1
|
Zhang Y, Gu X, Shi C, Xiong H, Xiao D, Deng Z, Wang L, Yang X, Wei T, Liang P, Hao H. Clinical and biochemical characteristics of patients with ornithine transcarbamylase deficiency and in silico analysis of OTC gene. Orphanet J Rare Dis 2025; 20:131. [PMID: 40102887 PMCID: PMC11916849 DOI: 10.1186/s13023-025-03624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND This study seeks to elucidate the clinical and biochemical features of Ornithine transcarbamylase deficiency (OTCD), a pleomorphic congenital hyperammonemia disorder with a non-specific clinical phenotype. Additionally, the research aims to analyze the mutation spectrum of the OTC gene and its potential association with phenotype, as well as to perform an in silico analysis of novel OTC variants to elucidate their structure-function relationship. METHODS In this study, we conducted a retrospective analysis of the clinical and biochemical features of 12 patients with OTCD and examined their metabolite profiles. Additionally, we reviewed existing literature to explore the range of mutations in the OTC gene and their possible associations with phenotypic outcomes. Furthermore, we employed the high ambiguity-driven protein-protein docking (HADDOCK) algorithm and protein-ligand interaction profiler (PLIP) to predict the pathogenicity of these mutations and elucidate the underlying mechanisms of pathogenesis in novel variants of the OTC gene. RESULTS Nine cases, all of which were male, presented with early onset, while two cases, all of which were female, exhibited late onset. Additionally, one male case was asymptomatic. The ages of the patients at the time of diagnosis ranged from 1 day to 12 years. Peak plasma ammonia levels were found to be higher in patients with early onset compared to those with late onset. Molecular analyses identified a total of 12 different mutations, including two novel mutations (V323G and R320P). In silico analysis indicated a potential difference in affinity between wild-type and mutant OTCase, with V323G and R320P mutations leading to a decreased binding ability of OTCase to the substrate, potentially disrupting its function. CONCLUSION This study broadened the genetic variation spectrum of OTCD and provided substantial evidence for genetic counselling to affected families. Additionally, we elucidated variant data of OTC in Chinese patients through comprehensive literature review. Given the ongoing uncertainty surrounding the genotype-phenotype correlation of OTCD, the results of our in silico analysis can contribute to a deeper understanding of this complex, rare, and severe genetic disorder.
Collapse
Affiliation(s)
- YinChun Zhang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat-sen University, Guangzhou, China
| | - Xia Gu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat-sen University, Guangzhou, China
| | - Congcong Shi
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat-sen University, Guangzhou, China
| | - Hui Xiong
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat-sen University, Guangzhou, China
| | - DongFan Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat-sen University, Guangzhou, China
| | - ZhiRong Deng
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Wang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - XiMei Yang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Wei
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - PuPing Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat-sen University, Guangzhou, Guangdong, 510275, China.
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, China.
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Yuan G, Liu Z, Chen Z, Zhang X, Zhang W, Chen D. Clinical characteristics and molecular genetic analysis of ten cases of ornithine carbamoyltransferase deficiency in southeastern China. Ital J Pediatr 2024; 50:171. [PMID: 39256843 PMCID: PMC11389275 DOI: 10.1186/s13052-024-01740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND This study aimed to investigate the clinical and molecular genetic characteristics of ten children with ornithine carbamoyltransferase deficiency (OTCD) in southeastern China, as well as the correlation between the genotype and phenotype of OTCD. METHODS A retrospective analysis was performed on the clinical manifestations, laboratory testing, and genetic test findings of ten children with OTCD admitted between August 2015 and October 2021 at Quanzhou Maternity and Children's Hospital of Fujian Province in China. RESULTS Five boys presented with early-onset symptoms, including poor appetite, drowsiness, groaning, seizures, and liver failure. In contrast, five patients (one boy and four girls) had late-onset gastrointestinal symptoms as the primary clinical manifestation, all presenting with hepatic impairment, and four with hepatic failure.Nine distinct variants of the OTC gene were identified, including two novel mutations: c.1033del(p.Y345Tfs*50) and c.167T > A(p.M56K). Of seven patients who died, five had early-onset disease despite active treatment. Three patients survived, and two of them underwent liver transplantation. CONCLUSIONS The clinical manifestations of OTCD lack specificity. However, elevated blood ammonia levels serve as a crucial diagnostic clue for OTCD. Genetic testing aids in more accurate diagnosis and prognosis assessment by clinicians. In addition, we identified two novel pathogenic variants and expand the mutational spectrum of the gene OTC, which may contribute to a better understanding of the clinical and genetic characteristics of OTCD patients.
Collapse
Affiliation(s)
- Gaopin Yuan
- The Graduate School of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Zhiyong Liu
- The Graduate School of Fujian Medical University, Fuzhou, China
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Zhixu Chen
- Department of Intensive Care Medicine, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Xiaohong Zhang
- Department of Endocrinology, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Weifeng Zhang
- The Graduate School of Fujian Medical University, Fuzhou, China
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Dongmei Chen
- The Graduate School of Fujian Medical University, Fuzhou, China.
