1
|
Ding M, Ding Q, Liu Z, Wang L, Pei K, Hu J, Liao Y, Zhang JV. TNFRSF11B-modified umbilical cord mesenchymal stem cells as a novel strategy for bone-related diseases by suppressing osteoclast activity. J Orthop Surg Res 2025; 20:478. [PMID: 40380204 PMCID: PMC12085028 DOI: 10.1186/s13018-025-05850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/23/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Mesenchymal stem cells (MSCs), possessing multilineage potential, are capable of differentiating into osteoblasts and thus serve as suitable seed cells for bone regeneration. Tumor necrosis factor receptor superfamily member 11B (TNFRSF11B) gene encodes osteoprotegerin (OPG), which has a critical role in repressing osteoclast differentiation and has been reported to influence the adipogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). Nevertheless, the impact of TNFRSF11B on the osteogenic differentiation of umbilical cord mesenchymal stem cells (UCMSCs) remains unclear. This study aimed to investigate the role of TNFRSF11B in the osteogenesis of UCMSCs and bone remodeling. METHODS Differentially expressed genes (DEGs) were identified from the GEO database using R software. TNFRSF11B was transduced into UCMSCs by a lentiviral vector. Cell differentiation capacity was assessed by ALP staining, TRAP staining, and qRT-PCR assay. Proteomic analysis was performed to investigate the key proteins in TNFRSF11B-OE-UCMSCs that inhibit osteoclast differentiation. RESULTS We found that the TNFRSF11B gene was upregulated during osteogenic differentiation and downregulated during adipogenic differentiation of UCMSCs. UCMSCs overexpressing the TNFRSF11B gene were successfully generated via lentivirus transfection. However, neither the overexpression of TNFRSF11B nor treatment with exogenous OPG protein was sufficient to enhance the osteogenic potential of UCMSCs in vitro. Conditioned medium from TNFRSF11B-overexpressing UCMSCs significantly suppressed RANKL-induced osteoclast differentiation, while no significant effect was observed on osteoblast differentiation compared to the control group. Proteome analysis revealed that in the TNFRSF11B-OE-CM group, the expression of C1R, MDH1, and ACLY was significantly downregulated, while the expression of FETUB and METRNL was upregulated in the TNFRSF11B-OE-CM group, which was associated with the inhibition of osteoclast differentiation. CONCLUSION This study demonstrates that although TNFRSF11B overexpression does not promote osteogenesis in UCMSCs, it may participate in regulating bone remodeling by inhibiting osteoclast differentiation.
Collapse
Affiliation(s)
- Mina Ding
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Qian Ding
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Zhijie Liu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Liang Wang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Ke Pei
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Junyuan Hu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
- Shenzhen Beike Biotechnology Research Institute, Shenzhen, 518054, China
| | - Yan Liao
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China.
- Shenzhen Beike Biotechnology Research Institute, Shenzhen, 518054, China.
| | - Jian V Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, 518055, China.
