1
|
Cui H, Liu Y, Yu Y, Lv D, Ma S, Gao M, Yang Y, Yuan C, Liu Y, Wang C. Panax notoginseng saponins and acetylsalicylic acid co-delivered liposomes for targeted treatment of ischemic stroke. Int J Pharm 2024; 667:124782. [PMID: 39349224 DOI: 10.1016/j.ijpharm.2024.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 09/28/2024] [Indexed: 10/02/2024]
Abstract
In this study, we aimed to develop brain-targeted co-delivery liposomes for the concurrent delivery of Panax notoginseng saponins (PNS) and acetylsalicylic acid (ASA) for the treatment of ischemic stroke. Within this system, PNS served as a cholesterol substitute, integrating into the phospholipid bilayer of the liposomes, while ASA was encapsulated internally. A poly-2-methacryloyloxyethyl phosphorylcholine (PMPC) polymer was synthesized and incorporated into the liposome surface. This formulation demonstrated an enhanced PNS-loading capacity and facilitated the synchronized delivery of key saponin components. Following PMPC modification, the liposomes exhibited prolonged circulation and improved transport across the blood-brain barrier (BBB) through acetylcholine receptor-mediated pathways. Furthermore, the co-delivery system exhibited enhanced therapeutic efficacy in a rat model of cerebral ischemia-reperfusion injury via the phosphoinositide 3-kinase/protein kinase C pathway. Additional analyses revealed significant effects on the metabolism of neurotransmitters, amino acids, folate, and various other pathways, indicating a multi-faceted therapeutic effect. Overall, this study presents an innovative research strategy for the comprehensive delivery of diverse components in traditional Chinese medicine formulations, highlighting the potential for synergistic treatments that combine traditional Chinese medicine with chemical agents.
Collapse
Affiliation(s)
- Hao Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yanchi Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Ying Yu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Dong Lv
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Sha Ma
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Mingju Gao
- Wenshan University, Wenshan 663099, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Cheng Yuan
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
2
|
Zhang L, Gao X, Yang C, Liang Z, Guan D, Yuan T, Qi W, Zhao D, Li X, Dong H, Zhang H. Structural Characters and Pharmacological Activity of Protopanaxadiol-Type Saponins and Protopanaxatriol-Type Saponins from Ginseng. Adv Pharmacol Pharm Sci 2024; 2024:9096774. [PMID: 38957183 PMCID: PMC11217582 DOI: 10.1155/2024/9096774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Ginseng has a long history of drug application in China, which can treat various diseases and achieve significant efficacy. Ginsenosides have always been deemed important ingredients for pharmacological activities. Based on the structural characteristics of steroidal saponins, ginsenosides are mainly divided into protopanaxadiol-type saponins (PDS, mainly including Rb1, Rb2, Rd, Rc, Rh2, CK, and PPD) and protopanaxatriol-type saponins (PTS, mainly including Re, R1, Rg1, Rh1, Rf, and PPT). The structure differences between PDS and PTS result in the differences of pharmacological activities. This paper provides an overview of PDS and PTS, mainly focusing on their chemical profile, pharmacokinetics, hydrolytic metabolism, and pharmacological activities including antioxidant, antifatigue, antiaging, immunodulation, antitumor, cardiovascular protection, neuroprotection, and antidiabetes. It is intended to contribute to an in-depth study of the relationship between PDS and PTS.
Collapse
Affiliation(s)
- Lancao Zhang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Xiang Gao
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Chunhui Yang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- Tuina DepartmentThe Third Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| | - Zuguo Liang
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Dongsong Guan
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- Quality Testing Laboratory, Haerbin Customs District 150008, Foshan, China
| | - Tongyi Yuan
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Haisi Dong
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - He Zhang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
- Research Center of Traditional Chinese MedicineThe Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| |
Collapse
|
3
|
Yang C, Qu L, Wang R, Wang F, Yang Z, Xiao F. Multi-layered effects of Panax notoginseng on immune system. Pharmacol Res 2024; 204:107203. [PMID: 38719196 DOI: 10.1016/j.phrs.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.
Collapse
Affiliation(s)
- Chunhao Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Rui Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Zhaoxiang Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Fengkun Xiao
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China.