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, Quanzhou, China.
| |
Collapse
|
3
|
Tang C, Li L, Chen T, Li Y, Zhu B, Zhang Y, Yin Y, Liu X, Huang C, Miao J, Zhu B, Wang X, Zou H, Han L, Feng J, Huang Y. Newborn Screening for Inborn Errors of Metabolism by Next-Generation Sequencing Combined with Tandem Mass Spectrometry. Int J Neonatal Screen 2024; 10:28. [PMID: 38651393 PMCID: PMC11036227 DOI: 10.3390/ijns10020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
The aim of this study was to observe the outcomes of newborn screening (NBS) in a certain population by using next-generation sequencing (NGS) as a first-tier screening test combined with tandem mass spectrometry (MS/MS). We performed a multicenter study of 29,601 newborns from eight screening centers with NBS via NGS combined with MS/MS. A custom-designed panel targeting the coding region of the 142 genes of 128 inborn errors of metabolism (IEMs) was applied as a first-tier screening test, and expanded NBS using MS/MS was executed simultaneously. In total, 52 genes associated with the 38 IEMs screened by MS/MS were analyzed. The NBS performance of these two methods was analyzed and compared respectively. A total of 23 IEMs were diagnosed via NGS combined with MS/MS. The incidence of IEMs was approximately 1 in 1287. Within separate statistical analyses, the positive predictive value (PPV) for MS/MS was 5.29%, and the sensitivity was 91.3%. However, for genetic screening alone, the PPV for NGS was 70.83%, with 73.91% sensitivity. The three most common IEMs were methylmalonic academia (MMA), primary carnitine deficiency (PCD) and phenylketonuria (PKU). The five genes with the most common carrier frequencies were PAH (1:42), PRODH (1:51), MMACHC (1:52), SLC25A13 (1:55) and SLC22A5 (1:63). Our study showed that NBS combined with NGS and MS/MS improves the performance of screening methods, optimizes the process, and provides accurate diagnoses.
Collapse
Affiliation(s)
- Chengfang Tang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510180, China;
| | - Lixin Li
- Department of Genetic, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang 050090, China;
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China;
| | - Yulin Li
- Neonatal Disease Screening Center, Jinan Maternity and Child Health Hospital Affiliated to Shandong First Medical University, Jinan 250001, China; (Y.L.); (H.Z.)
| | - Bo Zhu
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot 750306, China; (B.Z.); (X.W.)
| | - Yinhong Zhang
- Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People’s Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China; (Y.Z.); (B.Z.)
| | - Yifan Yin
- Department of Pediatrics, Chongqing Health Center for Women and Children &Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China; (Y.Y.); (J.M.)
| | - Xiulian Liu
- Neonatal Disease Screening Center, Hainan Women and Children’s Medical Center, Haikou 570206, China; (X.L.); (C.H.)
| | - Cidan Huang
- Neonatal Disease Screening Center, Hainan Women and Children’s Medical Center, Haikou 570206, China; (X.L.); (C.H.)
| | - Jingkun Miao
- Department of Pediatrics, Chongqing Health Center for Women and Children &Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China; (Y.Y.); (J.M.)
| | - Baosheng Zhu
- Department of Medical Genetics, NHC Key Laboratory of Preconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, Yunnan Provincial Clinical Research Center for Birth Defects and Rare Diseases, The First People’s Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China; (Y.Z.); (B.Z.)
| | - Xiaohua Wang
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot 750306, China; (B.Z.); (X.W.)
| | - Hui Zou
- Neonatal Disease Screening Center, Jinan Maternity and Child Health Hospital Affiliated to Shandong First Medical University, Jinan 250001, China; (Y.L.); (H.Z.)