- Sino-European Center of Biomedicine and Health, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Holiuk Y, Birsa R, Bukreieva T, Nemtinov P, Kyryk V, Ustymenko A, Mazevych V, Sokolov M, Lobyntseva G, Shablii V. Effectiveness and safety of multiple injections of human placenta-derived MSCs for knee osteoarthritis: a nonrandomized phase I trial. BMC Musculoskelet Disord 2025; 26:418. [PMID: 40281581 PMCID: PMC12032682 DOI: 10.1186/s12891-025-08664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
OBJECTIVE This study investigates the safety and efficacy of three intra-articular (IA) injections of cryopreserved human placenta-derived mesenchymal stem cells (hP-MSCs) for knee osteoarthritis (KOA) over a 1-year follow-up period. METHODS A total of 26 patients with stage II-III KOA were enrolled in this non-randomized, open-label study. Patients received either conventional therapy with hyaluronic acid (HA) alone (Control group, n = 11) or in combination with hP-MSCs (MSC group, n = 15) via three intra-articular injections with 4-week intervals. Clinical outcomes were assessed using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analogue Scale (VAS), and magnetic resonance imaging (MRI) at 6 and 12 months following the first injection. Blood samples were analyzed for cytokine levels. RESULTS Three injections of hP-MSCs combined with HA were well-tolerated, with no severe adverse events observed. Significant improvements in WOMAC and VAS scores were noted in the MSC group compared to the Control group at both 6 and 12 months. MRI analysis revealed no significant differences in cartilage thickness or optical density index between the groups. Additionally, serum cytokine analysis showed a significant decrease in interleukin-2 (IL-2) levels in the MSC group, indicating an anti-inflammatory effect of hP-MSCs. However, no significant changes were observed in other cytokines. CONCLUSION This study demonstrates that three intra-articular injections of cryopreserved hP-MSCs in combination with HA are safe and effective for treating KOA, providing sustained clinical improvement at the 1-year follow-up. TRIAL REGISTRATION NCT04453111, #7/09.26.2018. Registered 02 January 2020, https://www. CLINICALTRIALS gov/study/NCT04453111 .
Collapse
Affiliation(s)
- Yevhen Holiuk
- State Institution "The Institute of Traumatology and Orthopedics by NAMS of Ukraine", 27 Bulvarno-Kudriavska Street, Kyiv, 01601, Ukraine
| | - Roman Birsa
- Department of Traumatology, Kyiv City Clinical Hospital, #6, 3 Guzara Ave, Kyiv, 03680, Ukraine
| | - Tetiana Bukreieva
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 150 Zabolotnogo Str, Kyiv, 03143, Ukraine
- Placenta Stem Cell Laboratory, Institute of Cell Therapy, 9 Mokra str, Cryobank, Kyiv, 03035, Ukraine
| | - Petro Nemtinov
- Institute of Cell Therapy, 9 Mokra str, Kyiv, 03035, Ukraine
| | - Vitalii Kyryk
- Cell and Tissue Technologies Department, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, 5 Svyatoslav Khorobrygo str, Kyiv, 03151, Ukraine
- Laboratory of Pathological Physiology and Immunology, D. F. Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, 67 Vyshgorodska Street, Kyiv, 04114, Ukraine
| | - Alina Ustymenko
- Cell and Tissue Technologies Department, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, 5 Svyatoslav Khorobrygo str, Kyiv, 03151, Ukraine
- Laboratory of Pathological Physiology and Immunology, D. F. Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, 67 Vyshgorodska Street, Kyiv, 04114, Ukraine
| | - Vadym Mazevych
- State Institution "The Institute of Traumatology and Orthopedics by NAMS of Ukraine", 27 Bulvarno-Kudriavska Street, Kyiv, 01601, Ukraine
| | - Mykola Sokolov
- Institute of Cell Therapy, 9 Mokra str, Kyiv, 03035, Ukraine
| | | | - Volodymyr Shablii
- Placenta Stem Cell Laboratory, Institute of Cell Therapy, 9 Mokra str, Cryobank, Kyiv, 03035, Ukraine.
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 150 Zabolotnogo Str, 03143, Kyiv, Ukraine.
| |
Collapse
|
3
|
Chen X, Tian B, Wang Y, Zheng J, Kang X. Potential and challenges of utilizing exosomes in osteoarthritis therapy (Review). Int J Mol Med 2025; 55:43. [PMID: 39791222 PMCID: PMC11759586 DOI: 10.3892/ijmm.2025.5484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Exosomes are integral to the pathophysiology of osteoarthritis (OA) due to their roles in mediating intercellular communication and regulating inflammatory processes. Exosomes are integral to the transport of bioactive molecules, such as proteins, lipids and nucleic acids, which can influence chondrocyte behavior and joint homeostasis. Given their properties of regeneration and ability to target damaged tissues, exosomes represent a promising therapeutic avenue for OA treatment. Exosomes have potential in promoting cartilage repair, reducing inflammation and improving overall joint function. However, several challenges remain, including the need for standardized isolation and characterization methods, variability in exosomal content, and regulatory hurdles. The present review aims to provide a comprehensive overview of the current understanding of exosome mechanisms in OA and their therapeutic potential, while also addressing the ongoing challenges faced in translating these findings into clinical practice. By consolidating existing research, the present review aims to pave the way for future studies aimed at optimizing exosome‑based therapies for effective OA management.
