1
|
Peng Y, Zheng X, Zhang S, Luo Z, Song L, Chen H, Yao X. Advances in the activity of resveratrol and its derivatives in cardiovascular diseases. Arch Pharm (Weinheim) 2025; 358:e2400865. [PMID: 39956927 DOI: 10.1002/ardp.202400865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/29/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025]
Abstract
Cardiovascular diseases (CVDs), the leading cause of human death worldwide, are diseases that affect the heart and blood vessels and include arrhythmias, coronary atherosclerotic heart disease, hypertension, and so on. Resveratrol (RSV) is a natural nonflavonoid phenolic compound with antioxidant, anti-inflammatory, anticancer, and cardiovascular protection functions. RSV has shown significant protective effects against CVD. However, RSV's clinical application is limited by its tendency to be oxidized and metabolized easily. Therefore, it is necessary to optimize the RSV structure. This review will introduce the activity, synthesis, and structure-activity relationships of RSV derivatives, and the mechanism of the action of RSV in CVDs in recent years.
Collapse
Affiliation(s)
- Yaling Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan, China
| | - Si Zhang
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan, China
| | - Zhongqin Luo
- Shaoyang Hospital of TCM, Shaoyang, Hunan, China
| | - Li Song
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
| | - Hongfei Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Radeva L, Yoncheva K. Resveratrol-A Promising Therapeutic Agent with Problematic Properties. Pharmaceutics 2025; 17:134. [PMID: 39861780 PMCID: PMC11768323 DOI: 10.3390/pharmaceutics17010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Resveratrol is a natural polyphenol (stilbenoid), which can be found in grape skin, red wine, blueberries, peanuts and others. The biological properties of resveratrol, in particular antioxidant, anti-inflammatory, anticancer, estrogenic, vasorelaxant and cardioprotective activity, are the main reason for its importance in medicine and pharmacy. Despite all of its advantages, however, there are many problems related to this polyphenolic substance, such as low stability, water insolubility, poor bioavailability and fast metabolism. For this reason, scientists are currently searching for different approaches to dealing with these problematic properties and improving the therapeutic usage of resveratrol. This review summarizes the mechanisms of the biological effects of resveratrol, determined in vitro and in vivo, and the main limitations of the drug. The article emphasizes new approaches for the improvement of resveratrol delivery, in particular nanoencapsulation, formation of nanocrystals, prodrugs and structure analogues.
Collapse
|
3
|
Varga K, Paszternák A, Kovács V, Guczogi A, Sikur N, Patakfalvi D, Bagaméry F, Szökő É, Tábi T. Differential Cytoprotective Effect of Resveratrol and Its Derivatives: Focus on Antioxidant and Autophagy-Inducing Effects. Int J Mol Sci 2024; 25:11274. [PMID: 39457058 PMCID: PMC11509103 DOI: 10.3390/ijms252011274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Numerous beneficial effects of resveratrol were reported; however, its pharmacological profile is contradictious. Previously, we have demonstrated that resveratrol has a dose-dependent cytoprotective effect and the essential role of autophagy induction was demonstrated. Resveratrol suffers from unfavorable pharmacokinetics, hindering its clinical use. Our aim was to study the cytoprotective effect of resveratrol derivatives to better understand structure-activity relationships that may facilitate the development of compounds with better druglike characteristics. Serum-deprivation-induced caspase activation, free radical generation, mitochondrial membrane depolarization and autophagy were detected in the presence of resveratrol analogs with different oxidation states on mouse embryonal fibroblasts. Distinct cytoprotective mechanisms of the examined compounds were revealed. Monomethyl resveratrol had similar potency to resveratrol (EC50: 85.3 vs. 84.2 μM); however, autophagy induction was not essential for its cytoprotective effect. Oxyresveratrol was found to be a strong antioxidant that can induce direct cytoprotection rather than autophagy. Trimethyl-resveratrol, lacking free hydroxyl groups, induced damage that was too significant and hardly compensated by the activation of cytoprotective machineries, and caspase activation was reduced by only 24.5%. Based on our results, methylation of resveratrol reduces its antioxidant activity, while autophagy induction can still contribute to its cytoprotective effect. The introduction of an additional hydroxyl group, however, augments the antioxidant properties, inducing cytoprotection without autophagy induction.