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China;
| | - Jizhen Feng
- Department of Genetic, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang 050090, China;
| | - Yonglan Huang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510180, China;
| |
Collapse
|
4
|
Kido J, Sugawara K, Sawada T, Matsumoto S, Nakamura K. Pathogenic variants of ornithine transcarbamylase deficiency: Nation-wide study in Japan and literature review. Front Genet 2022; 13:952467. [PMID: 36303552 PMCID: PMC9593096 DOI: 10.3389/fgene.2022.952467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Ornithine transcarbamylase deficiency (OTCD) is an X-linked disorder. Several male patients with OTCD suffer from severe hyperammonemic crisis in the neonatal period, whereas others develop late-onset manifestations, including hyperammonemic coma. Females with heterozygous pathogenic variants in the OTC gene may develop a variety of clinical manifestations, ranging from asymptomatic conditions to severe hyperammonemic attacks, owing to skewed lyonization. We reported the variants of CPS1, ASS, ASL and OTC detected in the patients with urea cycle disorders through a nation-wide survey in Japan. In this study, we updated the variant data of OTC in Japanese patients and acquired information regarding genetic variants of OTC from patients with OTCD through an extensive literature review. The 523 variants included 386 substitution (330 missense, 53 nonsense, and 3 silent), eight deletion, two duplication, one deletion-insertion, 55 frame shift, two extension, and 69 no category (1 regulatory and 68 splice site error) mutations. We observed a genotype-phenotype relation between the onset time (neonatal onset or late onset), the severity, and genetic mutation in male OTCD patients because the level of deactivation of OTC significantly depends on the pathogenic OTC variants. In conclusion, genetic information about OTC may help to predict long-term outcomes and determine specific treatment strategies, such as liver transplantation, in patients with OTCD.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaaki Sawada
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Martín-Hernández E, Quijada-Fraile P, Correcher P, Meavilla S, Sánchez-Pintos P, de las Heras Montero J, Blasco-Alonso J, Dougherty L, Marquez A, Peña-Quintana L, Cañedo E, García-Jimenez MC, Moreno Lozano PJ, Murray Hurtado M, Camprodon Gómez M, Barrio-Carreras D, de los Santos M, del Toro M, Couce ML, Vitoria Miñana I, Morales Conejo M, Bellusci M. Switching to Glycerol Phenylbutyrate in 48 Patients with Urea Cycle Disorders: Clinical Experience in Spain. J Clin Med 2022; 11:jcm11175045. [PMID: 36078975 PMCID: PMC9457033 DOI: 10.3390/jcm11175045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background and objectives: Glycerol phenylbutyrate (GPB) has demonstrated safety and efficacy in patients with urea cycle disorders (UCDs) by means of its clinical trial program, but there are limited data in clinical practice. In order to analyze the efficacy and safety of GPB in clinical practice, here we present a national Spanish experience after direct switching from another nitrogen scavenger to GPB. Methods: This observational, retrospective, multicenter study was performed in 48 UCD patients (age 11.7 ± 8.2 years) switching to GPB in 13 centers from nine Spanish regions. Clinical, biochemical, and nutritional data were collected at three different times: prior to GPB introduction, at first follow-up assessment, and after one year of GPB treatment. Number of related adverse effects and hyperammonemic crisis 12 months before and after GPB introduction were recorded. Results: GPB was administered at a 247.8 ± 102.1 mg/kg/day dose, compared to 262.6 ± 126.1 mg/kg/day of previous scavenger (46/48 Na-phenylbutyrate). At first follow-up (79 ± 59 days), a statistically significant reduction in ammonia (from 40.2 ± 17.3 to 32.6 ± 13.9 μmol/L, p < 0.001) and glutamine levels (from 791.4 ± 289.8 to 648.6 ± 247.41 μmol/L, p < 0.001) was observed. After one year of GPB treatment (411 ± 92 days), we observed an improved metabolic control (maintenance of ammonia and glutamine reduction, with improved branched chain amino acids profile), and a reduction in hyperammonemic crisis rate (from 0.3 ± 0.7 to less than 0.1 ± 0.3 crisis/patients/year, p = 0.02) and related adverse effects (RAE, from 0.5 to less than 0.1 RAEs/patients/year p < 0.001). Conclusions: This study demonstrates the safety of direct switching from other nitrogen scavengers to GPB in clinical practice, which improves efficacy, metabolic control, and RAE compared to previous treatments.
Collapse
Affiliation(s)
- Elena Martín-Hernández
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12, CIBERER, 28041 Madrid, Spain
- Correspondence:
| | - Pilar Quijada-Fraile
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12, CIBERER, 28041 Madrid, Spain
| | - Patricia Correcher
- Centro de Referencia Nacional de Enfermedades Metabólicas (CSUR), Hospital La Fé de Valencia, 46026 Valencia, Spain
| | - Silvia Meavilla
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) de Enfermedades Metabólicas, Hospital San Joan de Deu Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Paula Sánchez-Pintos
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) de Enfermedades Metabólicas, Hospital Clínico Universitario de Santiago de Compostela, IDIS, CIBERER, 15706 Santiago de Compostela, Spain
| | - Javier de las Heras Montero