Collapse
Affiliation(s)
| | | | | | - Jiang Zheng
- Department of Joint Surgery, Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China
| | - Xin Kang
- Department of Joint Surgery, Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China
| |
Collapse
|
4
|
Zhang P, Dong B, Yuan P, Li X. Human umbilical cord mesenchymal stem cells promoting knee joint chondrogenesis for the treatment of knee osteoarthritis: a systematic review. J Orthop Surg Res 2023; 18:639. [PMID: 37644595 PMCID: PMC10466768 DOI: 10.1186/s13018-023-04131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
PURPOSE The onset of OA is affected by a variety of factors, which eventually lead to the loss of cartilage in the joints, the formation of osteophytes, the loss of normal knee mobility, and pain and discomfort, which seriously affects the quality of life. HUC-MSCs can promote cartilage production and have been widely used in research in the past decade. This article systematically summarizes that it is well used in basic research and clinical studies to promote inflammatory chondrogenesis in the treatment of OA. Provide a theoretical basis for clinical treatment. PATIENTS AND METHODS This study collected CNKI, Wanfang, PubMed, and articles related to the treatment of OA with HUC-MSCs since their publication, excluding non-basic and clinical studies such as reviews and meta-analysis. A total of 31 basic experimental studies and 12 clinical studies were included. Systematically analyze the effects of HUC-MSCs on inhibiting inflammatory factors, promoting chondrocyte production, and current clinical treatment. RESULTS HUC-MSCs can reduce inflammatory factors such as MMP-13, ADAMTS-5, IL-1β, IL-1, IL-6, TNF-α, induced conversion from M1 to M2 in OA to protect cartilage damage and reduce OA inflammation. Synthesize ColII, SOX9, and aggrecan at the same time to promote cartilage synthesis. CONCLUSION HUC-MSCs not only have typical stem cell biological characteristics, but also have rich sources and convenient material extraction. Compared with stem cells from other sources, HUC-MSCs have stronger proliferation, differentiation, and immune regulation abilities. Furthermore, there are no ethical issues associated with their use. SAFETY Primarily attributed to pain, the majority of individuals experience recovery within 24 h following injection. HUC-MSCs possess the ability to alleviate pain, enhance knee joint function, and potentially postpone the need for surgical intervention in both non-surgical and other cases, making them highly deserving of clinical promotion and application.
Collapse
Affiliation(s)
| | - Bo Dong
- Xi'an Hong Hui Hospital, Xi'an, Shaanxi, China.
| | - Puwei Yuan
- Xi'an Hong Hui Hospital, Xi'an, Shaanxi, China
| | - Xun Li
- Xi'an Hong Hui Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
The Durability and Efficacy of Cryopreserved Human Umbilical Cord Tissue Allograft for the Supplementation of Cartilage Defects Associated with the Sacroiliac Joint: A Case Series. REPORTS 2023. [DOI: 10.3390/reports6010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
This Institutional Review Board (IRB)-approved retrospective observational protocol aims to report the safety and efficacy of birth tissue allografts applied in 38 patients with treatment-resistant sacroiliac (SI) joint pain. The research methodology consisted of an observational recording of the Numeric Pain Rating Scale (NPRS) and the Western Ontario and McMaster Universities Arthritis Index (WOMAC), which measure pain, stiffness, and physical function. No adverse events or adverse reactions were observed in the 38 patients. Statistically significant improvements in NPRS and WOMAC scores of the affected SI joint were reported after 90 days. The observational data suggests that Wharton’s jelly allograft applications are safe, minimally invasive, and efficacious. They may present an alternative to surgery for patients who fail conservative and procedural management of pain originating from chondral cartilage degeneration of the SI joint.