Collapse
Affiliation(s)
- Kamilla Varga
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Alexandra Paszternák
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Virág Kovács
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Annamária Guczogi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Noémi Sikur
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Dimitrisz Patakfalvi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Fruzsina Bagaméry
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| |
Collapse
|
4
|
Zhou C, Zhou Y, Vong CT, Khan H, Cheang WS. 3,3',4,5'-Tetramethoxy-trans-stilbene and 3,4',5-trimethoxy-trans-stilbene prevent oxygen-glucose deprivation-induced injury in brain endothelial cell. J Cell Mol Med 2024; 28:e70008. [PMID: 39153195 PMCID: PMC11330235 DOI: 10.1111/jcmm.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Blood-brain barrier (BBB) disruption is a major pathophysiological event of ischemic stroke. Brain microvascular endothelial cells are critical to maintain homeostasis between central nervous system and periphery. Resveratrol protects against ischemic stroke. 3,3',4,5'-tetramethoxy-trans-stilbene (3,3',4,5'-TMS) and 3,4',5-trimethoxy-trans-stilbene (3,4',5-TMS) are resveratrol derivatives with addition of methoxy groups, showing better pharmacokinetic performance. We aimed to explore their protective effects and underlying mechanisms. Oxygen-glucose deprivation (OGD) model was applied in bEnd.3 cell line, mouse brain microvascular endothelium to mimic ischemia. The cells were pre-treated with 3,3',4,5'-TMS or 3,4',5-TMS (1 and 5 μM, 24 h) and then subjected to 2-h OGD injury. Cell viability, levels of proinflammatory cytokines and reactive oxygen species (ROS), and protein expressions were measured by molecular assays and fluorescence staining. OGD injury triggered cell death, inflammatory responses, ROS production and nuclear factor-kappa B (NF-κB) signalling pathway. These impairments were remarkably attenuated by the two stilbenes, 3,3',4,5'-TMS and 3,4',5-TMS. They also alleviated endothelial barrier injuries through upregulating the expression of tight junction proteins. Moreover, 3,3',4,5'-TMS and 3,4',5-TMS activated 5' adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Overall, 3,3',4,5'-TMS and 3,4',5-TMS exert protective effects against OGD damage through suppressing cell death, inflammatory responses, oxidative stress, as well as BBB disruption on bEnd.3 cells.
Collapse
Affiliation(s)
- Chunxiu Zhou
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
| | - Yan Zhou
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
- Macau Centre for Research and Development in Chinese MedicineUniversity of MacauMacau SARChina
| | - Haroon Khan
- Department of PharmacyAbdul Wali Khan University MardanMardanPakistan
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
| |
Collapse
|
5
|
Bi Y, Wei H, Yu T, Li X, Xu S. New insights into resveratrol attenuates hepatotoxicity in emamectin benzoate-exposed grass carp (Ctenopharyngodon idella) via NO system/NF-κB signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105941. [PMID: 38879332 DOI: 10.1016/j.pestbp.2024.105941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 07/02/2024]
Abstract
Emamectin benzoate (EMB) is extensively used as a crop protection agent. Overuse of EMB poses a serious threat to the quality of water and non-target organisms in the environment. Resveratrol (RES) is a natural phytoalexin with the function of anti-oxidation and anti-inflammation. Nonetheless, it is unclear whether EMB affects the expression of cytokines and induces autophagy, apoptosis, and necroptosis of hepatocytes (L8824 cell) in grass carp (Ctenopharyngodon idella), and whether RES has an attenuate function in this process. Therefore, we established the L8824 cells model of EMB exposure and treated it with RES. The results showed that compared with the control (CON) group, EMB exposure significantly increased the nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, and the expression of iNOS and phosphorylated nuclear factor kappa B (p-NF-κB) (P < 0.05). In addition, compared with the CON group, the results of flow cytometry and dansylcadaverine (MDC) staining showed a significant increase in apoptosis and autophagy in the EMB-exposed group (P < 0.05) with the activation of the B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax)/cysteine-aspartic acid protease 3 (Caspase-3)/cysteine-aspartic acid protease 9 (Caspase-9) pathway and microtubule-associated protein light chain 3 (LC3)/sequestosome 1 (p62)/Beclin1 pathway. EMB exposure significantly increased the mRNA and protein expression of receptor-interacting protein 1 (RIPK1)/receptor-interacting protein 3 (RIPK3)/mixed the lineage kinase domain-like (MLKL) pathway (P < 0.05). Moreover, EMB exposure significantly increased the expression of genes related to immunity (immunoglobulin G (IgG), immunoglobulin M (IgM), and immunoglobulin D (IgD), and antimicrobial peptide-related genes expression including β-defensin and hepcidin) (P < 0.05). The addition of RES significantly diminished autophagy, apoptosis, necroptosis, and immunity-related gene expression by inhibiting iNOS activity, NO content, and the protein expression of iNOS and p-NF-κB. In conclusion, RES attenuated autophagy, apoptosis, and necroptosis in EMB-exposed L8824 cells via suppression of the NO system/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanju Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Tingting Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Tan Y, Zhou C, Miao L, Zhang X, Khan H, Xu B, Cheang WS. 3,4',5-Trimethoxy- trans-stilbene ameliorates hepatic insulin resistance and oxidative stress in diabetic obese mice through insulin and Nrf2 signaling pathways. Food Funct 2024; 15:2996-3007. [PMID: 38411214 DOI: 10.1039/d3fo04158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Resveratrol has profound benefits against diabetes. However, whether its methylated derivative 3,4',5-trimethoxy-trans-stilbene (3,4',5-TMS) also plays a protective role in glucose metabolism is not characterized. We aimed to study the anti-diabetic effects of 3,4',5-TMS in vitro and in vivo. Insulin-resistant HepG2 cells (IR-HepG2) were induced by high glucose plus dexamethasone whilst six-week-old male C57BL/6J mice received a 60 kcal% fat diet for 14 weeks to establish an obese diabetic model. 3,4',5-TMS did not reduce the cell viability of IR-HepG2 cells at concentrations of 0.5 and 1 μM, which enhanced the capability of glycogen synthesis and glucose consumption in IR-HepG2 cells. Four-week oral administration of 3,4',5-TMS at 10 mg kg-1 day-1 ameliorated insulin sensitivity and glucose tolerance of diet-induced obese (DIO) mice. 3,4',5-TMS activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway by inhibiting phosphorylation of insulin receptor substrate (IRS)-1 at Ser307 and increasing the protein levels of IRS-1 and IRS-2 to restore the insulin signaling pathway in diabetes. 3,4',5-TMS also upregulated the phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at Ser9. 3,4',5-TMS suppressed oxidative stress by increasing the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and NAD(P)H : quinone oxidoreductase 1 (NQO1) and antioxidant enzyme activity. In summary, 3,4',5-TMS alleviated hepatic insulin resistance in vitro and in vivo, by the activation of the insulin signaling pathway, accomplished by the suppression of oxidative stress.
