1
|
Zhang S, Feng X, Yang S, Shi X, Chen J, Zhu R, Li T, Su W, Wang Y, Cao X. Acid-triggered rattan ball-like β-glucan carrier embedding doxorubicin to synergistically alleviate precancerous lesions of gastric cancer via p53 and PI3K pathways. Int J Biol Macromol 2024; 281:136540. [PMID: 39396598 DOI: 10.1016/j.ijbiomac.2024.136540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The early intervention of precancerous lesions of gastric cancer (PLGC) is crucial for improving the survival of patients with gastric cancer. Traditional pharmaceuticals for the treatment of PLGC are limited by side effects, thus developing innovative drug carrier that are more efficient but without the undesirable side effects is required. Here, we proposed an acid-triggered mushroom-derived β-glucan carrier embedding doxorubicin (DOX) to circumvent drug cytotoxicity and synergistically alleviate PLGC based on the controlled conformational transformation. The triple helix β-glucan extracted from Dictyophora rubrovolvata (DRP) loaded doxorubicin driven by pH and DMSO regulation, forming two rattan ball-like nanoparticles (DRP-DOX(pH) and DRP-DOX(DMSO)) via its collapse and recombination of triple-helix conformation. The findings revealed that DRP-DOXs achieved acid-triggerable and sustained drug delivery with an average particle size of 500 nm and 550 nm. In vitro evaluation of GES-1 cells showed DRP-DOXs reduced reactive oxygen species (ROS) production and altered mitochondrial membrane potential. Compared to DRP-DOX(DMSO) and DRP, DRP-DOX(pH) could more effectively downregulate cellular oxidative stress and inflammation to eventually alleviate PLGC, by regulating the p53 and PI3K pathways to mitigate gastric mucosa damage. Consequently, the nature-derived β-glucan delivery nanovesicle holds great promising applications in reducing drug toxicity and suppressing the development of PLGC.
Collapse
Affiliation(s)
- Shuchen Zhang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning province, China
| | - Xin Feng
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning province, China
| | - Shuanglong Yang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning province, China
| | - Xueying Shi
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning province, China
| | - Junliang Chen
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang 110031, Liaoning province, China
| | - Rugang Zhu
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning province, China
| | - Tiejing Li
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning province, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning province, China
| | - Yuxiao Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning province, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning province, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi province, China.
| | - Xiangyu Cao
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang 110031, Liaoning province, China
| |
Collapse
|
2
|
Shixiong Z, Shaowei L, Zeqi Y, Miaochan X, Pingping Z, Haiyan B, Jingjing L, Yangang W. Study on the Characteristics of Traditional Chinese Medicine Syndromes in Patients with Erosive Gastritis Based on Metabolomics. Int J Anal Chem 2024; 2024:6684677. [PMID: 38204992 PMCID: PMC10776191 DOI: 10.1155/2024/6684677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/30/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
According to traditional Chinese medicine theory, tongue coatings reflect changes in the body. The goal of this study was to identify a metabolite or a set of metabolites capable of classifying characteristics of traditional Chinese medicine syndromes in erosive gastritis. In this study, we collected tongue coatings of patients with erosive gastritis with damp-heat syndrome (DHS), liver depression and qi stagnation syndrome (LDQSS), and healthy volunteers. Then, we analyzed the differences in metabolic characteristics between the two groups based on metabolomics. We identified 14 potential biomarkers related to the DHS group, and six metabolic pathways were enriched. The differential pathways included pyrimidine metabolism, pantothenate and CoA biosynthesis, citrate cycle (TCA cycle), pyruvate metabolism, glycolysis/gluconeogenesis, and purine metabolism. Similarly, in the LDQSS group, we identified 25 potential biomarkers and 18 metabolic pathways were enriched. The top five pathways were the TCA cycle, sphingolipid metabolism, fatty acid biosynthesis, pantothenate and CoA biosynthesis, and the pentose phosphate pathway. In conclusion, the DHS group and the LDQSS group have different characteristics.