Collapse
|
6
|
Gupta A, Maffulli N. Allogenic Umbilical Cord Tissue for Treatment of Knee Osteoarthritis. Sports Med Arthrosc Rev 2022; 30:162-165. [PMID: 35921598 DOI: 10.1097/jsa.0000000000000350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Interest in use of perinatal allogenic tissues including clinical-grade minimally manipulated umbilical cord tissue-derived allograft formulations to treat knee osteoarthritis (OA) patients is increasing. Limited studies have characterized these formulations and evaluated their safety and efficacy in knee OA patients. We developed such formulation and reported the presence of growth factors, cytokines, hyaluronic acid, and exosomes. We reported that its administration is safe, and resulted in 50% pain reduction and improvement in knee injury and osteoarthritis outcome score (over 10%) and 36-item short form survey (25%). Another study reported no adverse events post injection of similar formulation and statistically significant ( P <0.001) improvement in visual analog scale and Western Ontario and McMaster Universities Osteoarthritis Index scores and reduction in medication usage in patients (77.8%). We also summarized the clinical trials registered on ClinicalTrials.gov utilizing umbilical cord tissue for knee OA treatment. In conclusion, available studies are preliminary but pave the way to higher level appropriately powered investigations, and these formulations should be considered as nonoperative alternative to manage knee OA.
Collapse
Affiliation(s)
- Ashim Gupta
- Future Biologics
- BioIntegrate, Lawrenceville, GA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX
- Veterans in Pain (V.I.P), Valencia, CA
- General Therapeutics, Cleveland Heights, OH
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Fisciano
- San Giovanni di Dio e Ruggi D'Aragona Hospital, "Clinica Orthopedica" Department, Hospital of Salerno, Salerno, Italy
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, Staffordshire, UK
| |
Collapse
|
7
|
Aratikatla A, Maffulli N, Rodriguez HC, Gupta M, Potty AG, El-Amin SF, Gupta A. Allogenic perinatal tissue for musculoskeletal regenerative medicine applications: a systematic review protocol. J Orthop Surg Res 2022; 17:307. [PMID: 35690774 PMCID: PMC9188718 DOI: 10.1186/s13018-022-03197-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Musculoskeletal ailments impact the lives of millions of people, and at times necessitate surgery followed by physiotherapy, drug treatments, or immobilization. Regenerative musculoskeletal medicine has undergone enormous progress over the last few decades. Sources of tissues used for regenerative medicine purposes can be grouped into autologous or allogenic. Although autologous sources are promising, there is a wide range of limitations with the treatment, including the lack of randomized controlled studies for orthopaedic conditions, donor site morbidity, and highly variable outcomes for patients. Allogenic sources bypass some of these shortcomings and are a promising source for orthopaedic regenerative medicine applications. METHODS A systematic search will be performed using PubMed, Elsevier, ScienceDirect, and Google Scholar databases for articles published in English before May 2022. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement and guidelines will be used. Studies will be eligible if they apply to acute and chronic orthopaedic musculoskeletal complications or animal or human disease models. Publications must include the use of MSCs and/or tissue obtained from amniotic/chorionic membrane, amniotic fluid, umbilical cord, and/or umbilical cord-derived Wharton's jelly as an intervention. Placebos, noninjury models, acute injury models, non-injury models, and gold standard treatments will be compared. The study selection will be performed by two independent reviewers using a dedicated reference management software. Data synthesis and meta-analysis will be performed separately for preclinical and clinical studies. DISCUSSION The results will be published in relevant peer-reviewed scientific journals. Investigators will present results at national or international conferences. TRIAL REGISTRATION The Protocol will be registered on PROSPERO international prospective register of systematic reviews prior to commencement.