Collapse
Affiliation(s)
- Yi Tan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China.
| | - Chunxiu Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China.
| | - Lingchao Miao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China.
| | - Xutao Zhang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China.
| | - Wai San Cheang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China.
| |
Collapse
|
7
|
Zhang Y, Shang C, Sun C, Wang L. Simultaneously regulating absorption capacities and antioxidant activities of four stilbene derivatives utilizing substitution effect: A theoretical and experimental study against UVB radiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123325. [PMID: 37678043 DOI: 10.1016/j.saa.2023.123325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/29/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
With the continued depletion of the ozone layer, the sun protection consciousness of humans has gradually enhanced. Long-term ultraviolet (UV) rays exposure will lead to skin tanning, even skin cancer in severe cases, and generate free radicals to cause skin aging. To better protect human skin against UV rays, this work explores the absorption capacities and antioxidant activities of four stilbene derivatives (EHDB, EDMB, EAPD, and HPTP) through the computational chemistry method and DPPH radical scavenging experiment. The research results indicate that their absorption spectra cover the entire UV region, and can effectively protect against UVB radiation. Moreover, three prevailing antioxidant mechanisms: hydrogen atom transfer, sequential proton loss electron transfer, and single electron transfer followed by proton transfer mechanisms, were used to evaluate their antioxidant activities in the ground state. It can be concluded that the O1H1 sites of EHDB and HPTP are the most active, and the SPLET mechanism is the most preferred for the four compounds in ethanol solvent. Furthermore, the DPPH radical scavenging experiment compensates for the theoretical calculation deficiency in the excited state, revealing that the EHDB and HPTP are the most suitable for sunscreen due to their excellent performance on antioxidant capacities, whether before or after sunlight. This work will facilitate EHDB and HPTP to be applied in sunscreen and provide a novel idea in sunscreen research.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Changjiao Shang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, China.
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
8
|
Xing Y, Gao Z, Bai Y, Wang W, Chen C, Zheng Y, Meng Y. Golgi Protein 73 Promotes LPS-Induced Cardiac Dysfunction via Mediating Myocardial Apoptosis and Autophagy. J Cardiovasc Pharmacol 2024; 83:116-125. [PMID: 37755435 DOI: 10.1097/fjc.0000000000001487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
ABSTRACT Sepsis-induced cardiac dysfunction represents a major cause of high mortality in intensive care units with limited therapeutic options. Golgi protein 73 (GP73) has been implicated in various diseases. However, the role of GP73 in lipopolysaccharide (LPS)-induced cardiac dysfunction is unclear. In this study, we established a sepsis-induced cardiac dysfunction model by LPS administration in wild-type and GP73 knockout ( GP73-/- ) mice. We found that GP73 was increased in LPS-treated mouse hearts and LPS-cultured neonatal rat cardiomyocytes (NRCMs). Knockout of GP73 alleviated myocardial injury and improved cardiac dysfunction. Moreover, depletion of GP73 in NRCMs relieved LPS-induced cardiomyocyte apoptosis and activated myocardial autophagy. Therefore, GP73 is a negative regulator in LPS-induced cardiac dysfunction by promoting cardiomyocyte apoptosis and inhibiting cardiomyocyte autophagy.