| |
Collapse
|
4
|
Gao J, Yao M, Zhang Y, Jiang Y, Liu J. Panax notoginseng saponins stimulates the differentiation and neurite development of C17.2 neural stem cells against OGD/R injuries via mTOR signaling. Biomed Pharmacother 2024; 172:116260. [PMID: 38382327 DOI: 10.1016/j.biopha.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Ischemic stroke remains a major disease worldwide, and most stroke patients often suffer from serious sequelae. Endogenous neurogenesis matters in the repair and regeneration of impaired neural cells after stroke. We have previously reported in vivo that PNS could strengthen the proliferation and differentiation of neural stem cells (NSCs), modulate synaptic plasticity and protect against ischemic brain injuries in cerebral ischemia rats, which could be attributed to mTOR signaling activation. Next, to obtain further insights into the function mechanism of PNS, we evaluated the direct influence of PNS on the survival, differentiation and synaptic development of C17.2 NSCs in vitro. The oxygen glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemic brain injuries. We found that after OGD/R injuries, PNS improved the survival of C17.2 cells. Moreover, PNS enhanced the differentiation of C17.2 cells into neurons and astrocytes, and further promoted synaptic plasticity by significantly increasing the expressions of synapse-related proteins BDNF, SYP and PSD95. Meanwhile, PNS markedly activated the Akt/mTOR/p70S6K pathway. Notably, the mTOR inhibitor rapamycin pretreatment could reverse these desirable results. In conclusion, PNS possessed neural differentiation-inducing properties in mouse C17.2 NSCs after OGD/R injuries, and Akt/mTOR/p70S6K signaling pathway was proved to be involved in the differentiation and synaptic development of C17.2 cells induced by PNS treatment under the in vitro ischemic condition. Our findings offer new insights into the mechanisms that PNS regulate neural plasticity and repair triggered by NSCs, and highlight the potential of mTOR signaling as a therapeutic target for neural restoration after ischemic stroke.
Collapse
Affiliation(s)
- Jiale Gao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mingjiang Yao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yehao Zhang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yunyao Jiang
- Institute for Chinese Materia Medica, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
5
|
Zhang L, Gao X, Yang C, Liang Z, Guan D, Yuan T, Qi W, Zhao D, Li X, Dong H, Zhang H. Structural Characters and Pharmacological Activity of Protopanaxadiol‐Type Saponins and Protopanaxatriol‐Type Saponins from Ginseng. Adv Pharmacol Pharm Sci 2024; 2024. [DOI: org/10.1155/2024/9096774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Ginseng has a long history of drug application in China, which can treat various diseases and achieve significant efficacy. Ginsenosides have always been deemed important ingredients for pharmacological activities. Based on the structural characteristics of steroidal saponins, ginsenosides are mainly divided into protopanaxadiol‐type saponins (PDS, mainly including Rb1, Rb2, Rd, Rc, Rh2, CK, and PPD) and protopanaxatriol‐type saponins (PTS, mainly including Re, R1, Rg1, Rh1, Rf, and PPT). The structure differences between PDS and PTS result in the differences of pharmacological activities. This paper provides an overview of PDS and PTS, mainly focusing on their chemical profile, pharmacokinetics, hydrolytic metabolism, and pharmacological activities including antioxidant, antifatigue, antiaging, immunodulation, antitumor, cardiovascular protection, neuroprotection, and antidiabetes. It is intended to contribute to an in‐depth study of the relationship between PDS and PTS.
Collapse
|
6
|
Grujić-Milanović J, Rajković J, Milanović S, Jaćević V, Miloradović Z, Nežić L, Novaković R. Natural Substances vs. Approved Drugs in the Treatment of Main Cardiovascular Disorders-Is There a Breakthrough? Antioxidants (Basel) 2023; 12:2088. [PMID: 38136208 PMCID: PMC10740850 DOI: 10.3390/antiox12122088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases with a very high rate of morbidity and mortality. The clinical presentation of CVDs can vary from asymptomatic to classic symptoms such as chest pain in patients with myocardial infarction. Current therapeutics for CVDs mainly target disease symptoms. The most common CVDs are coronary artery disease, acute myocardial infarction, atrial fibrillation, chronic heart failure, arterial hypertension, and valvular heart disease. In their treatment, conventional therapies and pharmacological therapies are used. However, the use of herbal medicines in the therapy of these diseases has also been reported in the literature, resulting in a need for critical evaluation of advances related to their use. Therefore, we carried out a narrative review of pharmacological and herbal therapeutic effects reported for these diseases. Data for this comprehensive review were obtained from electronic databases such as MedLine, PubMed, Web of Science, Scopus, and Google Scholar. Conventional therapy requires an individual approach to the patients, as when patients do not respond well, this often causes allergic effects or various other unwanted effects. Nowadays, medicinal plants as therapeutics are frequently used in different parts of the world. Preclinical/clinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common CVDs. The natural products analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in CVDs pharmacotherapy, and some of them have already been approved by the FDA. There are insufficient clinical studies to compare the effectiveness of natural products compared to approved therapeutics for the treatment of CVDs. Further long-term studies are needed to accelerate the potential of using natural products for these diseases. Despite this undoubted beneficence on CVDs, there are no strong breakthroughs supporting the implementation of natural products in clinical practice. Nevertheless, they are promising agents in the supplementation and co-therapy of CVDs.
