating immunotherapy just after SBRT, “cyclical” antiangiogenics, and immunoadjuvants/immune metabolites as abscopal effect enhancers of SBRT tumor cell kill. The proposed model suggests convergence research in adopting existing numerous SBRT abscopal enhancing strategies around the central point of sustained vascular integrity to develop decisive clinical trial protocols in the future.
Collapse
|
31
|
Katz MS, Mihai A, Milano MT. A Dose of Reality: Embracing the Unseen to Improve Stereotactic Radiotherapy. Clin Oncol (R Coll Radiol) 2022; 34:395-397. [PMID: 35094939 DOI: 10.1016/j.clon.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022]
Affiliation(s)
- M S Katz
- Department of Radiation Medicine, Lowell General Hospital, Lowell, MA, USA.
| | - A Mihai
- Department of Radiation Oncology, Beacon Hospital, Sandyford, Dublin, Ireland
| | - M T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
32
|
Wen L, Tong F, Zhang R, Chen L, Huang Y, Dong X. The Research Progress of PD-1/PD-L1 Inhibitors Enhancing Radiotherapy Efficacy. Front Oncol 2021; 11:799957. [PMID: 34956911 PMCID: PMC8695847 DOI: 10.3389/fonc.2021.799957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
Approximately 60%–70% of patients with malignant tumours require radiotherapy. The clinical application of immune checkpoint inhibitors (ICIs), such as anti-PD-1/PD-L1, has revolutionized cancer treatment and greatly improved the outcome of a variety of cancers by boosting host immunity.However, radiotherapy is a double-edged sword for PD-1/PD-L immunotherapy. Research on how to improve radiotherapy efficacy using PD-1/PD-L1 inhibitor is gaining momentum. Various studies have reported the survival benefits of the combined application of radiotherapy and PD-1/PD-L1 inhibitor. To fully exerts the immune activation effect of radiotherapy, while avoiding the immunosuppressive effect of radiotherapy as much as possible, the dose selection, segmentation mode, treatment timing and the number of treatment sites of radiotherapy play a role. Therefore, we aim to review the effect of radiotherapy combined with anti-PD-1/PD-L1 on the immune system and its optimization.
Collapse
Affiliation(s)
- Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Bouleftour W, Rowinski E, Louati S, Sotton S, Wozny AS, Moreno-Acosta P, Mery B, Rodriguez-Lafrasse C, Magne N. A Review of the Role of Hypoxia in Radioresistance in Cancer Therapy. Med Sci Monit 2021; 27:e934116. [PMID: 34728593 PMCID: PMC8573967 DOI: 10.12659/msm.934116] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia involves neoplastic cells. Unlike normal tissue, solid tumors are composed of aberrant vasculature, leading to a hypoxic microenvironment. Hypoxia is also known to be involved in both metastasis initiation and therapy resistance. Radiotherapy is the appropriate treatment in about half of all cancers, but loco-regional control failure and a disease recurrence often occur due to clinical radioresistance. Hypoxia induces radioresistance through a number of molecular pathways, and numerous strategies have been developed to overcome this. Nevertheless, these strategies have resulted in disappointing results, including adverse effects and limited efficacy. Additional clinical studies are needed to achieve a better understanding of the complex hypoxia pathways. This review presents an update on the mechanisms of hypoxia in radioresistance in solid tumors and the potential therapeutic solutions.
Collapse
Affiliation(s)
- Wafa Bouleftour
- Radiotherapy Department, Lucien Neuwirth Cancerology Institute, Saint Priest en Jarez, France
| | - Elise Rowinski
- Radiotherapy Department, Lucien Neuwirth Cancerology Institute, Saint Priest en Jarez, France
| | - Safa Louati
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, France.,Hospices Civils de Lyon, Lyon, France
| | - Sandrine Sotton
- Radiotherapy Department, Lucien Neuwirth Cancerology Institute, Saint Priest en Jarez, France
| | - Anne-Sophie Wozny
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, France.,Hospices Civils de Lyon, Lyon, France
| | - Pablo Moreno-Acosta
- Research Group in Cancer Biology, National Cancer Institute, Bogotá, Colombia
| | - Benoite Mery
- Radiotherapy Department, Lucien Neuwirth Cancerology Institute, Saint Priest en Jarez, France
| | - Claire Rodriguez-Lafrasse
- Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, France.,Hospices Civils de Lyon, Lyon, France
| | - Nicolas Magne
- Radiotherapy Department, Lucien Neuwirth Cancerology Institute, Saint Priest en Jarez, France.,Université Lyon 1, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon, IPNL, Villeurbanne, France.,Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
34
|
Janopaul-Naylor JR, Shen Y, Qian DC, Buchwald ZS. The Abscopal Effect: A Review of Pre-Clinical and Clinical Advances. Int J Mol Sci 2021; 22:11061. [PMID: 34681719 PMCID: PMC8537037 DOI: 10.3390/ijms222011061] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Radiotherapy has been used for more than a hundred years to cure or locally control tumors. Regression of tumors outside of the irradiated field was occasionally observed and is known as the abscopal effect. However, the occurrence of systemic anti-tumor effects was deemed too rare and unpredictable to be a therapeutic goal. Recent studies suggest that immunotherapy and radiation in combination may enhance the abscopal response. Increasing numbers of cases are being reported since the routine implementation of immune checkpoint inhibitors, showing that combined radiotherapy with immunotherapy has a synergistic effect on both local and distant (i.e., unirradiated) tumors. In this review, we summarize pre-clinical and clinical reports, with a specific focus on the mechanisms behind the immunostimulatory effects of radiation and how this is enhanced by immunotherapy.