Collapse
Affiliation(s)
- Yaqi Xing
- Department of Pathology, Capital Medical University, Beijing, China
| | - Zhenqiang Gao
- Department of Pathology, Capital Medical University, Beijing, China
| | - Yunfei Bai
- Department of Pathology, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Pathology, Capital Medical University, Beijing, China
- National Demonstration Center for Experimental Basic Medical Education, Experimental Teaching Center of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chen Chen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; and
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing, China
| | - Yan Meng
- Department of Pathology, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Gao Z, Zheng C, Xing Y, Zhang X, Bai Y, Chen C, Zheng Y, Wang W, Zhang H, Meng Y. Polo-like kinase 1 promotes sepsis-induced myocardial dysfunction. Int Immunopharmacol 2023; 125:111074. [PMID: 37879229 DOI: 10.1016/j.intimp.2023.111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is the main cause of mortality in sepsis. In this study, we identified Polo-like kinase 1 (Plk-1) is a promoter of SIMD. Plk-1 expression was increased in lipopolysaccharide (LPS)-treated mouse hearts and neonatal rat cardiomyocytes (NRCMs). Inhibition of Plk-1 either by heterozygous deletion of Plk-1 or Plk-1 inhibitor BI 6727 alleviated LPS-induced myocardial injury, inflammation, cardiac dysfunction, and thereby improved the survival of LPS-treated mice. Plk-1 was identified as a kinase of inhibitor of kappa B kinase alpha (IKKα). Plk-1 inhibition impeded NF-κB signal pathway activation in LPS-treated mouse hearts and NRCMs. Augmented Plk-1 is thus essential for the development of SIMD and is a druggable target for SIMD.
Collapse
Affiliation(s)
- Zhenqiang Gao
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Cuiting Zheng
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yaqi Xing
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Xiyu Zhang
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Yunfei Bai
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Chen Chen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China; National Demonstration Center for Experimental Basic Medical Education, Capital Medical University, Beijing, China
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Meng
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Yokoyama T, Kusaka K. Characterization of the molecular interactions between resveratrol derivatives and death-associated protein kinase 1. FEBS J 2023; 290:4465-4479. [PMID: 37171222 DOI: 10.1111/febs.16817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Death-associated protein kinase 1 (DAPK1), a Ca2+/calmodulin-regulated serine/threonine kinase, regulates cell apoptosis and autophagy and has been implicated in the pathogenesis of Alzheimer's disease (AD). Targeting DAPK1 may be a promising approach for treating AD. In our previous study, we found that a natural polyphenol, resveratrol (1), is a moderate DAPK1 inhibitor. In the present study, we investigated the interactions between natural and synthetic derivatives of 1 and DAPK1. Binding assays including intrinsic fluorescence quenching, protein thermal shift and isothermal titration calorimetry indicated that oxyresveratrol (3), a hydroxylated derivative, and pinostilbene (5), a methoxylated derivative, bind to DAPK1 with comparable affinity to 1. The enzymatic assay showed that 3 more effectively inhibits the intrinsic ATPase activity of DAPK1 compared with 1. Crystallographic analysis revealed that the binding modes of the methoxylated derivatives were different from those of 1 and 3, resulting in a unique interaction. Our results suggest that 3 may be helpful in treating AD and provide a clue for the development of promising DAPK1 inhibitors.
Collapse
Affiliation(s)
| | - Katsuhiro Kusaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Japan
| |
Collapse
|
11
|
Manríquez-Núñez J, Mora O, Villarroya F, Reynoso-Camacho R, Pérez-Ramírez IF, Ramos-Gómez M. Macrophage Activity under Hyperglycemia: A Study of the Effect of Resveratrol and 3H-1,2-Dithiole-3-thione on Potential Polarization. Molecules 2023; 28:5998. [PMID: 37630249 PMCID: PMC10458500 DOI: 10.3390/molecules28165998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Currently, research is focused on bioactive compounds with the potential to promote macrophage polarization with the aim of reducing the development of inflammatory-related diseases. However, the effect of bioactive compounds under oxidative-stress-induced hyperglycemia on macrophage polarization has been scarcely investigated. RAW 264.7 macrophages were incubated under standard (SG) or high glucose (HG) conditions and stimulated with lipopolysaccharide (LPS) (10, 60 and 100 ng/mL) to monitor macrophage polarization after resveratrol (RSV) or 3H-1,2-dithiole-3-thione (D3T) supplementation (2.5, 5, 10 and 20 µM). Under SG and HG conditions without LPS stimulation, RSV significantly decreased macrophage viability at the highest concentration (20 µM), whereas D3T had no or low effect. LPS stimulation at 60 and 100 ng/mL, under SG and HG conditions, increased significantly macrophage viability. Both RSV and D3T significantly decreased NO production in LPS-stimulated macrophages under HG condition, whereas only D3T increased GSH levels at 100 ng/mL and normalized MDA values at 60 ng/mL of LPS under HG condition. Under 60 ng/mL LPS stimulation and HG, mRNA IL-1 and IL-6 were higher. Interestingly, RSV decreased pro-inflammatory interleukins; meanwhile, D3T increased Arg1 and IL-10 relative expression. Overall, our results indicate that hyperglycemia plays a fundamental role in the modulation of macrophage-induced inflammation in response to bioactive compounds.