Collapse
Affiliation(s)
- Jelica Grujić-Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Jovana Rajković
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia
| | - Sladjan Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department for Biomechanics, Biomedical Engineering and Physics of Complex Systems, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, 11 000 Belgrade, Serbia;
- Medical Faculty of the Military Medical Academy, University of Defense, 11 000 Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 002 Hradec Kralove, Czech Republic
| | - Zoran Miloradović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Radmila Novaković
- Institute of Molecular Genetics and Genetic Engineering, Center for Genome Sequencing and Bioinformatics, University of Belgrade, 11 000 Belgrade, Serbia;
| |
Collapse
|
7
|
Song T, Zhang Y, Zhu L, Zhang Y, Song J. The role of JAK/STAT signaling pathway in cerebral ischemia-reperfusion injury and the therapeutic effect of traditional Chinese medicine: A narrative review. Medicine (Baltimore) 2023; 102:e35890. [PMID: 37986307 PMCID: PMC10659620 DOI: 10.1097/md.0000000000035890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Cerebral ischemia is a cerebrovascular disease with symptoms caused by insufficient blood or oxygen supply to the brain. When blood supplied is restored after cerebral ischemia, secondary brain injury may occur, which is called cerebral ischemia-reperfusion injury (CIRI). In this process, the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway plays an important role. It mediates neuroinflammation and participates in the regulation of physiological activities, such as cell proliferation, differentiation, and apoptosis. After CIRI, M1 microglia is activated and recruited by the damaged tissue. The inflammatory factors are produced by M1 microglia through the JAK/STAT pathway, eventually leading to cell apoptosis. Meanwhile, the JAK2/STAT3 signaling pathway and the expression of lipocalin-2 and caspase-3 could increase. In the pathway, phosphorylated JAK2 and phosphorylated STAT3 function of 2 ways. They not only promote the proliferation of neurons, but also affect the differentiation direction of neural stem cells by further acting on the Notch signaling pathway. Recently, traditional Chinese medicine (TCM) is a key player in CIRI, through JAK2, STAT3, STAT1 and their phosphorylation. Therefore, the review focuses on the JAK/STAT signaling pathway and its relationship with CIRI as well as the influence of the TCM on this pathway. It is aimed at providing the basis for future clinical research on the molecular mechanism of TCM in the treatment of CIRI.
Collapse
Affiliation(s)
- Tianzhi Song
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yishu Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liangrong Zhu
- Wenling Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingmei Song
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Chen Y, Peng F, Yang C, Hou H, Xing Z, Chen J, Liu L, Peng C, Li D. SIRT1 activation by 2,3,5,6-tetramethylpyrazine alleviates neuroinflammation via inhibiting M1 microglia polarization. Front Immunol 2023; 14:1206513. [PMID: 37600790 PMCID: PMC10436537 DOI: 10.3389/fimmu.2023.1206513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Background Neuroinflammation has been reported as a potential contributing factor to brain diseases, and is characterized by activated microglia with release of multiple inflammatory mediators. 2,3,5,6-Tetramethylpyrazine (TMP) is an active alkaloid in Ligusticum chuanxiong Hort. and has various biological activities, including anti-inflammatory and neuroprotection properties. However, the anti-neuroinflammatory activity of TMP has been less studied and its potential molecular mechanisms in this field remain unclear. This study aimed to investigate the effects of TMP and its underlying mechanisms in neuroinflammation. Methods In vitro, lipopolysaccharide (LPS)-stimulated BV2 microglia were used to assess the effects of TMP on inflammatory cytokines as well as the components of the SIRT1/NF-κB signaling pathway, which were measured by using ELISA, western blotting, qRT-qPCR and immunofluorescence. Moreover, LPS-induced acute neuroinflammation model in mice was performed to detect whether TMP could exert anti-neuroinflammatory effects in vivo, and the EX527, a SIRT1 inhibitor, were given intraperitoneally every two days prior to TMP treatment. Serums and spinal trigeminal nucleus (Sp5) tissues were collected for ELISA assay, and the Sp5 tissues were used for HE staining, Nissl staining, immunofluorescence, qRT-PCR and western blotting. Results In vitro, TMP treatment significantly reduced the secretion of pro-inflammatory cytokines, including TNF-α and IL-6, promoted SIRT1 protein expression and inactivated NF-κB signaling pathway in LPS-induced neuroinflammation. Interestingly, pretreatment with EX527 blocked the therapeutic effects of TMP on neuroinflammation in vitro. Furthermore, TMP reduced the levels of pro-inflammatory cytokines and chemokines, and prevented microglia from polarizing towards a pro-inflammatory state through activating SIRT1 and inhibiting NF-κB activation in LPS-induced neuroinflammation in mice. And EX527 reversed the beneficial effects of TMP against LPS exposure in mice. Conclusion In summary, this study unravels that TMP could mitigate LPS-induced neuroinflammation via SIRT1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Huan Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Liu
- Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Huang X, Zhang T, Gao X, Huan X, Li Y. Novel Antiplatelet Activity of Ginsenoside Re Through the Inhibition of High Shear Stress-Induced Platelet Aggregation. J Cardiovasc Pharmacol 2023; 82:40-51. [PMID: 36892287 DOI: 10.1097/fjc.0000000000001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/24/2023] [Indexed: 03/10/2023]
Abstract
ABSTRACT Bleeding is one of the most serious side effects of antiplatelet drugs. Efforts have been made to find new antiplatelet agents without bleeding complications. Shear-induced platelet aggregation (SIPA) occurs only under pathological conditions and is a promising target for overcoming bleeding problems. This work demonstrates that the ginsenoside Re selectively inhibits platelet aggregation induced by high shear stress. Human platelets were exposed to high shear stress using microfluidic chip technology, and aggregation, activation, and phosphatidylserine (PS) exposure were measured. The Von Willebrand Ristocetin Cofactor (vWF:RCo) assay and western blot were used to evaluate the effect of the vWF-GPⅠb/PI3K/Akt signal pathway. The coagulation and bleeding risk were evaluated by measuring the coagulation parameters PT, APTT, TT, and thromboelastography. The 3-dimensional morphology of platelet aggregates was observed by a microscopic 3-dimensional imaging. Re was a potent inhibitor of SIPA, with an IC 50 of 0.071 mg/mL. It effectively blocked shear stress-induced platelet activation without any significant toxicity. It was highly selective against SIPA, effectively inhibiting vWF-GPIb and the downstream PI3K/Akt signaling pathway. Most importantly, Re did not affect normal blood coagulation and did not increase the risk of bleeding. In conclusion, Re inhibits platelet activation through the inhibition of the vWF-GPIb/PI3K/Akt pathway. Thus, it might be considered as a new antiplatelet drug in the prevention of thrombosis without increasing the risk of bleeding.
Collapse
Affiliation(s)
- Xiaojing Huang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
10
|
Xie Y, Wang C. Herb-drug interactions between Panax notoginseng or its biologically active compounds and therapeutic drugs: A comprehensive pharmacodynamic and pharmacokinetic review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116156. [PMID: 36754189 DOI: 10.1016/j.jep.2023.116156] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbs, along with the use of herb-drug interactions (HDIs) to combat diseases, are increasing in popularity worldwide. HDIs have two effects: favorable interactions that tend to improve therapeutic outcomes and/or minimize the toxic effects of drugs, and unfavorable interactions aggravating the condition of patients. Panax notoginseng (Burk.) F.H. Chen is a medicinal plant that has long been commonly used in traditional Chinese medicine to reduce swelling, relieve pain, clear blood stasis, and stop bleeding. Numerous studies have demonstrated the existence of intricate pharmacodynamic (PD) and pharmacokinetic (PK) interactions between P. notoginseng and conventional drugs. However, these HDIs have not been systematically summarized. AIM OF THE REVIEW To collect the available literature on the combined applications of P. notoginseng and drugs published from 2005 to 2022 and summarize the molecular mechanisms of interactions to circumvent the potential risks of combination therapy. MATERIALS AND METHODS This work was conducted by searching PubMed, Scopus, Web of Science, and CNKI databases. The search terms included "notoginseng", "Sanqi", "drug interaction," "synergy/synergistic", "combination/combine", "enzyme", "CYP", and "transporter". RESULTS P. notoginseng and its bioactive ingredients interact synergistically with numerous drugs, including anticancer, antiplatelet, and antimicrobial agents, to surmount drug resistance and side effects. This review elaborates on the molecular mechanisms of the PD processed involved. P. notoginseng shapes the PK processes of the absorption, distribution, metabolism, and excretion of other drugs by regulating metabolic enzymes and transporters, mainly cytochrome P450 enzymes and P-glycoprotein. This effect is a red flag for drugs with a narrow therapeutic window. Notably, amphipathic saponins in P. notoginseng act as auxiliary materials in drug delivery systems to enhance drug solubility and absorption and represent a new entry point for studying interactions. CONCLUSION This article provides a comprehensive overview of HDIs by analyzing the results of the in vivo and in vitro studies on P. notoginseng and its bioactive components. The knowledge presented here offers a scientific guideline for investigating the clinical importance of combination therapies. Physicians and patients need information on possible interactions between P. notoginseng and other drugs, and this review can help them make scientific predictions regarding the consequences of combination treatments.