Collapse
Affiliation(s)
- James R. Janopaul-Naylor
- Department of Radiation Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (Y.S.); (D.C.Q.); (Z.S.B.)
| | | | | | | |
Collapse
|
35
|
Guerini AE, Filippi AR, Tucci A, Simontacchi G, Re A, Guaineri A, Morelli V, Borghetti P, Triggiani L, Pegurri L, Pedretti S, Volpi G, Spiazzi L, Magrini SM, Buglione M. 'Le Roi est mort, vive le Roi': New Roles of Radiotherapy in the Treatment of Lymphomas in Combination With Immunotherapy. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 22:e135-e148. [PMID: 34728169 DOI: 10.1016/j.clml.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND immunotherapy (IT), including checkpoint inhibitors (CIs) and Chimeric Antigen Receptor T cell therapy (CAR-T) revolutionized the treatment of relapsing or refractory (r/r) lymphoma. Several preliminary experiences evaluated concomitant administration of radiotherapy and IT. METHODS we performed a systematic review of current literature as of March 30, 2020. A total of 1090 records was retrieved, 42 articles were selected on the basis of title and abstract and, after the removal of analyses with no original data or insufficient clinical information, 28 papers were included in the review. RESULTS previous studies were mostly represented by case reports/series or small cohorts. Nonetheless, combination of radiotherapy and CIs or CAR-T led to promising outcomes, resulting in extremely high rates of complete response and improving progression free and overall survival compared with data from recent clinical trials. Combination of RT and CIs had a fair toxicity profile with no reports of severe side effects. Within the limits of the small cohorts retrieved, RT seems a superior option compared with systemic treatment as a 'bridge' to CAR-T and could as well reduce severe complications rates. Radiotherapy could elicit immune response against lymphoma, as demonstrated by multiple cases of abscopal effect and its inclusion in anti-neoplastic vaccines protocols. CONCLUSION The results of this review warrant the evaluation of combination of RT and immunotherapy in larger and preferably prospective and randomized cohorts to confirm these preliminary impressive outcomes. The optimal dose, fractionation and timing of RT still have to be clarified.
Collapse
Affiliation(s)
| | - Andrea Riccardo Filippi
- Radiation Oncology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Alessandra Tucci
- Department of Haematology, ASST-Spedali Civili Hospital, Brescia, Italy
| | - Gabriele Simontacchi
- Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Alessandro Re
- Department of Haematology, ASST-Spedali Civili Hospital, Brescia, Italy
| | - Annamaria Guaineri
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Vittorio Morelli
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Paolo Borghetti
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Luca Triggiani
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Ludovica Pegurri
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Sara Pedretti
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Giulia Volpi
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Luigi Spiazzi
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy.
| | - Stefano Maria Magrini
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Michela Buglione
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| |
Collapse
|
36
|
Mirjolet C, Truc G. [Abscopal effect: Myth or reality?]. Cancer Radiother 2021; 25:533-536. [PMID: 34462213 DOI: 10.1016/j.canrad.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
The abscopal effect has been mentioned since 1953. The increase in knowledge about the immune system and the development of immunotherapies support its potential therapeutic interest. While it is accepted that radiotherapy induces an immune response, demonstrating its systemic impact is not easy. The preclinical basis is solid but its clinical validation pending. Radiotherapy rarely induces tumor reduction at a distance from the beams, probably due to its immunosuppressive effect. This is why a synergy between radiotherapy and systemic treatments targeting these immunosuppressive mechanisms was observed. Several parameters can modulate the induction of the abscopal effect. Among these, the fractionation of the dose seems to be determining with currently a pre-eminence of hypofractionated stereotaxis. On the other hand, even if the choice of more immunogenic targets (liver, lung) should be favoured, the optimal number of lesions to be irradiated remains to be defined as well as the minimum volume allowing sufficient release of tumor antigens. The impact of radiation-induced lymphopenia on radiotherapy/immunotherapy efficacy needs to be assessed more precisely, as does the effect of radiotherapy techniques on them. Finally, the choice of immunotherapy(ies) and the combination regimen with radiotherapy remain under discussion. A sequential scheme appears to provide less toxicities but the concomitant would lead to a better response. The study of these different parameters should allow us to deliver optimized radiotherapy/immunotherapy(ies) combinations to our metastatic patients in order to benefit as many people as possible from this abscopal effect.