- Division of Pediatric Metabolism, CIBERER, MetabERN, Cruces University Hospital, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Javier Blasco-Alonso
- Sección de Gastroenterología y Nutrición Infantil, Unidad de Enfermedades Metabólicas Hereditarias, Grupo IBIMA Multidisciplinar Pediátrico, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Lucy Dougherty
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) de Enfermedades Metabólicas, Hospital Vall D’Hebrón, 08035 Barcelona, Spain
| | - Ana Marquez
- Unidad de Gastroenterología y Enfermedades Metabólicas, Hospital de Badajoz, 06002 Badajoz, Spain
| | - Luis Peña-Quintana
- Unidad de Gastroenterología y Nutrición Pediátrica, Complejo Hospitalario Universitario Insular Materno-Infantil de Las Palmas, CIBEROBN, ISCIII, ACIP, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Elvira Cañedo
- Unidad de Gastroenterología y Nutrición, Hospital del Niño Jesús, 28009 Madrid, Spain
| | | | - Pedro Juan Moreno Lozano
- Unidad de Enfermedades Musculares y Metabólicas Hereditarias, Departamento de Medicina Interna, Hospital Clinic, 08036 Barcelona, Spain
| | - Mercedes Murray Hurtado
- Pediatría, Sección de Nutrición y Errores Innatos del Metabolismo, Complejo Hospitalario Universitario de Canarias, 38320 San Cristóbal de La Laguna, Spain
| | - María Camprodon Gómez
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) de Enfermedades Metabólicas, Hospital Vall D’Hebrón, 08035 Barcelona, Spain
| | - Delia Barrio-Carreras
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12, CIBERER, 28041 Madrid, Spain
| | - Mariela de los Santos
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) de Enfermedades Metabólicas, Hospital San Joan de Deu Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Mireia del Toro
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) de Enfermedades Metabólicas, Hospital Vall D’Hebrón, 08035 Barcelona, Spain
| | - María L. Couce
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) de Enfermedades Metabólicas, Hospital Clínico Universitario de Santiago de Compostela, IDIS, CIBERER, 15706 Santiago de Compostela, Spain
| | - Isidro Vitoria Miñana
- Centro de Referencia Nacional de Enfermedades Metabólicas (CSUR), Hospital La Fé de Valencia, 46026 Valencia, Spain
| | - Montserrat Morales Conejo
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12, CIBERER, 28041 Madrid, Spain
| | - Marcello Bellusci
- Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12, CIBERER, 28041 Madrid, Spain
| |
Collapse
|
6
|
Recommendations for the Diagnosis and Therapeutic Management of Hyperammonaemia in Paediatric and Adult Patients. Nutrients 2022; 14:nu14132755. [PMID: 35807935 PMCID: PMC9269083 DOI: 10.3390/nu14132755] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/20/2022] Open
Abstract
Hyperammonaemia is a metabolic derangement that may cause severe neurological damage and even death due to cerebral oedema, further complicating the prognosis of its triggering disease. In small children it is a rare condition usually associated to inborn errors of the metabolism. As age rises, and especially in adults, it may be precipitated by heterogeneous causes such as liver disease, drugs, urinary infections, shock, or dehydration. In older patients, it is often overlooked, or its danger minimized. This protocol was drafted to provide an outline of the clinical measures required to normalise ammonia levels in patients of all ages, aiming to assist clinicians with no previous experience in its treatment. It is an updated protocol developed by a panel of experts after a review of recent publications. We point out the importance of frequent monitoring to assess the response to treatment, the nutritional measures that ensure not only protein restriction but adequate caloric intake and the need to avoid delays in the use of specific pharmacological therapies and, especially, extrarenal clearance measures. In this regard, we propose initiating haemodialysis when ammonia levels are >200−350 µmol/L in children up to 18 months of age and >150−200 µmol/L after that age.
Collapse
|
7
|
Niwinski P, Remberk B, Rybakowski F, Rokicki D. Psychiatric Symptoms as the First or Solitary Manifestation of Somatic Illnesses: Hyperammonaemia Type II. Neuropsychobiology 2021; 80:271-275. [PMID: 32688360 DOI: 10.1159/000508679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/05/2020] [Indexed: 11/19/2022]
Abstract
AIM We describe the difficulties encountered in making a diagnosis where a somatic condition manifests itself alongside psychiatric symptoms associated with possible psychiatric comorbidities. METHODS A case study is presented of a 15-year-old girl who was eventually diagnosed with ornithine transcarbamylase (OTC) deficiency (hyperammonaemia type II), following an initial diagnosis of pervasive developmental disorder, selective mutism, and anorexia nervosa. RESULTS The OTC disease is not fully expressed in females and its prevalence is lower than in males. Around 17-20% of female patients found with a defective OTC gene on an X chromosome can suffer from OTC deficiency that may result in elevated levels of ammonia in the blood; this occurs when one of the X chromosomes become inactivated. Patients typically present with nausea, migraines, and a history of dietary protein avoidance. In more severe cases, ataxia, confusion, hallucinations, and cerebral oedema can occur. The OTC deficiency can thus remain undiagnosed in women for many years. CONCLUSION Somatic comorbidity in psychiatric inpatients is commonly found; however, such disorders are rarely diagnosed or even treated adequately.