Collapse
Affiliation(s)
- Josué Manríquez-Núñez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas, Querétaro 76010, Mexico
| | - Ofelia Mora
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, 08007 Barcelona, Spain
| | - Rosalía Reynoso-Camacho
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas, Querétaro 76010, Mexico
| | - Iza Fernanda Pérez-Ramírez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas, Querétaro 76010, Mexico
| | - Minerva Ramos-Gómez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas, Querétaro 76010, Mexico
| |
Collapse
|
12
|
Al-Khayri JM, Mascarenhas R, Harish HM, Gowda Y, Lakshmaiah VV, Nagella P, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk AAS. Stilbenes, a Versatile Class of Natural Metabolites for Inflammation-An Overview. Molecules 2023; 28:molecules28093786. [PMID: 37175197 PMCID: PMC10180133 DOI: 10.3390/molecules28093786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Stilbenes are polyphenolic allelochemicals synthesized by plants, especially grapes, peanuts, rhubarb, berries, etc., to defend themselves under stressful conditions. They are now exploited in medicine for their antioxidant, anti-proliferative and anti-inflammatory properties. Inflammation is the immune system's response to invading bacteria, toxic chemicals or even nutrient-deprived conditions. It is characterized by the release of cytokines which can wreak havoc on healthy tissues, worsening the disease condition. Stilbenes modulate NF-κB, MAPK and JAK/STAT pathways, and reduce the transcription of inflammatory factors which result in maintenance of homeostatic conditions. Resveratrol, the most studied stilbene, lowers the Michaelis constant of SIRT1, and occupies the substrate binding pocket. Gigantol interferes with the complement system. Besides these, oxyresveratrol, pterostilbene, polydatin, viniferins, etc., are front runners as drug candidates due to their diverse effects from different functional groups that affect bioavailability and molecular interactions. However, they each have different thresholds for toxicity to various cells of the human body, and thus a careful review of their properties must be conducted. In animal models of autoinflammatory diseases, the mode of application of stilbenes is important to their absorption and curative effects, as seen with topical and microemulsion gel methods. This review covers the diversity seen among stilbenes in the plant kingdom and their mechanism of action on the different inflammatory pathways. In detail, macrophages' contribution to inflamed conditions in the liver, the cardiac, connective and neural tissues, in the nephrons, intestine, lungs and in myriad other body cells is explored, along with detailed explanation on how stilbenes alleviate the symptoms specific to body site. A section on the bioavailability of stilbenes is included for understanding the limitations of the natural compounds as directly used drugs due to their rapid metabolism. Current delivery mechanisms include sulphonamides, or using specially designed synthetic drugs. It is hoped that further research may be fueled by this comprehensive work that makes a compelling argument for the exploitation of these compounds in medicine.
Collapse
Affiliation(s)
- Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Roseanne Mascarenhas
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore 560029, India
| | | | - Yashwanth Gowda
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore 560029, India
| | | | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore 560029, India
| | - Muneera Qassim Al-Mssallem
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatima Mohammed Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Virus and Phytoplasma, Plant Pathology Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
13
|
Serreli G, Deiana M. Role of Dietary Polyphenols in the Activity and Expression of Nitric Oxide Synthases: A Review. Antioxidants (Basel) 2023; 12:antiox12010147. [PMID: 36671009 PMCID: PMC9854440 DOI: 10.3390/antiox12010147] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Nitric oxide (NO) plays several key roles in the functionality of an organism, and it is usually released in numerous organs and tissues. There are mainly three isoforms of the enzyme that produce NO starting from the metabolism of arginine, namely endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and neuronal nitric oxide synthase (nNOS). The expression and activity of these isoforms depends on the activation/deactivation of different signaling pathways at an intracellular level following different physiological and pathological stimuli. Compounds of natural origin such as polyphenols, which are obtainable through diet, have been widely studied in recent years in in vivo and in vitro investigations for their ability to induce or inhibit NO release, depending on the tissue. In this review, we aim to disclose the scientific evidence relating to the activity of the main dietary polyphenols in the modulation of the intracellular pathways involved in the expression and/or functionality of the NOS isoforms.
Collapse
|
14
|
Cheemanapalli S, Palaniappan C, Mahesh Y, Iyyappan Y, Yarrappagaari S, Kanagaraj S. In vitro and in silico perspectives to explain anticancer activity of a novel syringic acid analog ((4-(1H-1, 3-benzodiazol-2-yl)-2, 6-dimethoxy phenol)) through apoptosis activation and NFkB inhibition in K562 leukemia cells. Comput Biol Med 2023; 152:106349. [PMID: 36470147 DOI: 10.1016/j.compbiomed.2022.106349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Syringic acid (SA) is an active carcinogenesis inhibitor; however, the low bioavailability and unstable functional groups hinder its activity. Here, a chemically synthesized novel SA analog (SA10) is evaluated for its anticancer activity using in-vitro and in-silico studies. K562 cell line study revealed that SA10 had shown a higher rate of inhibition (IC50 = 50.40 μg/mL) than its parental compound, SA (IC50 = 96.92 μg/mL), at 50 μM concentration. The inhibition ratio was also been evaluated by checking the expression level of NFkB and Bcl-2 and showing that SA10 has two-fold increase in the inhibitory mechanism than SA. This result demonstrates that SA10 acts as an NFkB inhibitor and an apoptosis inducer. Further, molecular docking and simulation have been performed to get insights into the possible inhibitory mechanism of SA and SA10 on NFkB at the atomistic level. The molecular docking results exemplify that both SA and SA10 bind to the active site of NFkB, thereby interfering with the association between DNA and NFkB. SA10 exhibits a more robust binding affinity than SA and is firmly docked well into the interior of the NFkB, as confirmed by MM-PBSA calculations. In a nutshell, the Benzimidazole scaffold containing SA10 has shown more NFkB inhibitory activity in K562 cells than SA, which could be helpful as an ideal therapeutic NFkB inhibitor for treating cancers.