Collapse
Affiliation(s)
- C Mirjolet
- Department of radiation oncology, Unicancer - Georges-Francois-Leclerc Cancer Center, 21000 Dijon, France; Inserm UMR 1231, 21000 Dijon, France.
| | - G Truc
- Department of radiation oncology, Unicancer - Georges-Francois-Leclerc Cancer Center, 21000 Dijon, France
| |
Collapse
|
37
|
Kiljan M, Weil S, Vásquez-Torres A, Hettich M, Mayer M, Ibruli O, Reinscheid M, Heßelmann I, Cai J, Niu LN, Sahbaz Y, Baues C, Baus WW, Kamp F, Marnitz S, Herter-Sprie GS, Herter JM. CyberKnife radiation therapy as a platform for translational mouse studies. Int J Radiat Biol 2021; 97:1261-1269. [PMID: 34043466 DOI: 10.1080/09553002.2021.1934749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Radiation therapy (RT) is a common nonsurgical treatment in the management of patients with cancer. While genetically engineered mouse models (GEMM) recapitulate human disease, conventional linear particle accelerator systems are not suited for state-of-the-art, imageguided targeted RT (IGRT) of these murine tumors. We employed the CyberKnife (CK; Accuray) platform for IGRT of GEMM-derived non-small cell lung cancer (NSCLC) lesions. MATERIAL AND METHODS GEMM-derived KrasLSL-G12D/+/Trp53fl/fl -driven NSCLC flank tumors were irradiated using the CK RT platform. We applied IGRT of 2, 4, 6, and 8 Gy using field sizes of 5-12.5 mm to average gross tumor volumes (GTV) of 0.9 cm3 using Xsight Spine Tracking (Accuray). RESULTS We found that 0 mm planning target volume (PTV) margin is sufficient for IGRT of murine tumors using the CK. We observed that higher RT doses (6-8 Gy) decreased absolute cell numbers of tumor infiltrating leukocytes (TIL) by approximately half compared to low doses (2-4 Gy) within 1 h, but even with low dose RT (2 Gy) TIL were found to be reduced after 8-24 h. CONCLUSION We here demonstrate that the CK RT system allows for targeted IGRT of murine tumors with high precision and constitutes a novel promising platform for translational mouse RT studies.
Collapse
Affiliation(s)
- Martha Kiljan
- Department of Radiation Oncology and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Sabrina Weil
- Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andres Vásquez-Torres
- Department of Radiation Oncology and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Meike Hettich
- Department of Radiation Oncology and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Marimel Mayer
- Department of Radiation Oncology and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Olta Ibruli
- Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matthias Reinscheid
- Department of Radiation Oncology and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Isabelle Heßelmann
- Department of Radiation Oncology and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Jiali Cai
- Department of Radiation Oncology and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Li-Na Niu
- Department of Radiation Oncology and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Yagmur Sahbaz
- Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christian Baues
- Department of Radiation Oncology and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wolfgang W Baus
- Department of Radiation Oncology and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Florian Kamp
- Department of Radiation Oncology and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Simone Marnitz
- Department of Radiation Oncology and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Grit S Herter-Sprie
- Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan M Herter
- Department of Radiation Oncology and CyberKnife Center, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| |
Collapse
|
38
|
Telarovic I, Wenger RH, Pruschy M. Interfering with Tumor Hypoxia for Radiotherapy Optimization. J Exp Clin Cancer Res 2021; 40:197. [PMID: 34154610 PMCID: PMC8215813 DOI: 10.1186/s13046-021-02000-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/30/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia in solid tumors is an important predictor of treatment resistance and poor clinical outcome. The significance of hypoxia in the development of resistance to radiotherapy has been recognized for decades and the search for hypoxia-targeting, radiosensitizing agents continues. This review summarizes the main hypoxia-related processes relevant for radiotherapy on the subcellular, cellular and tissue level and discusses the significance of hypoxia in radiation oncology, especially with regard to the current shift towards hypofractionated treatment regimens. Furthermore, we discuss the strategies to interfere with hypoxia for radiotherapy optimization, and we highlight novel insights into the molecular pathways involved in hypoxia that might be utilized to increase the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
39
|
Akanda ZZ, Neeson PJ, John T, Barnett S, Hanna GG, Miller A, Jennens R, Siva S. A narrative review of combined stereotactic ablative radiotherapy and immunotherapy in metastatic non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:2766-2778. [PMID: 34295676 PMCID: PMC8264312 DOI: 10.21037/tlcr-20-1117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have significantly improved overall survival (OS) in metastatic non-small cell lung cancer (m-NSCLC). However, not all patients with m-NSCLC benefit from ICIs, and resistance to ICIs is an emerging challenge. The tumour microenvironment (TME) is immunosuppressive, and provides a myriad of mechanisms to facilitate escape of cancer cells from immune surveillance. The TME may also dampen the response to ICIs by inhibiting T cell effector responses. The poor prognosis of m-NSCLC has led to investigation of ICIs combined with other treatments with the intention of modulating the TME and sensitizing tumours to the effects of ICIs. Stereotactic ablative radiotherapy (SABR) in combination with ICIs is an area of intense interest. SABR is thought to evoke a pro-immunogenic response in the TME, with the capacity to turn a “cold”, unresponsive tumour to “hot” and receptive to ICI. In addition to improved local response, SABR is postulated to produce a heightened systemic immune response when compared to conventional radiotherapy (RT). Preclinical studies have demonstrated a synergistic effect of SABR + ICIs, and clinical studies in m-NSCLC showed safety and promising efficacy compared to systemic therapies alone. To optimize ICI + SABR, ICI choice, combinations, dosing and length of treatment, as well as sequencing of ICI + SABR all require further investigation. Appropriate sequencing may depend on the ICI(s) being utilized, with differing sites of metastases possibly eliciting differing immune responses. Single versus multisite radiation is controversial, whilst effects of irradiated tumour volume and nodal irradiation are increasingly recognized. Taken together, there is strong preclinical and biological rationale, with emerging clinical evidence, supporting the strategy of combining SABR + ICIs in m-NSCLC.