Collapse
Affiliation(s)
- Piotr Niwinski
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Neurology, Warsaw, Poland,
| | - Barbara Remberk
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Filip Rybakowski
- Adult Psychiatry Department, Poznan University of Medical Science, Poznan, Poland
| | - Dariusz Rokicki
- Department of Paediatrics Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
8
|
Toquet S, Spodenkiewicz M, Douillard C, Maillot F, Arnoux JB, Damaj L, Odent S, Moreau C, Redonnet-Vernhet I, Mesli S, Servais A, Noel E, Charriere S, Rigalleau V, Lavigne C, Kaphan E, Roubertie A, Besson G, Bigot A, Servettaz A, Mochel F, Garnotel R. Adult-onset diagnosis of urea cycle disorders: Results of a French cohort of 71 patients. J Inherit Metab Dis 2021; 44:1199-1214. [PMID: 34014557 DOI: 10.1002/jimd.12403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Urea cycle disorders (UCD) are rare diseases that usually affect neonates or young children. During decompensations, hyperammonemia is neurotoxic, leading to severe symptoms and even coma and death if not treated rapidly. The aim was to describe a cohort of patients with adult onset of UCDs in a multicentric, retrospective and descriptive study of French adult patients with a diagnosis after 16 years of age of UCDs due to a deficiency in one of the 6 enzymes (arginase, ASL, ASS, CPS1, NAGS, OTC) or the two transporters (ORNT1 or citrin). Seventy-one patients were included (68% female, 32% male). The diagnosis was made in the context of (a) a metabolic decompensation (42%), (b) family history (55%), or (c) chronic symptoms (3%). The median age at diagnosis was 33 years (range 16-86). Eighty-nine percent of patients were diagnosed with OTC deficiency, 7% CPS1 deficiency, 3% HHH syndrome and 1% argininosuccinic aciduria. For those diagnosed during decompensations (including 23 OTC cases, mostly female), 89% required an admission in intensive care units. Seven deaths were attributed to UCD-6 decompensations and 1 epilepsy secondary to inaugural decompensation. This is the largest cohort of UCDs diagnosed in adulthood, which confirms the triad of neurological, gastrointestinal and psychiatric symptoms during hyperammonemic decompensations. We stress that females with OTC deficiency can be symptomatic. With 10% of deaths in this cohort, UCDs in adults remain a life-threatening condition. Physicians working in adult care must be aware of late-onset presentations given the implications for patients and their families.
Collapse
Affiliation(s)
- Ségolène Toquet
- Service de Médecine Interne, Hôpital Robert Debré, CHU Reims, France
| | | | - Claire Douillard
- Service d'Endocrinologie et Métabolismes, Hôpital Claude Huriez, Centre de Référence des Maladies Héréditaires du métabolisme, CHU Lille, France
| | - François Maillot
- Service de Médecine Interne, Hôpital Bretonneau, CHRU de Tours, France
| | - Jean-Baptiste Arnoux
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Necker-Enfants Malades, CHU Paris, France
| | - Lena Damaj
- Service de Pédiatrie, CHU Hôpital Sud, Rennes, France
| | - Sylvie Odent
- Service de Génétique Clinique, CHU Hôpital Sud, Rennes, France
| | - Caroline Moreau
- Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes, France
| | | | - Samir Mesli
- Laboratoire de Biochimie, Hôpital Pellegrin, CHU Bordeaux, France
| | - Aude Servais
- Service de Néphrologie adulte, Hôpital Necker-Enfants Malades, CHU Paris, France
| | - Esther Noel
- Service de Médecine Interne, Hôpital Universitaire de Strasbourg, CHRU Strasbourg, France
| | - Sybill Charriere
- Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Centre de Référence des Maladies Héréditaires du Métabolisme, Bron, France
| | | | | | - Elsa Kaphan
- Pôle de Neurosciences Cliniques, CHU Timone, AP-HM, Marseille, France
| | - Agathe Roubertie
- Département de neuropédiatrie, Hôpital Gui de Chauliac, CHU Montpellier, France
| | | | - Adrien Bigot
- Service de Médecine Interne, Hôpital Bretonneau, CHRU de Tours, France
| | - Amélie Servettaz
- Service de Médecine Interne, Hôpital Robert Debré, CHU Reims, France
| | - Fanny Mochel
- Département de génétique, Hôpital Pitié-Salpêtrière, CHU Paris, France
| | - Roselyne Garnotel
- Laboratoire de Biochimie-Pharmacologie-Toxicologie, CHU Reims, France
| |
Collapse
|
9
|
Kido J, Matsumoto S, Häberle J, Nakajima Y, Wada Y, Mochizuki N, Murayama K, Lee T, Mochizuki H, Watanabe Y, Horikawa R, Kasahara M, Nakamura K. Long-term outcome of urea cycle disorders: Report from a nationwide study in Japan. J Inherit Metab Dis 2021; 44:826-837. [PMID: 33840128 DOI: 10.1002/jimd.12384] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Urea cycle disorders (UCDs) are inherited metabolic disorders with impaired nitrogen detoxification caused by defects in urea cycle enzymes. They often manifest with hyperammonemic attacks resulting in significant morbidity or death. We performed a nationwide questionnaire-based study between January 2000 and March 2018 to document all UCDs in Japan, including diagnoses, treatments, and outcomes. A total of 229 patients with UCDs were enrolled in this study: 73 males and 53 females with ornithine transcarbamylase deficiency (OTCD), 33 patients with carbamoylphosphate synthetase 1 deficiency, 48 with argininosuccinate synthetase deficiency, 14 with argininosuccinate lyase deficiency, and 8 with arginase deficiency. Survival rates at 20 years of age of male and female patients with late-onset OTCD were 100% and 97.7%, respectively. Blood ammonia levels and time of onset had a significant impact on the neurodevelopmental outcome (P < .001 and P = .028, respectively). Hemodialysis and liver transplantation did not prevent poor neurodevelopmental outcomes. While treatment including medication, hemodialysis, and liver transplantation may aid in decreasing blood ammonia and/or preventing severe hyperammonemia, a blood ammonia level ≥ 360 μmol/L was found to be a significant indicator for a poor neurodevelopmental outcome. In conclusion, although current therapy for UCDs has advanced and helped saving lives, patients with blood ammonia levels ≥ 360 μmol/L at onset often have impaired neurodevelopmental outcomes. Novel neuroprotective measures should therefore be developed to achieve better neurodevelopmental outcomes in these patients.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Yoko Nakajima