Collapse
Affiliation(s)
- Yujuan Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
11
|
Chen Y, Li H, Yang Y, Feng L, Yuan E, Liao J, Zhao J, Xin X, Lv S, Fang X, Wen W, Cui H. Polygalasaponin F ameliorates middle cerebral artery occlusion-induced focal ischemia in rats through inhibiting TXNIP/NLRP3 signaling pathway.. [DOI: 10.21203/rs.3.rs-2775500/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Abstract
Polygalasaponin F (PGSF), an oleanane triterpenoid saponin extracted from Polygala japonica, has been demonstrated with neuroprotective effect. However, the therapeutic effects and mechanism of PGSF on focal ischemia remain unknown. In this study, we first established a rat model of focal ischemia using middle cerebral artery occlusion (MCAO) to evaluate the therapeutic effect of PGSF intervention and to investigate the impact of PGSF on the thioredoxin-interacting protein/NOD-, LRR-, and pyrin domain-containing protein 3 (TXNIP/NLRP3) inflammatory pathway. Secondly, brain neuron cells were isolated, and the cells received oxygen-glucose deprivation/reoxygenation (OGD/R) culture to establish the cell injury model in vitro. The mechanism of PGSF on the TXNIP/NLRP3 pathway was further validated. Our results showed that PGSF treatment reduced neurological scores, brain tissue water content and infarct volume and ameliorated the pathological changes in cerebral cortex in MCAO-induced focal ischemia rats. The TNF-α, IL-1β and IL-6 levels decreased in MCAO-induced focal ischemia rats after PGSF treatment. Moreover, PGSF down-regulated the protein expressions of TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18 in MCAO-induced focal ischemia rats. Meanwhile, PGSF treatment reduced the levels of apoptosis, ROS, inflammatory cytokine and TXNIP/NLRP3 pathway-related proteins (TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18) in OGD/R-induced neuronal injury cells. Finally, PGSF treatment also inhibited the interaction between NLRP3 and TXNIP in vitro. In conclusion, our study demonstrated the therapeutic effects of PGSF on MCAO-induced focal ischemia rats. Moreover, the neuroprotective mechanism of PGSF on focal ischemia was associated with the inhibition of TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yao Chen
- Nanjing University of Chinese Medicine
| | | | - Yan Yang
- Yunnan Provincial Hospital of Traditional Chinese Medicine
| | - Lei Feng
- Yunnan Provincial Hospital of Traditional Chinese Medicine
| | - En-Ze Yuan
- Yunnan Provincial Hospital of Traditional Chinese Medicine
| | - Jia-Bao Liao
- Jiaxing Hospital of Traditional Chinese Medicine
| | - Jie Zhao
- Yunnan Provincial Hospital of Traditional Chinese Medicine
| | - Xiao-Chi Xin
- Yunnan Provincial Hospital of Traditional Chinese Medicine
| | - Shu-Quan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province
| | - Xi-Xing Fang
- Changchun University of Traditional Chinese Medicine
| | - Wei-Bo Wen
- Yunnan Provincial Hospital of Traditional Chinese Medicine
| | | |
Collapse
|
12
|
Quah Y, Lee YY, Lee SJ, Kim SD, Rhee MH, Park SC. In silico investigation of Panax ginseng lead compounds against COVID-19 associated platelet activation and thromboembolism. J Ginseng Res 2023; 47:283-290. [PMID: 36160270 PMCID: PMC9482091 DOI: 10.1016/j.jgr.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Hypercoagulability is frequently observed in patients with severe coronavirus disease-2019 (COVID-19). Platelets are a favorable target for effectively treating hypercoagulability in COVID-19 patients as platelet hyperactivity has also been observed. It is difficult to develop a treatment for COVID-19 that will be effective against all variants and the use of antivirals may not be fully effective against COVID-19 as activated platelets have been detected in patients with COVID-19. Therefore, patients with less severe side effects often turn toward natural remedies. Numerous phytochemicals are being investigated for their potential to treat a variety of illnesses, including cancer and bacterial and viral infections. Natural products have been used to alleviate COVID-19 symptoms. Panax ginseng has potential for managing cardiovascular diseases and could be a treatment for COVID-19 by targeting the coagulation cascade and platelet activation. Using molecular docking, we analyzed the interactions of bioactive chemicals in P. ginseng with important proteins and receptors involved in platelet activation. Furthermore, the SwissADME online tool was used to calculate the pharmacokinetics and drug-likeness properties of the lead compounds of P. ginseng. Dianthramine, deoxyharrtingtonine, and suchilactone were determined to have favorable pharmacokinetic profiles.