Collapse
Affiliation(s)
- Zarique Z Akanda
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Paul J Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.,Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Thomas John
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen Barnett
- Division of Thoracic Surgery, Austin Health, Heidelberg, Australia.,Austin Health Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Gerard G Hanna
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Alistair Miller
- Division of Respiratory Medicine, The Royal Melbourne Hospital, Melbourne, Australia
| | - Ross Jennens
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Shankar Siva
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
40
|
Khalifa J, Mazieres J, Gomez-Roca C, Ayyoub M, Moyal ECJ. Radiotherapy in the Era of Immunotherapy With a Focus on Non-Small-Cell Lung Cancer: Time to Revisit Ancient Dogmas? Front Oncol 2021; 11:662236. [PMID: 33968769 PMCID: PMC8097090 DOI: 10.3389/fonc.2021.662236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced immune effects have been extensively deciphered over the last few years, leading to the concept of the dual immune effect of radiotherapy with both immunostimulatory and immunosuppressive effects. This explains why radiotherapy alone is not able to drive a strong anti-tumor immune response in most cases, hence underlining the rationale for combining both radiotherapy and immunotherapy. This association has generated considerable interest and hundreds of trials are currently ongoing to assess such an association in oncology. However, while some trials have provided unprecedented results or shown much promise, many hopes have been dashed. Questions remain, therefore, as to how to optimize the combination of these treatment modalities. This narrative review aims at revisiting the old, well-established concepts of radiotherapy relating to dose, fractionation, target volumes and organs at risk in the era of immunotherapy. We then propose potential innovative approaches to be further assessed when considering a radio-immunotherapy association, especially in the field of non-small-cell lung cancer (NSCLC). We finally propose a framework to optimize the association, with pragmatic approaches depending on the stage of the disease.
Collapse
Affiliation(s)
- Jonathan Khalifa
- Department of Radiotherapy, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse – Oncopole, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale U1037, Centre de Recherche contre le Cancer de Toulouse, Toulouse, France
| | - Julien Mazieres
- Department of Pulmonology, Centre Hospitalo-Universitaire Larrey, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Carlos Gomez-Roca
- Institut National de la Santé et de la Recherche Médicale U1037, Centre de Recherche contre le Cancer de Toulouse, Toulouse, France
- Department of Medical Oncology, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse – Oncopole, Toulouse, France
| | - Maha Ayyoub
- Institut National de la Santé et de la Recherche Médicale U1037, Centre de Recherche contre le Cancer de Toulouse, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- Department of Radiotherapy, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse – Oncopole, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale U1037, Centre de Recherche contre le Cancer de Toulouse, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
41
|
Lumniczky K, Impens N, Armengol G, Candéias S, Georgakilas AG, Hornhardt S, Martin OA, Rödel F, Schaue D. Low dose ionizing radiation effects on the immune system. ENVIRONMENT INTERNATIONAL 2021; 149:106212. [PMID: 33293042 PMCID: PMC8784945 DOI: 10.1016/j.envint.2020.106212] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/03/2023]
Abstract
Ionizing radiation interacts with the immune system in many ways with a multiplicity that mirrors the complexity of the immune system itself: namely the need to maintain a delicate balance between different compartments, cells and soluble factors that work collectively to protect, maintain, and restore tissue function in the face of severe challenges including radiation damage. The cytotoxic effects of high dose radiation are less relevant after low dose exposure, where subtle quantitative and functional effects predominate that may go unnoticed until late after exposure or after a second challenge reveals or exacerbates the effects. For example, low doses may permanently alter immune fitness and therefore accelerate immune senescence and pave the way for a wide spectrum of possible pathophysiological events, including early-onset of age-related degenerative disorders and cancer. By contrast, the so called low dose radiation therapy displays beneficial, anti-inflammatory and pain relieving properties in chronic inflammatory and degenerative diseases. In this review, epidemiological, clinical and experimental data regarding the effects of low-dose radiation on the homeostasis and functional integrity of immune cells will be discussed, as will be the role of immune-mediated mechanisms in the systemic manifestation of localized exposures such as inflammatory reactions. The central conclusion is that ionizing radiation fundamentally and durably reshapes the immune system. Further, the importance of discovery of immunological pathways for modifying radiation resilience amongst other research directions in this field is implied.
Collapse
Affiliation(s)
- Katalin Lumniczky
- National Public Health Centre, Department of Radiation Medicine, Budapest, Albert Florian u. 2-6, 1097, Hungary.
| | - Nathalie Impens
- Belgian Nuclear Research Centre, Biosciences Expert Group, Boeretang 200, 2400 Mol, Belgium.
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Catalonia, Spain.
| | - Serge Candéias
- Université Grenoble-Alpes, CEA, CNRS, IRIG-LCBM, 38000 Grenoble, France.