Collapse
Affiliation(s)
- Zhang Shixiong
- Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Liu Shaowei
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yang Zeqi
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xu Miaochan
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Zhou Pingping
- Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Bai Haiyan
- Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Lv Jingjing
- Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Wang Yangang
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
3
|
Rong J, He T, Zhang J, Bai Z, Shi B. Serum lipidomics reveals phosphatidylethanolamine and phosphatidylcholine disorders in patients with myocardial infarction and post-myocardial infarction-heart failure. Lipids Health Dis 2023; 22:66. [PMID: 37210547 DOI: 10.1186/s12944-023-01832-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) and post-MI-heart failure (pMIHF) are a major cause of death worldwide, however, the underlying mechanisms of pMIHF from MI are not well understood. This study sought to characterize early lipid biomarkers for the development of pMIHF disease. METHODS Serum samples from 18 MI and 24 pMIHF patients were collected from the Affiliated Hospital of Zunyi Medical University and analyzed using lipidomics with Ultra High Performance Liquid Chromatography and Q-Exactive High Resolution Mass Spectrometer. The serum samples were tested by the official partial least squares discriminant analysis (OPLS-DA) to find the differential expression of metabolites between the two groups. Furthermore, the metabolic biomarkers of pMIHF were screened using the subject operating characteristic (ROC) curve and correlation analysis. RESULTS The average age of the 18 MI and 24 pMIHF participants was 57.83 ± 9.28 and 64.38 ± 10.89 years, respectively. The B-type natriuretic peptide (BNP) level was 328.5 ± 299.842 and 3535.96 ± 3025 pg/mL, total cholesterol(TC) was 5.59 ± 1.51 and 4.69 ± 1.13 mmol/L, and blood urea nitrogen (BUN) was 5.24 ± 2.15 and 7.20 ± 3.49 mmol/L, respectively. In addition, 88 lipids, including 76 (86.36%) down-regulated lipids, were identified between the patients with MI and pMIHF. ROC analysis showed that phosphatidylethanolamine (PE) (12:1e_22:0) (area under the curve [AUC] = 0.9306) and phosphatidylcholine (PC) (22:4_14:1) (AUC = 0.8380) could be potential biomarkers for the development of pMIHF. Correlation analysis showed that PE (12:1e_22:0) was inversely correlated with BNP and BUN, but positively correlated with TC. In contrast, PC (22:4_14:1) was positively associated with both BNP and BUN, and was negatively associated with TC. CONCLUSIONS Several lipid biomarkers were identified that could potentially be used to predict and diagnose patients with pMIHF. PE (12:1e_22:0) and PC (22:4_14:1) could sufficiently differentiate between patients with MI and pMIHF.
Collapse
Affiliation(s)
- Jidong Rong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tianmu He
- School of Basic Medical Sciences, Guizhou medical University, Guiyang, China
| | - Jianyong Zhang
- College of pharmacy, Zunyi medical University, Zunyi, China
| | - Zhixun Bai
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Department of Internal Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
4
|
Chen DT, Rao W, Shen X, Chen L, Wan ZJ, Sheng XP, Fan TY. Pharmacological effects of higenamine based on signalling pathways and mechanism of action. Front Pharmacol 2022; 13:981048. [PMID: 36188548 PMCID: PMC9520082 DOI: 10.3389/fphar.2022.981048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Higenamine (HG) is a chemical compound found in various plants, such as aconite. Recent pharmacological studies have demonstrated its effectiveness in the management of many diseases. Several mechanisms of action of HG have been proposed; however, they have not yet been classified. This review summarises the signalling pathways and pharmacological targets of HG, focusing on its potential as a naturally extracted drug. Articles related to the pharmacological effects, signalling pathways and pharmacological targets of HG were selected by searching the keyword "Higenamine" in the PubMed, Web of Science and Google Scholar databases without limiting the search by publication years. HG possesses anti-oxidant, anti-apoptotic, anti-inflammatory, electrophysiology regulatory, anti-fibrotic and lipid-lowering activities. It is a structural analogue of catecholamines and possesses characteristics similar to those of adrenergic receptor ligands. It can modulate multiple targets, including anti-inflammation- and anti-apoptosis-related targets and some transcription factors, which directly or indirectly influence the disease course. Other naturally occurring compounds, such as cucurbitacin B (Cu B) and 6-gingerol (6-GR), can be combined with HG to enhance its anti-apoptotic activity. Although significant research progress has been made, follow-up pharmacological studies are required to determine the exact mechanism of action, new signalling pathways and targets of HG and the effects of using it in combination with other drugs.