Collapse
Affiliation(s)
- Srinivasulu Cheemanapalli
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India; Regional Ayurveda Research Institute (CCRAS, Govt. of India), Itanagar, Arunachal Pradesh, India
| | - Chandrasekaran Palaniappan
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Yeshwanth Mahesh
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Yuvaraj Iyyappan
- National Institute for Plant Biotechnology, ICAR, New Delhi, India
| | - Suresh Yarrappagaari
- Division of Ethnopharmacology, Department of Biotechnology, School of Herbal Studies and Natural Sciences, Dravidian University, Kuppam, Andhra Pradesh, India
| | - Sekar Kanagaraj
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
15
|
Yadav E, Yadav P, Khan MMU, Singh H, Verma A. Resveratrol: A potential therapeutic natural polyphenol for neurodegenerative diseases associated with mitochondrial dysfunction. Front Pharmacol 2022; 13:922232. [PMID: 36188541 PMCID: PMC9523540 DOI: 10.3389/fphar.2022.922232] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/25/2022] [Indexed: 12/06/2022] Open
Abstract
Most polyphenols can cross blood-brain barrier, therefore, they are widely utilized in the treatment of various neurodegenerative diseases (ND). Resveratrol, a natural polyphenol contained in blueberry, grapes, mulberry, etc., is well documented to exhibit potent neuroprotective activity against different ND by mitochondria modulation approach. Mitochondrial function impairment is the most common etiology and pathological process in various neurodegenerative disorders, viz. Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Nowadays these ND associated with mitochondrial dysfunction have become a major threat to public health as well as health care systems in terms of financial burden. Currently available therapies for ND are limited to symptomatic cures and have inevitable toxic effects. Therefore, there is a strict requirement for a safe and highly effective drug treatment developed from natural compounds. The current review provides updated information about the potential of resveratrol to target mitochondria in the treatment of ND.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Pankajkumar Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - HariOm Singh
- Department of Molecular Biology, ICMR-National Aids Research Institute, Pune, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
16
|
Tan Y, Zhang X, Cheang WS. Isoflavones daidzin and daidzein inhibit lipopolysaccharide-induced inflammation in RAW264.7 macrophages. Chin Med 2022; 17:95. [PMID: 35974408 PMCID: PMC9380348 DOI: 10.1186/s13020-022-00653-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background Inflammation contributes to various diseases and soybeans and legumes are shown to reduce inflammation. However, the bioactive ingredients involved and mechanisms are not completely known. We hypothesized that soy isoflavones daidzin and daidzein exhibit anti-inflammatory effect in lipopolysaccharides (LPS)-stimulated RAW264.7 macrophage cell model and that activation mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways may mediate the effect. Methods Cell viability and nitric oxide (NO) level were determined by 3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Griess reagent respectively. ELISA kits and Western blotting respectively assessed the generations of pro-inflammatory cytokines and protein expressions of signaling molecules. p65 nuclear translocation was determined by immunofluorescence assay. Results The in vitro results showed that both isoflavones did not affect cell viability at the concentrations being tested and significantly reduced levels of NO, pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), and inflammatory indicators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW264.7 cells. Daidzin and daidzein partially suppressed MAPK signaling pathways, reducing the phosphorylation of p38 and ERK; whilst phosphorylation of JNK was mildly but not significantly decreased. For the involvement of NF-κB signaling pathways, daidzin only reduced the phosphorylation of p65 whereas daidzein effectively inhibited the phosphorylation of IKKα/β, IκBα and p65. Daidzin and daidzein inhibited p65 nuclear translocation, comparable with dexamethasone (positive control). Conclusion This study supports the anti-inflammatory effects of isoflavones daidzin and daidzein, which were at least partially mediated through inactivation of MAPK and/or NF-κB signaling pathways in macrophages.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Xutao Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
17
|
Zhou C, Tan Y, Xu B, Wang Y, Cheang WS. 3,4′,5-Trimethoxy-trans-stilbene Alleviates Endothelial Dysfunction in Diabetic and Obese Mice via Activation of the AMPK/SIRT1/eNOS Pathway. Antioxidants (Basel) 2022; 11:antiox11071286. [PMID: 35883777 PMCID: PMC9311592 DOI: 10.3390/antiox11071286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022] Open
Abstract