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou 15780, Athens, Greece.
| | - Sabine Hornhardt
- Federal Office for Radiation Protection (BfS), Ingolstaedter Landstr.1, 85764 Oberschleissheim, Germany.
| | - Olga A Martin
- Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne 3052, Victoria, Australia.
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA.
| |
Collapse
|
42
|
Kong Y, Ma Y, Zhao X, Pan J, Xu Z, Zhang L. Optimizing the Treatment Schedule of Radiotherapy Combined With Anti-PD-1/PD-L1 Immunotherapy in Metastatic Cancers. Front Oncol 2021; 11:638873. [PMID: 33859942 PMCID: PMC8042160 DOI: 10.3389/fonc.2021.638873] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein-1 (PD-1), and programmed cell death ligand-1 (PD-L1) have been approved for a variety of malignant tumors and are widely used to treat patients with metastatic disease. However, the efficacy of PD-1 inhibitors is limited due to tumor heterogeneity, high tumor burden, and "cold" tumor microenvironment. Radiotherapy can improve the anti-tumor effects of PD-1/PD-L1 inhibitors in various ways. As a new radiotherapy method, stereotactic body radiotherapy (SBRT) or hypofractionated radiotherapy (HFRT) provides higher doses per fraction to the target lesions, thus achieving immune activation effects and overcoming tumor resistance to anti-PD-1/PD-L1 treatment, which significantly improves the local and distant control of tumors. However, for different metastatic situations, radiotherapy plays different roles in the combination therapy. In oligometastatic status, radiotherapy can be used as a local radical treatment aiming to eliminate cancers in cooperation with systemic PD-1 inhibitors. In other circumstances, like bulky metastasis or multiple metastatic tumors, radiotherapy can be used as adjuvant to systemic immunotherapy. This review focuses on the underlying mechanisms and optimization strategies for the combination of radiotherapy and anti-PD-1/PD-L1 therapy in metastatic disease.
Collapse
Affiliation(s)
- Yuehong Kong
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, Suzhou, China
| | - Yifu Ma
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, Suzhou, China
| | - Xiangrong Zhao
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi Xu
- Department of Medical Affairs, ICON Plc, Beijing, China
| | - Liyuan Zhang
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, Suzhou, China
| |
Collapse
|
43
|
Rokni MB, Pointer KB, George J, Luke JJ, Chmura SJ, Redler G. Radiation treatment planning study to investigate feasibility of delivering Immunotherapy in Combination with Ablative Radiosurgery to Ultra-High DoSes (ICARUS). J Appl Clin Med Phys 2021; 22:196-206. [PMID: 33626240 PMCID: PMC7984482 DOI: 10.1002/acm2.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Immune checkpoint inhibitors improve survival in metastatic diseases for some cancers. Multisite SBRT with pembrolizumab (SBRT + Pembro) was shown to be safe with promising local control using biologically effective doses (BEDs) = 95-120 Gy. Increased BED may improve response rate; however, SBRT doses are limited by surrounding organs at risk (OARs). The purpose of this work was to develop and validate methods for safe delivery of ultra-high doses of radiation (BED10 > 300) to be used in future clinical trials. METHODS AND MATERIALS The radiation plans from 15 patients enrolled on a phase I trial of SBRT + pembro were reanalyzed. Metastatic disease sites included liver (8/15), inguinal region (1/15), pelvis (2/15), lung (1/15), abdomen (1/15), spleen (1/15), and groin (1/15). Gross tumor volumes (GTVs) ranged from 80 to 708 cc. Following the same methodology used in the Phase I trial on which these patients were treated, GTVs > 65 cc were contracted to a 65 cc subvolume (SubGTV) resulting in only a portion of the GTV receiving prescription dose. Volumetric modulated arc therapy (VMAT) was used to plan treatments BED10 = 360 Gy. Plans utilizing both 6FFF and 10FFF beams were compared to clinical plans delivering BED10 = 112.50 Gy. The target primary goal was V100% > 95% with a secondary goal of V70% > 99% and OAR objectives per the trial. To demonstrate feasibility, plans were delivered to a diode array phantom and evaluated for fidelity using gamma analysis. RESULTS All 30 plans met the secondary coverage goal and satisfied all OAR constraints. The primary goal was achieved in 12/15 of the 6FFF plans and 13/15 of the 10FFF plans. Average gamma analysis passing rate using criteria of 3% dose difference and 3, 2, and 1 mm were 99.1 ± 1.0%, 98.5 ± 1.6%, and 95.1 ± 3.8%, respectively. CONCLUSION Novel VMAT planning approaches with clinical treatment planning software and linear accelerators prove capable of delivering radiation doses in excess of 360 Gy BED10 to tumor subvolumes, while maintaining safe OAR doses.