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Narutaka Mochizuki
- Department of Neonatal Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Kei Murayama
- Department of Metabolism, Center for Medical Genetics, Chiba Children's Hospital, Chiba, Japan
| | - Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroshi Mochizuki
- Division of Endocrinology and Metabolism, Saitama Children's Medical Center, Saitama, Japan
| | - Yoriko Watanabe
- Research Institute of Medical Mass Spectrometry, Kurume University School of Medicine, Kurume, Japan
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Kido J, Matsumoto S, Ito T, Hirose S, Fukui K, Kojima-Ishii K, Mushimoto Y, Yoshida S, Ishige M, Sakai N, Nakamura K. Physical, cognitive, and social status of patients with urea cycle disorders in Japan. Mol Genet Metab Rep 2021; 27:100724. [PMID: 33614409 PMCID: PMC7876628 DOI: 10.1016/j.ymgmr.2021.100724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Urea cycle disorders (UCDs) are inherited metabolic diseases that lead to hyperammonemia. Severe hyperammonemia adversely affects the brain. Therefore, we conducted a nationwide study between January 2000 and March 2018 to understand the present status of UCD patients in Japan regarding diagnosis, treatments, and outcomes. A total of 229 patients with UCDs (126 patients: ornithine transcarbamylase deficiency [OTCD]; 33: carbamoyl phosphate synthetase 1 deficiency [CPS1D]; 48: argininosuccinate synthetase deficiency [ASSD]; 14: argininosuccinate lyase deficiency [ASLD]; and 8: arginase 1 deficiency [ARG1D]) were enrolled in the present study. Although growth impairment is common in patients with UCDs, we discovered that Japanese patients with UCDs were only slightly shorter than the mean height of the general adult population in Japan. Patients with neonatal-onset UCDs are more likely to experience difficulty finding employment and a spouse; however, some patients with late-onset UCDs were employed and married. Additionally, intellectual and developmental disabilities, such as attention deficit hyperactivity disorder (ADHD) and autism, hinder patients with UCDs from achieving a healthy social life. Moreover, we identified that it is vital for patients with UCDs presenting with mild to moderate intellectual disabilities to receive social support. Therefore, we believe the more robust social support system for patients with UCDs may enable them to actively participate in society.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tetsuya Ito
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shinichi Hirose
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kaori Fukui
- The Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Kanako Kojima-Ishii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Mushimoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinobu Yoshida
- Department of Pediatrics, Omihachiman Community Medical Center, Shiga, Japan
| | - Mika Ishige
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Norio Sakai
- Child Healthcare and Genetic Science Laboratory, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
11
|
Lu D, Han F, Qiu W, Zhang H, Ye J, Liang L, Wang Y, Ji W, Zhan X, Gu X, Han L. Clinical and molecular characteristics of 69 Chinese patients with ornithine transcarbamylase deficiency. Orphanet J Rare Dis 2020; 15:340. [PMID: 33272297 PMCID: PMC7712605 DOI: 10.1186/s13023-020-01606-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background This study aimed to describe the clinical and biochemical features of Chinese patients with ornithine transcarbamylase deficiency (OTCD), and to investigate the mutation spectrum of OTC gene and their potential correlation with phenotype. Methods Sixty-nine patients with OTCD were enrolled between 2004 and 2019. Clinical and laboratory data were reviewed retrospectively from medical records. Results Fifteen cases (13 males, 2 females) presented with early onset; 53 cases (21 males, 32 females) had late onset, and one female was asymptomatic. The median onset age was 1.5 years (range 1 day–56 years). Urine orotic acid levels were increased in all patients tested, while only 47.6% of patients showed decreased serum levels of citrulline. The peak plasma ammonia levels were higher in early-onset patients than in late-onset patients (P < 0.01). Fifty-four different mutations of OTC gene were identified and 18 of them were novel. R277W (10.6%) was the most common mutation, followed by G195R (4.6%) and A209V (3.0%). By June 2019, 41 patients had survived, 24 were deceased, and 4 were lost to follow-up. Among the survivors, 13 patients had received liver transplantation at a median age of 3 years, with a one-year survival rate of 100%. The mortality of OTCD is extremely high among patients with early onset (80.0% versus 24.5% in patients with late onset). Conclusions The evaluation of serum citrulline level is of limited value in diagnosis of OTCD, while urine orotic acid detection and genetic testing are more helpful.