3,4′,5-trimethoxy-trans-stilbene (TMS) is a methoxylated derivative of resveratrol. Previous studies showed the vaso-protective effects of resveratrol; nevertheless, research on this derivative is scarce. The current study aimed to explore whether TMS can alleviate endothelial dysfunction in diabetic and obese mice, along with the underlying mechanisms. Thoracic aortas isolated from male C57BL/6J mice and primary cultures of rat aortic endothelial cells were treated with high glucose with or without TMS. High glucose exposure impaired acetylcholine-induced endothelium-dependent relaxations, down-regulated NO bioavailability and the AMP-activated protein kinase (AMPK)/Sirtuin 1 (SIRT1)/endothelial nitric oxide synthase (eNOS) pathway, increased endoplasmic reticulum (ER) stress and oxidative stress, which were reversed by TMS treatment. Moreover, the protective effects of TMS were abolished by Compound C (AMPK inhibitor), and EX527 (SIRT1 inhibitor). The mice were fed with high-fat diet (60% kcal% fat) for 14 weeks to establish a diabetic and obese model, and were orally administered TMS (10 mg/kg/day) in the last 4 weeks. Chronic TMS treatment alleviated endothelial dysfunction via enhancing the AMPK/SIRT1/eNOS pathway and attenuated oxidative stress and ER stress in aortas of diet-induced obese mice. In summary, our study reveals the potent vaso-protective effect of TMS and its therapeutic potential against endothelial dysfunction in metabolic disorders.
Collapse
Affiliation(s)
- Chunxiu Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; (C.Z.); (Y.T.); (Y.W.)
| | - Yi Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; (C.Z.); (Y.T.); (Y.W.)
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China;
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; (C.Z.); (Y.T.); (Y.W.)
| | - Wai-San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; (C.Z.); (Y.T.); (Y.W.)
- Correspondence: ; Tel.: +86-853-8822-4914
| |
Collapse
|
18
|
Lee Y, Hyun CG. Anti-Inflammatory Effects of Psoralen Derivatives on RAW264.7 Cells via Regulation of the NF-κB and MAPK Signaling Pathways. Int J Mol Sci 2022; 23:5813. [PMID: 35628627 PMCID: PMC9146895 DOI: 10.3390/ijms23105813] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/22/2022] Open
Abstract
Using repositioning to find new indications for existing functional substances has become a global target of research. The objective of this study is to investigate the anti-inflammatory potential of psoralen derivatives (5-hydroxypsoralen, 5-methoxypsoralen, 8-hydroxypsoralen, and 8-methoxypsoralen) in macrophages cells. The results indicated that most psoralen derivatives exhibited significantly inhibited prostaglandin E2 (PGE2) production, particularly for 8-hydroxypsoralen (xanthotoxol) in lipopolysaccharide (LPS)-stimulated macrophage RAW 264.7 cells. In addition, xanthotoxol treatment decreased the PGE2, IL-6, and IL-1β production caused by LPS stimulation in a concentration-dependent manner. Moreover, Western blot results showed that the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which activated with LPS treatment, were decreased by xanthotoxol treatment. Mechanistic studies revealed that xanthotoxol also suppressed LPS-stimulated phosphorylation of the inhibitor of κBα (IκBα), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) in RAW 264.7 cells. The Western blot assay results show that xanthotoxol suppresses LPS-induced p65 translocation from cytosol to the nucleus in RAW 264.7 cells. Moreover, we tested the potential application of xanthotoxol as a cosmetic material by performing human skin patch tests. In these tests, xanthotoxol did not induce any adverse reactions at a 100 μΜ concentration. These results demonstrate that xanthotoxol is a potential therapeutic agent for topical application that inhibits inflammation via the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea;
| |
Collapse
|
19
|
Tan Y, Miao L, Xiao J, Cheang WS. 3,3′,4,5′-Tetramethoxy-trans-stilbene Improves Insulin Resistance by Activating the IRS/PI3K/Akt Pathway and Inhibiting Oxidative Stress. Curr Issues Mol Biol 2022; 44:2175-2185. [PMID: 35678676 PMCID: PMC9164067 DOI: 10.3390/cimb44050147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
The potential anti-diabetic effect of resveratrol derivative, 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and its underlying mechanism in high glucose (HG) and dexamethasone (DXMS)-stimulated insulin-resistant HepG2 cells (IR-HepG2) were investigated. 3,3′,4,5′-TMS did not reduce the cell viability of IR-HepG2 cells at the concentrations of 0.5–10 µM. 3,3′,4,5′-TMS increased the potential of glucose consumption and glycogen synthesis in a concentration-dependent manner in IR-HepG2 cells. 3,3′,4,5′-TMS ameliorated insulin resistance by enhancing the phosphorylation of glycogen synthase kinase 3 beta (GSK3β), inhibiting phosphorylation of insulin receptor substrate-1 (IRS-1), and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Furthermore, 3,3′,4,5′-TMS significantly suppressed levels of reactive oxygen species (ROS) with up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. To conclude, the beneficial effect of 3,3′,4,5′-TMS against insulin resistance to increase glucose consumption and glycogen synthesis was mediated through activation of IRS/PI3K/Akt signaling pathways in the IR-HepG2 cells, accomplished with anti-oxidative activity through up-regulation of Nrf2.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; (Y.T.); (L.M.)
| | - Lingchao Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; (Y.T.); (L.M.)