Collapse
Affiliation(s)
- Michelle B Rokni
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, IL, USA
| | - Kelli B Pointer
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, IL, USA
| | - Jonathan George
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, IL, USA
| | - Jason J Luke
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steven J Chmura
- Department of Radiation and Cellular Oncology, The University of Chicago Medicine, Chicago, IL, USA
| | - Gage Redler
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
44
|
Hörner-Rieber J, Klüter S, Debus J, Adema G, Ansems M, Verheij M. MR-Guided Radiotherapy: The Perfect Partner for Immunotherapy? Front Oncol 2021; 10:615697. [PMID: 33604296 PMCID: PMC7884826 DOI: 10.3389/fonc.2020.615697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
During the last years, preclinical and clinical studies have emerged supporting the rationale to integrate radiotherapy and immunotherapy. Radiotherapy may enhance the effects of immunotherapy by improving tumor antigen release, antigen presentation, and T-cell infiltration. Recently, magnetic resonance guided radiotherapy (MRgRT) has become clinically available. Compared to conventional radiotherapy techniques, MRgRT firstly allows for daily on-table treatment adaptation, which enables both dose escalation for increasing tumor response and superior sparing of radiosensitive organs-at-risk for reducing toxicity. The current review focuses on the potential of combining MR-guided adaptive radiotherapy with immunotherapy by providing an overview on the current status of MRgRT, latest developments in preclinical and clinical radio-immunotherapy, and the unique opportunities and challenges for MR-guided radio-immunotherapy. MRgRT might especially assist in answering open questions in radio-immunotherapy regarding optimal radiation dose, fractionation, timing of immunotherapy, appropriate irradiation volumes, and response prediction.
Collapse
Affiliation(s)
- Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gosse Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marleen Ansems
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
45
|
Tumor Hypoxia as a Barrier in Cancer Therapy: Why Levels Matter. Cancers (Basel) 2021; 13:cancers13030499. [PMID: 33525508 PMCID: PMC7866096 DOI: 10.3390/cancers13030499] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia is a common feature of solid tumors and associated with poor outcome in most cancer types and treatment modalities, including radiotherapy, chemotherapy, surgery and, most likely, immunotherapy. Emerging strategies, such as proton therapy and combination therapies with radiation and hypoxia targeted drugs, provide new opportunities to overcome the hypoxia barrier and improve therapeutic outcome. Hypoxia is heterogeneously distributed both between and within tumors and shows large variations across patients not only in prevalence, but importantly, also in level. To best exploit the emerging strategies, a better understanding of how individual hypoxia levels from mild to severe affect tumor biology is vital. Here, we discuss our current knowledge on this topic and how we should proceed to gain more insight into the field. Abstract Hypoxia arises in tumor regions with insufficient oxygen supply and is a major barrier in cancer treatment. The distribution of hypoxia levels is highly heterogeneous, ranging from mild, almost non-hypoxic, to severe and anoxic levels. The individual hypoxia levels induce a variety of biological responses that impair the treatment effect. A stronger focus on hypoxia levels rather than the absence or presence of hypoxia in our investigations will help development of improved strategies to treat patients with hypoxic tumors. Current knowledge on how hypoxia levels are sensed by cancer cells and mediate cellular responses that promote treatment resistance is comprehensive. Recently, it has become evident that hypoxia also has an important, more unexplored role in the interaction between cancer cells, stroma and immune cells, influencing the composition and structure of the tumor microenvironment. Establishment of how such processes depend on the hypoxia level requires more advanced tumor models and methodology. In this review, we describe promising model systems and tools for investigations of hypoxia levels in tumors. We further present current knowledge and emerging research on cellular responses to individual levels, and discuss their impact in novel therapeutic approaches to overcome the hypoxia barrier.
Collapse
|
46
|
Wang Y. Advances in Hypofractionated Irradiation-Induced Immunosuppression of Tumor Microenvironment. Front Immunol 2021; 11:612072. [PMID: 33569059 PMCID: PMC7868375 DOI: 10.3389/fimmu.2020.612072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Hypofractionated radiotherapy is external beam irradiation delivered at higher doses in fewer fractions than conventional standard radiotherapy, which can stimulate innate and adaptive immunity to enhance the body’s immune response against cancer. The enhancement effect of hypofractionated irradiation to immune response has been widely investigated, which is considered an approach to expand the benefit of immunotherapy. Meanwhile, increasing evidence suggests that hypofractionated irradiation may induce or enhance the suppression of immune microenvironments. However, the suppressive effects of hypofractionated irradiation on immunomicroenvironment and the molecular mechanisms involved in these conditions are largely unknown. In this context, we summarized the immune mechanisms associated with hypofractionated irradiation, highlighted the advances in its immunosuppressive effect, and further discussed the potential mechanism behind this effect. In our opinion, besides its immunogenic activity, hypofractionated irradiation also triggers homeostatic immunosuppressive mechanisms that may counterbalance antitumor effects. And this may suggest that a combination with immunotherapy could possibly improve the curative potential of hypofractionated radiotherapy.
Collapse
Affiliation(s)
- Yuxia Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
47
|
Alongi F, Arcangeli S, Cuccia F, D'Angelillo RM, Di Muzio NG, Filippi AR, Jereczek-Fossa BA, Livi L, Pergolizzi S, Scorsetti M, Corvò R, Magrini SM. In reply to Fiorino et al.: The central role of the radiation oncologist in the multidisciplinary & multiprofessional model of modern radiation therapy. Radiother Oncol 2020; 155:e20-e21. [PMID: 33387582 DOI: 10.1016/j.radonc.2020.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Filippo Alongi
- Advanced Radiation Oncology Department Sacro Cuore Don Calabria Hospital, Negrar (VR), Italy; University of Brescia, Italy.