Collapse
Affiliation(s)
- Deyun Lu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Han
- Department of Neurology, Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, National Children's Medical Center, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ye
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Ji
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Del Re S, Empain A, Vicinanza A, Balasel O, Johansson AB, Stalens JP, De Laet C. Irritability, Poor Feeding and Respiratory Alkalosis in Newborns: Think about Metabolic Emergencies. A Brief Summary of Hyperammonemia Management. Pediatr Rep 2020; 12:77-85. [PMID: 33113778 PMCID: PMC7717652 DOI: 10.3390/pediatric12030019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
The urea cycle is a series of metabolic reactions that convert ammonia into urea in order to eliminate it from the body. Urea cycle disorders are characterized by hyperammonemia, which can cause irreversible damages in central nervous system. We report a series of three newborns presenting irritability, poor feeding and tachypnea. Their first gas analysis revealed respiratory alkalosis. Hyperammonemia was confirmed, and three different enzymatic blocks in the urea cycle were diagnosed. Immediate treatment consisted in the removal of ammonia by reduction of the catabolic state, dietary adjustments, use of nitrogen scavenging agents and ultimately hemodiafiltration. Hyperammonemia is a medical emergency whose treatment should not be delayed. This report aims to highlight the importance of suspecting urea cycle disorders in newborns with aspecific signs of hyperammonemia and respiratory alkalosis, and to sum up the broad lines of hyperammonemia management.
Collapse
Affiliation(s)
- Stefano Del Re
- Neonatal Intensive Care Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium; (O.B.); (A.-B.J.)
- Correspondence: ; Tel.: +32-496-616024
| | - Aurélie Empain
- Department of Nutrition and Metabolism, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium; (A.E.); (C.D.L.)
| | - Alfredo Vicinanza
- Pediatric Intensive Care Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium;
| | - Ovidiu Balasel
- Neonatal Intensive Care Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium; (O.B.); (A.-B.J.)
| | - Anne-Britt Johansson
- Neonatal Intensive Care Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium; (O.B.); (A.-B.J.)
| | - Jean-Philippe Stalens
- Neonatal Non-Intensive Care Unit, Centre Hospitalier de Wallonie Picarde (Site Union), 7500 Tournai, Belgium;
| | - Corinne De Laet
- Department of Nutrition and Metabolism, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium; (A.E.); (C.D.L.)
| |
Collapse
|
13
|
Division of Genetics and Metabolism, Child Diseases and Health Care Branch, Chinese Association for Maternal and Child Health. [Consensus on diagnosis and treatment of ornithine trans-carbamylase deficiency]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:539-547. [PMID: 33210478 PMCID: PMC8800749 DOI: 10.3785/j.issn.1008-9292.2020.04.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Ornithine transcarbamylase deficiency(OTCD)is a most common ornithine cycle (urea cycle) disorder. It is a X-link inherited disorder caused by OTC gene mutation that in turn leads to reduction or loss of OTC enzyme activity. Its onset time is related to the lack of enzyme activity. Patients with neonatal onset usually have complete absence of OTC enzyme activity, which is mainly associated with male semi-zygotic mutations; and the disease progresses rapidly with high mortality rates. Patients with late onset vary in onset age and clinical manifestations, and the course of disease can be progressive or intermittent. The acute attack mainly manifests neuropsychiatric symptoms accompanied by digestive symptoms like liver function damage or even acute liver failure. Elevated blood ammonia is the main biochemical indicator of OTCD patients. Increased glutamine, decreased citrulline in blood, and increased orotic acid in urine are typical clinical manifestations for OTCD patients. Genetic testing of OTC gene is important for OTCD diagnosis. The goal of treatment is to minimize the neurological damage caused by hyperammonemia while ensuring the nutritional needs for patient development. For patients with poor response to medication and diet, liver transplantation is recommended under the condition of stable metabolic state and absence of severe neurological damage. During long-term treatment, physical growth indicators, nutrition status, liver function, blood ammonia and amino acids should be regularly monitored. This consensus aims to standardize the diagnosis and treatment of OTCD, improve the prognosis, reduce the mortality and disability of patients.