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain
- Correspondence: (J.X.); (W.S.C.); Tel.: +853-8822-4914 (W.S.C.)
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; (Y.T.); (L.M.)
- Correspondence: (J.X.); (W.S.C.); Tel.: +853-8822-4914 (W.S.C.)
| |
Collapse
|
20
|
Zhou Y, Khan H, Hoi MPM, Cheang WS. Piceatannol Protects Brain Endothelial Cell Line (bEnd.3) against Lipopolysaccharide-Induced Inflammation and Oxidative Stress. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041206. [PMID: 35208996 PMCID: PMC8876500 DOI: 10.3390/molecules27041206] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
Dysfunction of the blood-brain barrier (BBB) is involved in the pathogenesis of many cerebral diseases. Oxidative stress and inflammation are contributing factors for BBB injury. Piceatannol, a natural ingredient found in various plants, such as grapes, white tea, and passion fruit, plays an important role in antioxidant and anti-inflammatory responses. In this study, we examined the protective effects of piceatannol on lipopolysaccharide (LPS) insult in mouse brain endothelial cell line (bEnd.3) cells and the underlying mechanisms. The results showed that piceatannol mitigated the upregulated expression of adhesion molecules (ICAM-1 and VCAM-1) and iNOS in LPS-treated bEnd.3 cells. Moreover, piceatannol prevented the generation of reactive oxygen species in bEnd.3 cells stimulated with LPS. Mechanism investigations suggested that piceatannol inhibited NF-κB and MAPK activation. Taken together, these observations suggest that piceatannol reduces inflammation and oxidative stress through inactivating the NF-κB and MAPK signaling pathways on cerebral endothelial cells in vitro.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (Y.Z.); (M.P.M.H.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (Y.Z.); (M.P.M.H.)
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (Y.Z.); (M.P.M.H.)
- Correspondence: ; Tel.: +853-8822-4914
| |
Collapse
|
21
|
Zhang HJ, Liao HY, Bai DY, Wang ZQ, Xie XW. MAPK /ERK signaling pathway: A potential target for the treatment of intervertebral disc degeneration. Biomed Pharmacother 2021; 143:112170. [PMID: 34536759 DOI: 10.1016/j.biopha.2021.112170] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a chronic skeletal muscle degenerative disease, which is considered the main cause of low back pain. It seriously affects the quality of life of patients and consequently brings a heavy economic burden to their families and the society. Although IDD is considered a natural process in degenerative lesions, it is mainly caused by aging, trauma, genetic susceptibility and other factors. It is closely related to changes in the tissue structure and function, including the progressive destruction of extracellular matrix, cell aging, cell death of the intervertebral disc (IVD), inflammation, and impairment of tissue biomechanical function. Currently, the treatment of IDD is aimed at alleviating symptoms rather than at targeting pathological changes in the IVD. Furthermore, the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway is closely related to various pathological processes in IDD, and the activation of the MAPK/ERK pathway promotes the degradation of the IVD extracellular matrix, cell aging, apoptosis, and inflammatory responses. It also induces autophagy and oxidative stress that accelerate the IVD process. In our current review, we summarize the latest developments in the negative regulation of IDD after activation of the MAPK/ERK signaling pathway and emphasize on its influence on IDD. Targeting this pathway may become an attractive treatment strategy for IDD in the near future.
Collapse
Affiliation(s)
- Hai-Jun Zhang
- Second Provincial People's Hospital of Gansu, 1 Hezheng West Street, Lanzhou 730000, PR China; Affiliated Hospital of Northwest Minzu Univsity, Lanzhou 730000, PR China
| | - Hai-Yang Liao
- Fist Affiliated Hospital of Ganan Medical University, 23 Qingnian Road, Ganzhou 342800, PR China
| | - Deng-Yan Bai
- Second Provincial People's Hospital of Gansu, 1 Hezheng West Street, Lanzhou 730000, PR China; Affiliated Hospital of Northwest Minzu Univsity, Lanzhou 730000, PR China
| | - Zhi-Qiang Wang
- Fist Affiliated Hospital of Ganan Medical University, 23 Qingnian Road, Ganzhou 342800, PR China
| | - Xing-Wen Xie
- Second Provincial People's Hospital of Gansu, 1 Hezheng West Street, Lanzhou 730000, PR China; Affiliated Hospital of Northwest Minzu Univsity, Lanzhou 730000, PR China.
| |
Collapse
|