| | - Stefano Arcangeli
- Department of Radiation Oncology, Policlinico S. Gerardo and University of Milan "Bicocca", Milano, Italy
| | - Francesco Cuccia
- Advanced Radiation Oncology Department Sacro Cuore Don Calabria Hospital, Negrar (VR), Italy
| | - Rolando Maria D'Angelillo
- Radiotherapy Unit, Department of Oncology and Hematology, Policlinico Tor Vergata University, Rome, Italy
| | - Nadia Gisella Di Muzio
- Radiation Oncology Centre, IRCCS Ospedale S. Raffaele and University Vita Salute, Milano, Italy
| | - Andrea Riccardo Filippi
- Division of Radiotherapy, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-oncology, University of Milan, Italy; Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Lorenzo Livi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Italy
| | - Stefano Pergolizzi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center - IRCCS, Milan, Italy; Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - Renzo Corvò
- Department of Radiation Oncology, IRCCS Ospedale Policlinico San Martino, and Department of Health Science, University of Genoa, Italy; Radiation Oncology Centre, Brescia University Radiation Oncology Department, O. Alberti Radium Institute, Spedali Civili Hospital, Brescia, Italy
| | - Stefano Maria Magrini
- Department of Radiation Oncology, IRCCS Ospedale Policlinico San Martino, and Department of Health Science, University of Genoa, Italy; University of Brescia, Italy
| |
Collapse
|
48
|
Glicksman RM, Tjong MC, Neves-Junior WFP, Spratt DE, Chua KLM, Mansouri A, Chua MLK, Berlin A, Winter JD, Dahele M, Slotman BJ, Bilsky M, Shultz DB, Maldaun M, Szerlip N, Lo SS, Yamada Y, Vera-Badillo FE, Marta GN, Moraes FY. Stereotactic Ablative Radiotherapy for the Management of Spinal Metastases: A Review. JAMA Oncol 2020; 6:567-577. [PMID: 31895403 DOI: 10.1001/jamaoncol.2019.5351] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Rising cancer incidence combined with improvements in systemic and local therapies extending life expectancy are translating into more patients with spinal metastases. This makes the multidisciplinary management of spinal metastases and development of new therapies increasingly important. Spinal metastases may cause significant pain and reduced quality of life and lead to permanent neurological disability if compression of the spinal cord and/or nerve root occurs. Until recently, treatments for spinal metastases were not optimal and provided temporary local control and pain relief. Spinal stereotactic ablative radiotherapy (SABR) is an effective approach associated with an improved therapeutic ratio, with evolving clinical application. Objective To review the literature of spinal SABR for spinal metastases, discuss a multidisciplinary approach to appropriate patient selection and technical considerations, and summarize current efforts to combine spinal SABR with systemic therapies. Evidence Review The MEDLINE database was searched to identify articles reporting on spinal SABR to September 30, 2018. Articles including clinical trials, prospective and retrospective studies, systematic reviews, and consensus recommendations were selected for relevance to multidisciplinary management of spinal metastases. Results Fifty-nine unique publications with 5655 patients who underwent SABR for spinal metastases were included. Four comprehensive frameworks for patient selection were discussed. Spinal SABR was associated with 1-year local control rates of approximately 80% to 90% in the de novo setting, greater than 80% in the postoperative setting, and greater than 65% in the reirradiation setting. The most commonly discussed adverse effect was development of a vertebral compression fracture with variable rates, most commonly reported as approximately 10% to 15%. High-level data on the combination of SABR with modern therapies are still lacking. At present, 19 clinical trials are ongoing, mainly focusing on combined modality therapies, radiotherapy prescription dose, and oligometastic disease. Conclusions and Relevance These findings suggest that spinal SABR may be an effective treatment option for well-selected patients with spinal metastases, achieving high rates of local tumor control with moderate rates of adverse effects. Optimal management should include review by a multidisciplinary care team.