Collapse
Affiliation(s)
- Yixian Quah
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Yuan Yee Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sung Dae Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Corresponding author. Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Seung-Chun Park
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Corresponding author. College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
13
|
Hao DL, Li JM, Xie R, Huo HR, Xiong XJ, Sui F, Wang PQ. The role of traditional herbal medicine for ischemic stroke: from bench to clinic-A critical review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154609. [PMID: 36610141 DOI: 10.1016/j.phymed.2022.154609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is a leading cause of death and severe long-term disability worldwide. Over the past few decades, considerable progress has been made in anti-ischemic therapies. However, IS remains a tremendous challenge, with favourable clinical outcomes being generally difficult to achieve from candidate drugs in preclinical phase testing. Traditional herbal medicine (THM) has been used to treat stroke for over 2,000 years in China. In modern times, THM as an alternative and complementary therapy have been prescribed in other Asian countries and have gained increasing attention for their therapeutic effects. These millennia of clinical experience allow THM to be a promising avenue for improving clinical efficacy and accelerating drug discovery. PURPOSE To summarise the clinical evidence and potential mechanisms of THMs in IS. METHODS A comprehensive literature search was conducted in seven electronic databases, including PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database, from inception to 17 June 2022 to examine the efficacy and safety of THM for IS, and to investigate experimental studies regarding potential mechanisms. RESULTS THM is widely prescribed for IS alone or as adjuvant therapy. In clinical trials, THM is generally administered within 72 h of stroke onset and are continuously prescribed for over 3 months. Compared with Western medicine (WM), THM combined with routine WM can significantly improve neurological function defect scores, promote clinical total effective rate, and accelerate the recovery time of stroke with fewer adverse effects (AEs). These effects can be attributed to multiple mechanisms, mainly anti-inflammation, antioxidative stress, anti-apoptosis, brain blood barrier (BBB) modulation, inhibition of platelet activation and thrombus formation, and promotion of neurogenesis and angiogenesis. CONCLUSIONS THM may be a promising candidate for IS management to guide clinical applications and as a reference for drug development.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia-Meng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hai-Ru Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xing-Jiang Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
14
|
Dai L, Zhang Y, Jiang Y, Chen K. Panax notoginseng preparation plus aspirin versus aspirin alone on platelet aggregation and coagulation in patients with coronary heart disease or ischemic stroke: A meta-analysis of randomized controlled trials. Front Pharmacol 2022; 13:1015048. [PMID: 36569332 PMCID: PMC9768032 DOI: 10.3389/fphar.2022.1015048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose: We aimed to evaluate the effects of Panax notoginseng preparations (PNP) containing Panax Notoginseng Saponins (PNS) or Panaxatriol Saponin (PTS) on platelet aggregation and coagulation in the adjuvant treatment of coronary heart disease (CHD) and ischemic stroke (IS). Methods: Randomized controlled trials (RCTs) comparing the combination of PNP and aspirin (ASA) versus ASA alone for CHD or IS were searched in eight databases. Subgroup analysis was performed according to saponin category. When statistical heterogeneity was significant, sensitivity analysis was performed using the leave-one-out approach. Funnel plot, Egger' test, and Begg' test was adopted to detect publication bias. Results: Twenty RCTs involving 2216 patients were analyzed. Compared with ASA alone, PNP plus ASA had a stronger inhibitory effect on in PAgR [PNS, WMD = -6.10 (-7.25, -4.95), p < 0.00001; PTS, WMD = -3.53 (-4.68, -2.38), p < 0.00001]; PNS plus ASA better reduced FIB [WMD = -0.43 (-0.49, -0.36)] and DD [WMD = -0.59 (-0.67, -0.51), p < 0.00001], while PLT (p = 0.07) and PT (p = 0.34) were not significantly different; PTS plus ASA better prolonged PT [WMD = 1.90 (1.47, 2.32), p < 0.00001] and PT-INR [WMD = 0.22 (0.11, 0.32), p < 0.0001], whereas no significant difference in DD (p = 0.1) and bleeding-related events (positive fecal occult blood, p = 0.96; upper gastrointestinal bleeding, p = 0.67; subcutaneous hemorrhage, p = 0.51; bulbar conjunctival hemorrhage, p = 0.51; hematuria, p = 0.58). There was no significant difference between PNP plus ASA and ASA alone in terms of gastrointestinal side effect (PNS, p = 0.65; PTS, p = 0.56) and urticaria (PNS, p = 0.57; PTS, p = 0.55). Conclusion: PNP combined with ASA might produce stronger antiplatelet aggregation and anticoagulation effects without increasing bleeding risk, gastrointestinal side effects, and urticaria compared with ASA alone. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier CRD42022339234.