Collapse
Affiliation(s)
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, 84084 Fisciano, Italy
- San Giovanni di Dio e Ruggi D’Aragona Hospital “Clinica Orthopedica” Department, Hospital of Salerno, 84124 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4DG UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, ST5 5BG UK
| | - Hugo C. Rodriguez
- Holy Cross Hospital, Orthopaedic Research Institute, Fort Lauderdale, FL 33334 USA
- Department of Orthopaedic Surgery, Larkin Community Hospital, South Miami, FL USA
| | - Manu Gupta
- Future Biologics, Lawrenceville, GA 30043 USA
- Polar Aesthetics Dental & Cosmetic Centre, Noida, Uttar Pradesh 201301 India
| | - Anish G. Potty
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045 USA
- Laredo Sports Medicine Clinic, Laredo, TX 78041 USA
| | - Saadiq F. El-Amin
- El-Amin Orthopaedic & Sports Medicine Institute, Lawrenceville, GA 30043 USA
- Regenerative Sports Medicine, Lawrenceville, GA 30043 USA
- BioIntegrate Inc., 2505 Newpoint Pkwy, Suite – 100, Lawrenceville, GA 30043 USA
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043 USA
- Polar Aesthetics Dental & Cosmetic Centre, Noida, Uttar Pradesh 201301 India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045 USA
- BioIntegrate Inc., 2505 Newpoint Pkwy, Suite – 100, Lawrenceville, GA 30043 USA
- Veterans in Pain (V.I.P.), Valencia, CA 91354 USA
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh 110048 India
| |
Collapse
|
8
|
Gupta A. Allogenic Amniotic Tissue for Treatment of Knee and Hip Osteoarthritis. Pharmaceuticals (Basel) 2022; 15:404. [PMID: 35455401 PMCID: PMC9031613 DOI: 10.3390/ph15040404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis (OA) impacts millions of people and places a high burden on healthcare systems in the United States. Current treatment modalities have limitations and do not address underlying pathology. Lately, there has been an immense growth in the use of biologics, including perinatal allogenic tissues for orthopedic regenerative medicine applications. Amniotic tissue is an exciting new alternative for such applications. Despite several published studies that reported its use for treatment of ophthalmic conditions and complex wounds, there are limited clinical studies evaluating its safety and efficacy in treating patients suffering with knee or hip OA. In this manuscript, I focused on three prospective clinical studies which evaluated the safety and efficacy of amniotic tissue in patients suffering with moderate knee or hip OA. The results from these studies presented the scientific community with much needed, well-executed, and prospective clinical trials. Though these trials demonstrated that administration of amniotic tissue in knee or hip joint is safe and potentially effective, more multi-center, prospective, double-blinded, randomized controlled trials are warranted to further establish the efficacy of amniotic tissue to mitigate symptoms of knee and hip OA to ultimately justify its clinical use.
Collapse
Affiliation(s)
- Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
- BioIntegrate, Lawrenceville, GA 30043, USA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- Veterans in Pain (V.I.P.), Valencia, CA 91354, USA
- General Therapeutics, Cleveland Heights, OH 44118, USA
| |
Collapse
|
9
|
Exosomes in the Pathogenesis, Progression, and Treatment of Osteoarthritis. Bioengineering (Basel) 2022; 9:bioengineering9030099. [PMID: 35324788 PMCID: PMC8945849 DOI: 10.3390/bioengineering9030099] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent and debilitating age-related joint disease characterized by articular cartilage degeneration, synovial membrane inflammation, osteophyte formation, as well as subchondral bone sclerosis. OA drugs at present are mainly palliative and do not halt or reverse disease progression. Currently, no disease-modifying OA drugs (DMOADs) are available and total joint arthroplasty remains a last resort. Therefore, there is an urgent need for the development of efficacious treatments for OA management. Among all novel pharmaco-therapeutical options, exosome-based therapeutic strategies are highly promising. Exosome cargoes, which include proteins, lipids, cytokines, and various RNA subtypes, are potentially capable of regulating intercellular communications and gene expression in target cells and tissues involved in OA development. With extensive research in recent years, exosomes in OA studies are no longer limited to classic, mesenchymal stem cell (MSC)-derived vesicles. New origins, structures, and functions of exosomes are constantly being discovered and investigated. This review systematically summarizes the non-classic origins, biosynthesis, and extraction of exosomes, describes modification and delivery techniques, explores their role in OA pathogenesis and progression, and discusses their therapeutic potential and hurdles to overcome in OA treatment.