Collapse
Affiliation(s)
- Rachel M Glicksman
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Michael C Tjong
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Kevin L M Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore.,Oncology Academic Programme, Duke University/National University of Singapore (NUS) Medical School, Singapore
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Melvin L K Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore.,Oncology Academic Programme, Duke University/National University of Singapore (NUS) Medical School, Singapore
| | - Alejandro Berlin
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeff D Winter
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Mark Bilsky
- Department of Neurosurgery, Multi-Disciplinary Spine Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Shultz
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marcos Maldaun
- Division of Neurosurgery, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle
| | - Yoshiya Yamada
- Department of Radiation Oncology, Multi-Disciplinary Spine Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Gustavo N Marta
- Department of Radiation Oncology, Hospital Sírio-Libanês, São Paulo, Brazil.,Division of Radiation Oncology, Department of Radiology and Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Fabio Y Moraes
- Division of Radiation Oncology, Department of Oncology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
49
|
Tubin S, Gupta S, Grusch M, Popper HH, Brcic L, Ashdown ML, Khleif SN, Peter-Vörösmarty B, Hyden M, Negrini S, Fossati P, Hug E. Shifting the Immune-Suppressive to Predominant Immune-Stimulatory Radiation Effects by SBRT-PArtial Tumor Irradiation Targeting HYpoxic Segment (SBRT-PATHY). Cancers (Basel) 2020; 13:cancers13010050. [PMID: 33375357 PMCID: PMC7795882 DOI: 10.3390/cancers13010050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary This review presents and summarizes the key components and outcomes of a novel, unconventional radiation approach aimed to exploit immune-stimulatory radiation effects which, being added to direct radiation tumor cell killing, may improve the therapeutic ratio of radiotherapy. This technique, as a product of translational oncology research, was intentionally developed for the induction of immune-mediated bystander and abscopal effects in the treatment of unresectable bulky tumors which have much fewer therapeutic options and show poor prognoses after conventional treatments. This review offers insights into a unique unconventional radiotherapy technique which, due to its higher immunogenic potential, may improve the prognosis of patients affected by highly complex malignancies, providing additional opportunities for future research in terms of combining novel immuno-modulating agents with more modern radiotherapy approaches. Abstract Radiation-induced immune-mediated abscopal effects (AE) of conventional radiotherapy are very rare. Whole-tumor irradiation leads to lymphopenia due to killing of immune cells in the tumor microenvironment, resulting in immunosuppression and weak abscopal potential. This limitation may be overcome by partial tumor irradiation sparing the peritumoral immune-environment, and consequent shifting of immune-suppressive to immune-stimulatory effect. This would improve the radiation-directed tumor cell killing, adding to it a component of immune-mediated killing. Our preclinical findings showed that the high-single-dose irradiation of hypoxic tumor cells generates a stronger bystander effect (BE) and AE than the normoxic cells, suggesting their higher “immunogenic potential”. This led to the development of a novel Stereotactic Body RadioTherapy (SBRT)-based PArtial Tumor irradiation targeting HYpoxic segment (SBRT-PATHY) for induction of the immune-mediated BE and AE. Encouraging SBRT-PATHY-clinical outcomes, together with immunohistochemical and gene-expression analyses of surgically removed abscopal-tumor sites, suggested that delivery of the high-dose radiation to the partial (hypoxic) tumor volume, with optimal timing based on the homeostatic fluctuation of the immune response and sparing the peritumoral immune-environment, would significantly enhance the immune-mediated anti-tumor effects. This review discusses the current evidence on the safety and efficacy of SBRT-PATHY in the treatment of unresectable hypoxic bulky tumors and its bystander and abscopal immunomodulatory potential.
Collapse
Affiliation(s)
- Slavisa Tubin
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria; (P.F.); (E.H.)
- Correspondence: ; Tel.: +43-676-9021-687
| | - Seema Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.G.); (S.N.K.)
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (M.G.); (B.P.-V.)
| | - Helmuth H. Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (H.H.P.); (L.B.)
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (H.H.P.); (L.B.)
| | - Martin L. Ashdown
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne 3010, Australia;
| | - Samir N. Khleif
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.G.); (S.N.K.)
| | - Barbara Peter-Vörösmarty
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (M.G.); (B.P.-V.)
| | - Martin Hyden
- Institute for Pathology, Kabeg Klinikum Klagenfurt, 9020 Klagenfurt am Wörthersee, Austria;
| | - Simone Negrini
- Internal Medicine, Clinical Immunology and Translational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Piero Fossati
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria; (P.F.); (E.H.)
| | - Eugen Hug
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria; (P.F.); (E.H.)
| |
Collapse
|
50
|
Huang Q, Sun Y, Wang W, Lin LC, Huang Y, Yang J, Wu X, Kong L, Lu JJ. Biological Guided Carbon-Ion Microporous Radiation to Tumor Hypoxia Area Triggers Robust Abscopal Effects as Open Field Radiation. Front Oncol 2020; 10:597702. [PMID: 33330089 PMCID: PMC7713593 DOI: 10.3389/fonc.2020.597702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 01/16/2023] Open
Abstract
Recently, a growing number of studies focus on partial tumor irradiation to induce the stronger non-target effects. However, the value of partial volume carbon ion radiotherapy (CIRT) targeting hypoxic region of a tumor under imaging guidance as well as its effect of inducing radiation induced abscopal effects (RIAEs) have not been well investigated. Herein, we developed a technique of carbon ion microporous radiation (CI-MPR), guided by 18F-FMISO PET/computerized tomography (CT), for partial volume radiation targeting the hypoxia area of a tumor and investigated its capability of inducing abscopal effects. Tumor-bearing mice were inoculated subcutaneously with breast cancer 4T1 cells into the flanks of both hind legs of mouse. Mice were assigned to three groups: group I: control group with no treatment; group II: carbon ion open field radiation (CI-OFR group) targeting the entire tumor; group III: partial volume carbon ion microporous radiation (CI-MPR group) targeting the hypoxia region. The tumors on the left hind legs of mice were irradiated with single fraction of 20 Gy of CIRT. Mice treated with CI-MPR or CI-OFR showed that significant growth delay on both the irradiated and unirradiated of tumor as compared to the control groups. Tumor regression of left tumor irradiated with CI-OFR was more prominent as compared to the tumor treated with CI-MPR, while the regression of the unirradiated tumor in both CI-MPR and CI-OFR group was similar. Biological-guided CIRT using the newly developed microporous technique targeting tumor hypoxia region could induce robust abscopal effects similar to CIRT covering the entire tumor.
Collapse
Affiliation(s)
- Qingting Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yun Sun
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Weiwei Wang
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Lien-Chun Lin
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Yangle Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xiaodong Wu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade Jay Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|