Collapse
Affiliation(s)
| | | | | | - Keji Chen
- *Correspondence: Keji Chen, ; Yuerong Jiang,
| |
Collapse
|
15
|
Liu X, Xiao X, Han X, Yao L, Lan W. A New Therapeutic Trend: Natural Medicine for Ameliorating Ischemic Stroke via PI3K/Akt Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227963. [PMID: 36432062 PMCID: PMC9694461 DOI: 10.3390/molecules27227963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Ischemic stroke (IS) is an acute cerebrovascular disease caused by sudden arterial occlusion, which is characterized by a high morbidity, mortality, and disability rate. It is one of the most important causes of nervous system morbidity and mortality in the world. In recent years, the search for new medicine for the treatment of IS has become an attractive research focus. Due to the extremely limited time window of traditional medicine treatment, some side effects may occur, and accompanied by the occurrence of adverse reactions, the frequency of exploration with natural medicine is significantly increased. Phosphatidylinositol-3-kinase/Protein kinase B (PI3K/Akt) signaling pathway is a classical pathway for cell metabolism, growth, apoptosis, and other physiological activities. There is considerable research on medicine that treats various diseases through this pathway. This review focuses on how natural medicines (including herbs and insects) regulate important pathophysiological processes such as inflammation, oxidative stress, apoptosis, and autophagy through the PI3K/Akt signaling pathway, and the role it plays in improving IS. We found that many kinds of herbal medicine and insect medicine can alleviate the damage caused by IS through the PI3K/Akt signaling pathway. Moreover, the prescription after their combination can also achieve certain results. Therefore, this review provides a new candidate category for medicine development in the treatment of IS.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
- Correspondence:
| |
Collapse
|
16
|
Wang Y, Wu H, Sheng H, Wang Y, Li X, Wang Y, Zhao L. Discovery of anti-stroke active substances in Guhong injection based on multi-phenotypic screening of zebrafish. Biomed Pharmacother 2022; 155:113744. [PMID: 36156365 DOI: 10.1016/j.biopha.2022.113744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Ischemic stroke is a leading cause of death worldwide, and it remains an urgent task to develop novel and alternative therapeutic strategies for the disease. We previously reported the positive effects of Guhong injection (GHI), composed of safflower extract and aceglutamide, in promoting functional recovery in ischemic stroke mice. However, the active substances and pharmacological mechanism of GHI is still elusive. Aiming to identify the active anti-stroke components in GHI, here we conducted a multi-phenotypic screening in zebrafish models of phenylhydrazine-induced thrombosis and ponatinib-induced cerebral ischemia. Peripheral and cerebral blood flow was quantified endogenously in erythrocytes fluorescence-labeled thrombosis fish, and baicalein and rutin were identified as major anti-thrombotic substances in GHI. Moreover, using a high-throughput video-tracking system, the effects of locomotion promotion of GHI and its main compounds were analyzed in cerebral ischemia model. Chlorogenic acid and gallic acid showed significant effects in preventing locomotor dyfunctions. Finally, GHI treatment greatly decreased the expression levels of coagulation factors F7 and F2, NF-κB and its mediated proinflammatory cytokines in the fish models. Molecular docking suggested strong affinities between baicalein and F7, and between active substances (baicalein, chlorogenic acid, gallic acid, and rutin) and NF-κB p65. In summary, our findings established a novel drug discovery method based on multi-phenotypic screening of zebrafish, provided endogenous evidences of GHI in preventing thrombus formation and promoting behavioral recovery after cerebral ischemia, and identified baicalein, rutin, chlorogenic acid, and gallic acid as active compounds in the management of ischemic stroke.
Collapse
Affiliation(s)
- Yule Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310012, China
| | - Huimin Wu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310012, China
| | - Hongda Sheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310012, China
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, 291 Fucheng Road, Qiantang District, Hangzhou 310020, China
| | - Xuecai Li
- Tonghua Guhong Pharmaceutical Co., Ltd., 5099 Jianguo Road, Meihekou 135099, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310012, China; Jinan Microecological Biomedicine Shandong Laboratory, 3716 Qingdao Road, Huaiyin District, Jinan 250117, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, Jinghai District, Tianjin 301617, China.
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310012, China.
| |
Collapse
|
17
|
Li D, Li Y, Yang S, Yu Z, Xing Y, Wu M. Mechanism and Potential Target of Blood-Activating Chinese Botanical Drugs Combined With Anti-Platelet Drugs: Prevention and Treatment of Atherosclerotic Cardiovascular Diseases. Front Pharmacol 2022; 13:811422. [PMID: 35721128 PMCID: PMC9204194 DOI: 10.3389/fphar.2022.811422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/25/2022] [Indexed: 11/14/2022] Open
Abstract
Atherosclerotic cardiovascular diseases (ASCVDs) are the most important diseases that endanger people’s health, leading to high morbidity and mortality worldwide. In addition, various thrombotic events secondary to cardiovascular and cerebrovascular diseases need must be considered seriously. Therefore, the development of novel anti-platelet drugs with high efficiency, and fewer adverse effects has become a research focus for preventing of cardiovascular diseases (CVDs). Blood-activation and stasis-removal from circulation have been widely considered as principles for treating syndromes related to CVDs. Blood-activating Chinese (BAC botanical drugs, as members of traditional Chinese medicine (TCM), have shown to improve hemodynamics and hemorheology, and inhibit thrombosis and atherosclerosis. Modern medical research has identified that a combination of BAC botanical drugs and anti-platelet drugs, such as aspirin or clopidogrel, not only enhances the anti-platelet effects, but also reduces the risk of bleeding and protects the vascular endothelium. The anti-platelet mechanism of Blood-activating Chinese (BAC) botanical drugs and their compounds is not clear; therefore, their potential targets need to be explored. With the continuous development of bioinformatics and “omics” technology, some unconventional applications of BAC botanical drugs have been discovered. In this review, we will focus on the related targets and signaling pathways of anti-atherosclerotic treatments involving a combination of BAC botanical drugs and anti-platelet drugs reported in recent years.