Collapse
|
10
|
Liu H, Rui Y, Liu J, Gao F, Jin Y. Hyaluronic acid hydrogel encapsulated BMP-14-modified ADSCs accelerate cartilage defect repair in rabbits. J Orthop Surg Res 2021; 16:657. [PMID: 34732208 PMCID: PMC8565001 DOI: 10.1186/s13018-021-02792-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cartilage defect has a limited capacity to heal. In this context, we hypothesized that hyaluronic acid (HA) hydrogel encapsulated BMP-14-modified adipose-derived mesenchymal stem cells (ADSCs) could accelerate cartilage defect repair in rabbits. Methods ADSCs were isolated and identified by flow cytometry. ADSCs were treated with adenovirus vector encoding BMP-14 (Ad-BMP-14) or adenovirus vector encoding control (Ad-ctrl). Real-time PCR (RT-PCR) and western blot assay was performed to verify the transfection efficacy and chondrogenic differentiation markers (ACAN, Collagen II and SOX9). Rabbit cartilage defect model was performed and randomly divided into following groups: control group, HA hydrogel + ADSCs, ADSCs, HA hydrogel + BMP-14 transfected ADSCs, HA hydrogel + BMP-14 transfected ADSCs. At 6, 9 and 12 weeks after surgery, scanning electron microscopy, hematoxylin–eosin, Safranin-O/Fast Green and immunohistochemical staining for Collagen II were performed to determine the role of HA hydrogel encapsulated BMP-14-modified ADSCs in cartilage repair in vivo. Results ADSCs were successfully isolated and positively expressed CD29, CD44 and CD90. Transfection efficacy of Ad-BMP-14 was verified by RT-PCR and western blot assay. Moreover, Ad-BMP-14 could significantly increased chondrogenic differentiation markers (ACAN, Collagen II and SOX9). The LV-BMP-14-ADSCs and HA hydrogel + LV-BMP-14-ADSCs groups revealed smoother surface cartilage repair that was level with the surrounding cartilage and almost complete border integration. Conclusions HA hydrogel encapsulated BMP-14-modified ADSCs accelerate cartilage defect repair in rabbits. We need to further validate the specific mechanism of action of HA hydrogel encapsulated LV-BMP-14-ADSCs involved in the repairing cartilage damage in vivo.
Collapse
Affiliation(s)
- Hao Liu
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China.
| | - Yongjun Rui
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China
| | - Jun Liu
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China
| | - Fandong Gao
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China
| | - Yesheng Jin
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China
| |
Collapse
|
11
|
Foo JB, Looi QH, How CW, Lee SH, Al-Masawa ME, Chong PP, Law JX. Mesenchymal Stem Cell-Derived Exosomes and MicroRNAs in Cartilage Regeneration: Biogenesis, Efficacy, miRNA Enrichment and Delivery. Pharmaceuticals (Basel) 2021; 14:1093. [PMID: 34832875 PMCID: PMC8618513 DOI: 10.3390/ph14111093] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are the small extracellular vesicles secreted by cells for intercellular communication. Exosomes are rich in therapeutic cargos such as microRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids. Recently, many studies have focused on miRNAs as a promising therapeutic factor to support cartilage regeneration. Exosomes are known to contain a substantial amount of a variety of miRNAs. miRNAs regulate the post-transcriptional gene expression by base-pairing with the target messenger RNA (mRNA), leading to gene silencing. Several exosomal miRNAs have been found to play a role in cartilage regeneration by promoting chondrocyte proliferation and matrix secretion, reducing scar tissue formation, and subsiding inflammation. The exosomal miRNA cargo can be modulated using techniques such as cell transfection and priming as well as post-secretion modifications to upregulate specific miRNAs to enhance the therapeutic effect. Exosomes are delivered to the joints through direct injection or via encapsulation within a scaffold for sustained release. To date, exosome therapy for cartilage injuries has yet to be optimized as the ideal cell source for exosomes, and the dose and method of delivery have yet to be identified. More importantly, a deeper understanding of the role of exosomal miRNAs in cartilage repair is paramount for the development of more effective exosome therapy.