Collapse
Affiliation(s)
- De-ta Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wu Rao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Shen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-jian Wan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-ping Sheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-you Fan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Wang A, Zhao W, Yan K, Huang P, Zhang H, Zhang Z, Zhang D, Ma X. Mechanisms and Efficacy of Traditional Chinese Medicine in Heart Failure. Front Pharmacol 2022; 13:810587. [PMID: 35281941 PMCID: PMC8908244 DOI: 10.3389/fphar.2022.810587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is one of the main public health problems at present. Although some breakthroughs have been made in the treatment of HF, the mortality rate remains very high. However, we should also pay attention to improving the quality of life of patients with HF. Traditional Chinese medicine (TCM) has a long history of being used to treat HF. To demonstrate the clinical effects and mechanisms of TCM, we searched published clinical trial studies and basic studies. The search results showed that adjuvant therapy with TCM might benefit patients with HF, and its mechanism may be related to microvascular circulation, myocardial energy metabolism, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Anzhu Wang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Pingping Huang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dawu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
6
|
Wen J, Li M, Zhang W, Wang H, Bai Y, Hao J, Liu C, Deng K, Zhao Y. Role of Higenamine in Heart Diseases: A Mini-Review. Front Pharmacol 2022; 12:798495. [PMID: 35082678 PMCID: PMC8784381 DOI: 10.3389/fphar.2021.798495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023] Open
Abstract
Higenamine, a natural product with multiple targets in heart diseases, is originally derived from Aconitum, which has been traditionally used in China for the treatment of heart disease, including heart failure, arrhythmia, bradycardia, cardiac ischemia/reperfusion injury, cardiac fibrosis, etc. This study is aimed to clarify the role of higenamine in heart diseases. Higenamine has effects on improving energy metabolism of cardiomyocytes, anti-cardiac fibroblast activation, anti-oxidative stress and anti-apoptosis. Accumulating evidence from various studies has shown that higenamine exerts a wide range of cardiovascular pharmacological effects in vivo and in vitro, including alleviating heart failure, reducing cardiac ischemia/reperfusion injury, attenuating pathological cardiac fibrosis and dysfunction. In addition, several clinical studies have reported that higenamine could continuously increase the heart rate levels of healthy volunteers as well as patients with heart disease, but there are variable effects on systolic blood pressure and diastolic blood pressure. Moreover, the heart protection and therapeutic effects of higenamine on heart disease are related to regulating LKB1/AMPKα/Sirt1, mediating the β2-AR/PI3K/AKT cascade, induction of heme oxygenase-1, suppressing TGF-β1/Smad signaling, and targeting ASK1/MAPK (ERK, P38)/NF-kB signaling pathway. However, the interventional effects of higenamine on heart disease and its underlying mechanisms based on experimental studies have not yet been systematically reviewed. This paper reviewed the potential pharmacological mechanisms of higenamine on the prevention, treatment, and diagnosis of heart disease and clarified its clinical applications. The literature shows that higenamine may have a potent effect on complex heart diseases, and proves the profound medicinal value of higenamine in heart disease.
Collapse
Affiliation(s)
- Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Mingjie Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenwen Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Haoyu Wang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yan Bai
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Junjie Hao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Chuan Liu
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Ke Deng
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Liu D, Qin S, Su D, Wang K, Huang Y, Huang Y, Pang Y. Metabolic Reprogramming of the Right Ventricle and Pulmonary Arteries in a Flow-Associated Pulmonary Arterial Hypertension Rat Model. ACS OMEGA 2022; 7:1273-1287. [PMID: 35036789 PMCID: PMC8757344 DOI: 10.1021/acsomega.1c05895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex devastating disease relevant to remarkable metabolic dysregulation. Although various research studies on PAH from a metabolic perspective have been emerging, pathogenesis of PAH varies in different categories. Research on metabolic reprogramming in flow-associated PAH remains insufficient. An untargeted metabolomic profiling platform was used to evaluate the metabolic profile of pulmonary arteries (PAs) as well as the right ventricle (RV) in a flow-associated PAH rat model in the present work. A total of 79 PAs and 128 RV metabolites were significantly altered in PAH rats, among which 39 metabolites were assessed as shared dysregulated metabolites in PAs and the RV. Pathway analysis elucidated that, in PAs of PAH rats, pathways of phenylalanine, tyrosine, and tryptophan biosynthesis and linoleic acid metabolism were significantly altered, while in the RV, arginine biosynthesis and linoleic acid metabolism were altered dramatically. Further integrated analysis of shared dysregulated PA and RV metabolites demonstrated that the linoleic acid metabolism and the arachidonic acid (AA) metabolism were the key pathways involved in the pathogenesis of flow-associated PAH. Results obtained from the present work indicate that the PAH pathogenesis could be mediated by widespread metabolic reprogramming. In particular, the dysregulation of AA metabolism may considerably contribute to the development of high blood flow-associated PAH.