Collapse
Affiliation(s)
- Dan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujuan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Research Progress on Natural Products’ Therapeutic Effects on Atrial Fibrillation by Regulating Ion Channels. Cardiovasc Ther 2022; 2022:4559809. [PMID: 35387267 PMCID: PMC8964196 DOI: 10.1155/2022/4559809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Antiarrhythmic drugs (AADs) have a therapeutic effect on atrial fibrillation (AF) by regulating the function of ion channels. However, several adverse effects and high recurrence rates after drug withdrawal seriously affect patients’ medication compliance and clinical prognosis. Thus, safer and more effective drugs are urgently needed. Active components extracted from natural products are potential choices for AF therapy. Natural products like Panax notoginseng (Burk.) F.H. Chen, Sophora flavescens Ait., Stephania tetrandra S. Moore., Pueraria lobata (Willd.) Ohwi var. thomsonii (Benth.) Vaniot der Maesen., and Coptis chinensis Franch. have a long history in the treatment of arrhythmia, myocardial infarction, stroke, and heart failure in China. Based on the classification of chemical structures, this article discussed the natural product components’ therapeutic effects on atrial fibrillation by regulating ion channels, connexins, and expression of related genes, in order to provide a reference for development of therapeutic drugs for atrial fibrillation.
Collapse
|
19
|
Diindolylmethane ameliorates platelet aggregation and thrombosis: In silico, in vitro, and in vivo studies. Eur J Pharmacol 2022; 919:174812. [DOI: 10.1016/j.ejphar.2022.174812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023]
|
20
|
Phenolic compounds in mango fruit: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01192-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Yang L, Qian J, Yang B, He Q, Wang J, Weng Q. Challenges and Improvements of Novel Therapies for Ischemic Stroke. Front Pharmacol 2021; 12:721156. [PMID: 34658860 PMCID: PMC8514732 DOI: 10.3389/fphar.2021.721156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
Stroke is the third most common disease all over the world, which is regarded as a hotspot in medical research because of its high mortality and morbidity. Stroke, especially ischemic stroke, causes severe neural cell death, and no effective therapy is currently available for neuroregeneration after stroke. Although many therapies have been shown to be effective in preclinical studies of ischemic stroke, almost none of them passed clinical trials, and the reasons for most failures have not been well identified. In this review, we focus on several novel methods, such as traditional Chinese medicine, stem cell therapy, and exosomes that have not been used for ischemic stroke till recent decades. We summarize the proposed basic mechanisms underlying these therapies and related clinical results, discussing advantages and current limitations for each therapy emphatically. Based on the limitations such as side effects, narrow therapeutic window, and less accumulation at the injury region, structure transformation and drug combination are subsequently applied, providing a deep understanding to develop effective treatment strategies for ischemic stroke in the near future.
Collapse
Affiliation(s)
- Lijun Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Qian
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Center for Drug and Cosmetic Evaluation, Hangzhou, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Panax Notoginseng Protects against Diabetes-Associated Endothelial Dysfunction: Comparison between Ethanolic Extract and Total Saponin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4722797. [PMID: 34527173 PMCID: PMC8437594 DOI: 10.1155/2021/4722797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/07/2021] [Indexed: 12/21/2022]
Abstract
Previous studies revealed a cardioprotective potential of Panax notoginseng to relieve acute myocardial infarction and focal cerebral ischemia-reperfusion. However, whether P. notoginseng protects endothelial function in diabetes and the underlying mechanisms remain to be explored. P. notoginseng contains several chemical components including saponins, which are commonly believed as the major bioactive ingredients. The present study was aimed to examine and compare the vaso-protective effects of the ethanolic extract of P. notoginseng (PNE) and total saponin (PNS). Both aortas and carotid arteries were isolated from male C57BL/6J mice for ex vivo treatment with risk factors (high glucose or tunicamycin) with and without the presence of PNS and PNE. Diabetic model was established by feeding the mice with a high-fat diet (45% kcal% fat) for 12 weeks, while PNS and PNE were administrated by oral gavage at 20 mg/kg/day for another 4 weeks. Ex vivo exposure to high glucose impaired acetylcholine-induced endothelium-dependent relaxations in mouse aortas, decreased phosphorylation of AMPK and eNOS, and induced endoplasmic reticulum (ER) stress and oxidative stress. These effects were reversed by cotreatment of PNS and PNE with PNS being more potent. Furthermore, the vaso-protective effects were abolished by Compound C (AMPK inhibitor). Chronic treatment with PNS and PNE improved endothelium-dependent relaxations and alleviated ER stress and oxidative stress in aortas from high-fat diet-induced obese mice. PNE was more effective to improve glucose sensitivity and normalize blood pressure in diabetic mice. The present results showed that PNS and PNE reduced ER stress and oxidative stress and, subsequently, improved endothelial function in diabetes through AMPK activation. This study provides new inspiration on the therapeutic potential of P. notoginseng extract against vascular diseases associated with metabolic disorders.
Collapse
|