Collapse
Affiliation(s)
- Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Qi Hao Looi
- My Cytohealth Sdn. Bhd., D353a, Menara Suezcap 1, KL Gateway, no. 2, Jalan Kerinchi, Gerbang Kerinchi Lestari, Kuala Lumpur 59200, Malaysia;
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Sau Har Lee
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Pei Pei Chong
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
12
|
Gupta A, Rodriguez HC, Potty AG, Levy HJ, El-Amin III SF. Treatment of Knee Osteoarthritis with Intraarticular Umbilical Cord-Derived Wharton's Jelly: A Case Report. Pharmaceuticals (Basel) 2021; 14:883. [PMID: 34577583 PMCID: PMC8472740 DOI: 10.3390/ph14090883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023] Open
Abstract
We present the case of a 27-year-old male with grade II knee osteoarthritis (OA) that was intraarticularly injected with a 2 mL umbilical cord-derived Wharton's jelly (UC-derived WJ) formulation. The patients' baseline radiographs were taken and baseline numeric pain rating scale (NPRS), knee injury and osteoarthritis outcome score (KOOS), 7-point Likert scale, and a 36-item short form survey (SF-36) were recorded. The NPRS was re-recorded immediately after the injection, and at 24 h, 48 h, 1 week, 6 weeks, and at 3 months follow-up post-injection. The KOOS and 7-point Likert scale was re-recorded at the patients' 1week, 6 week, and 3month follow-up, and SF-36 was re-recorded at 3 months. A final set of X-rays were also performed at 3 months follow-up post-injection. No adverse effects from the injection were reported over the duration of the study. No significant difference nor progression in OA on X-rays compared to baseline was observed. NPRS decreased by 50% and the 7-point Likert scale increased to Extremely Satisfied. KOOS increased overall by 10% and the SF-36 overall change was 25%. These results indicate the potential application of UC-derived WJ in the treatment of knee OA. Larger, long term, non-randomized and randomized control trials are warranted to adequately assess the safety and efficacy of UC-derived WJ and ultimate clinical use.
Collapse
Affiliation(s)
- Ashim Gupta
- BioIntegrate, Lawrenceville, GA 30043, USA; (H.J.L.); (S.F.E.-A.III)
- Future Biologics, Lawrenceville, GA 30043, USA
- South Texas Orthopedic Research Institute (STORI Inc.), Laredo, TX 78045, USA;
- Veterans in Pain, Valencia, CA 91354, USA
| | | | - Anish G. Potty
- South Texas Orthopedic Research Institute (STORI Inc.), Laredo, TX 78045, USA;
- Laredo Sports Medicine Clinic, Laredo, TX 78041, USA
| | - Howard J. Levy
- BioIntegrate, Lawrenceville, GA 30043, USA; (H.J.L.); (S.F.E.-A.III)
- Department of Orthopaedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10075, USA
| | - Saadiq F. El-Amin III
- BioIntegrate, Lawrenceville, GA 30043, USA; (H.J.L.); (S.F.E.-A.III)
- El-Amin Orthopaedic and Sports Medicine Institute, Lawrenceville, GA 30043, USA
| |
Collapse
|