Collapse
Affiliation(s)
- Dongli Liu
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Suyuan Qin
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Danyan Su
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Kai Wang
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
- Department
of Pediatrics, The First Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325015, China
| | - Yanyun Huang
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Yuqin Huang
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| | - Yusheng Pang
- Department
of Pediatrics, The First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
8
|
Metabolomic Study of Zuojin Pill in Relieving 1-Methyl-3-nitro-1-nitrosoguanidine-Induced Chronic Atrophic Gastritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7004798. [PMID: 34956382 PMCID: PMC8709764 DOI: 10.1155/2021/7004798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
The classic prescription Zuojin Pill (ZJP) shows a good therapeutic effect on chronic atrophic gastritis (CAG); it is of great significance to clarify its specific mechanism. Therefore, we explore the mechanism of ZJP on MNNG-induced CAG by integrating approaches. First of all, through the pathological changes of gastric tissue and the expression level of PGI and PGI/II in serum, the expression of inflammation-related factors was determined by RT-PCR to determine the efficacy. Then, UPLC-Q-TOF/MS was used for plasma and urine metabolomic analysis to screen the specific potential biomarkers and metabolic pathway of ZJP in ameliorating CAG and to explore its possible mechanism. ZJP significantly ameliorate the pathological injury of gastric tissue, increase levels of PGI and PGI/II, and reduce the expression level of proinflammatory factors. Through metabolomic analysis, 9 potential metabolic differences were identified and 6 related metabolic pathways were enriched. These findings indicate for the first time the potential mechanism of ZJP in improving CAG induced by MNNG and are of great significance to the clinical development and application of ZJP-related drugs.
Collapse
|
9
|
Tong Y, Zhao X, Wang R, Li R, Zou W, Zhao Y. Therapeutic effect of berberine on chronic atrophic gastritis based on plasma and urine metabolisms. Eur J Pharmacol 2021; 908:174335. [PMID: 34265298 DOI: 10.1016/j.ejphar.2021.174335] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/19/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to investigate the therapeutic effect of berberine (BBR) on chronic atrophic gastritis (CAG) and its potential mechanism. The effects of BBR on gastric histopathology, serum biochemical indexes and inflammatory factors in CAG rats were assessed. Moreover, plasma and urine metabolomics based on ultra high performance liquid chromatography-quadrupole-time-of-flight mass spectrometer (UHPLC-Q-TOF/MS) were used to identify potential metabolic markers and possible pathways of BBR in the treatment of CAG. The results showed that BBR could significantly improve the pathological characteristics of gastric tissue, alleviate the serum biochemical indexes and reduce the mRNA expression of nuclear factor-κB, tumor necrosis factor-α, Cyclooxygenase-2, monocyte chemoattractant protein-1, Interleukin-17A and I interferon-γ. The results of metabolomic analysis show that the therapeutic effect of BBR on CAG may be related to the regulation of 15 metabolic markers and 12 metabolic pathways, which may be the potential mechanism for the treatment of CAG. This study provides new insights for elucidating the mechanism of BBR improving CAG.
Collapse
Affiliation(s)
- Yuling Tong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhao
- Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of PLA General Hospital of Chinese, Beijing, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yanling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
10
|
Higenamine mitigates interleukin-1β-induced human nucleus pulposus cell apoptosis by ROS-mediated PI3K/Akt signaling. Mol Cell Biochem 2021; 476:3889-3897. [PMID: 34146182 DOI: 10.1007/s11010-021-04197-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Intervertebral disc degeneration (IDD) is a natural problem linked to the inflammation. Higenamine exerts multiple pharmacological properties in inflammation-related disorders. Our study aimed to explore the function of higenamine on interleukin (IL)-1β-caused apoptosis of human nucleus pulposus cells (HNPCs). Cell apoptosis was investigated by TUNEL and flow cytometry. Apoptosis-related biomarkers were determined by qRT-PCR or Western blotting. The protein in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling was measured by Western blotting. We found that higenamine showed little effect on cell apoptosis, but mitigated IL-1β-caused apoptosis in a dose-dependent pattern. Higenamine attenuated IL-1β-induced decrease of Bcl-2 and increase of Bax and cleaved caspase-3. Higenamine did not affect the reactive oxygen species (ROS) level and the PI3K/Akt signaling, but attenuated IL-1β-induced ROS production and inhibition of the PI3K/Akt signaling. IL-1β repressed the activation of the PI3K/Akt pathway, but ROS inhibition using N-acetylcysteine (NAC) rescued this pathway. The PI3K/Akt signaling suppression using LY294002 reversed the inhibitive effect of higenamine on IL-1β-caused apoptosis, and this effect was weakened by ROS inhibition. In conclusion, higenamine attenuates IL-1β-caused apoptosis of HNPCs via ROS-mediated PI3K/Akt pathway.
Collapse
|