Collapse
|
14
|
Considering Proximal Urea Cycle Disorders in Expanded Newborn Screening. Int J Neonatal Screen 2020; 6:ijns6040077. [PMID: 33124615 PMCID: PMC7712149 DOI: 10.3390/ijns6040077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Proximal urea cycle disorders (PUCDs) have adverse outcomes such as intellectual disability and death, which may benefit from newborn screening (NBS) through early detection and prevention with early treatment. Ornithine transcarbamylase deficiency (OTCD) and carbamoyl phosphate synthetase 1 deficiency (CPS1D) are screened in six and eight states in the United States. We analyzed current evidence to see if it supports inclusion of PUCDs in the NBS panels based upon prevention potential, medical, diagnostic, treatment, and public health rationales. A literature review was performed in PubMed using MESH terms for OTCD, CPS1D, and NAGSD. A systematic review was performed in the hallmark of NBS inclusion criteria. We reviewed 31 articles. Molecular and biochemical diagnosis is available to provide diagnostic evidence. Untreated PUCDs have a significant burden with considerable developmental delay and mortality that may improve with early treatment. Tandem mass spectrometry can be used for NBS for PUCDs; however, citrulline and glutamine alone are not specific. Medical treatments currently available for PUCDs meet existing medical, diagnostic, treatment, and public health rationales. Improvement in NBS algorithms to increase sensitivity and specificity will allow earlier diagnosis and treatment to potentially improve disability and mortality rates.
Collapse
|
15
|
Imagawa E, Diaz GA, Oishi K. A novel Romani microdeletion variant in the promoter sequence of ASS1 causes citrullinemia type I. Mol Genet Metab Rep 2020; 24:100619. [PMID: 32637322 PMCID: PMC7330059 DOI: 10.1016/j.ymgmr.2020.100619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Citrullinemia type I (CTLN1, MIM #215700) is an autosomal recessive urea cycle disorder caused by deficiency of argininosuccinate synthase (ASS). CTLN1 is characterized by life-threatening hyperammonemia and risk for resulting neurocognitive impairments. The diagnosis of CTLN1 is confirmed by the identification of biallelic pathogenic variants in the ASS1 gene. However, there are a small percentage of CTLN1 patients with a characteristic biochemical phenotype without identifiable variants in ASS1. We describe the molecular characterization of two related Romani children with biochemically diagnosed CTLN1, whose clinical genetic testing failed to detect any pathogenic variant in ASS1. METHODS Genomic DNA was extracted from peripheral blood lymphocytes collected from both patients. Sanger sequencing was performed after PCR amplifications of 5'- and 3'-untranslated regions of the ASS1 gene. A luciferase reporter assay was performed using the human malignant melanoma A2058 cell line and the human liver cancer cell line HepG2. RESULTS We interrogated the non-coding regions of ASS1 by targeted PCR amplification and identified a homozygous 477-bp microdeletion in the promoter region of the ASS1 gene in both patients. Heterozygosity of the variant was confirmed in their parents. Sanger sequencing confirmed the microdeletion contained the entire sequence of the non-coding exon 1 of ASS1 that includes promoter elements of GC-box, E-box, AP2-binding site, and TATA-box. Luciferase reporter assay using an expression plasmid containing the wild-type or mutant ASS1 sequences showed robust reporter expression from the wild-type sequence and significantly reduced expression driven by the mutant insert (3.6% in A2058 cells and 3.3% in HepG2 cells). These findings were consistent with the hypothesis that the microdeletion identified in the patients disrupted an essential promoter element and resulted in deficiency of ASS1 mRNA expression. CONCLUSIONS This is the first report of CTLN1 patients caused by a Romani microdeletion variant affecting the non-coding upstream sequence of ASS1. Ablation of the promoter sequence can cause CTLN1 by the reduction of ASS1 expression. Currently available clinical sequencing methods usually do not cover the promoter sequence including the non-coding exon of ASS1, highlighting the importance of evaluating this region in genetic testing for CTLN1.
Collapse
Affiliation(s)
- Eri Imagawa
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George A. Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
16
|
Del Río C, Martín-Hernández E, Ruiz A, Quijada-Fraile P, Rubio P. Perioperative management of children with urea cycle disorders. Paediatr Anaesth 2020; 30:780-791. [PMID: 32375202 DOI: 10.1111/pan.13905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Urea cycle disorders are congenital metabolism errors that affect ammonia elimination. Clinical signs and prognosis are strongly influenced by peak ammonia levels. Numerous triggers associated with metabolic decompensation have been described with many of them, including fasting or stress, being related to the perioperative period. AIMS We aimed to assess perioperative complications in pediatric patients with urea cycle disorders requiring general anesthesia in our center. METHODS We reviewed the clinical history of all the pediatric patients with a confirmed urea cycle disorders diagnosis requiring surgery or a diagnostic procedure with anesthesia between January 2002 and June 2018. RESULTS We included 33 operations (major surgery, minor surgery, and diagnostic procedures) carried out on 10 patients via different anesthetic techniques. We observed the following complications: intraoperative hyperglycemia in one case, postoperative vomiting in eight cases, and slightly increased postoperative ammonia levels (54, 59, and 69 µmol/L) with normal preoperative levels in three cases without associated metabolic decompensation. There were two cases of perioperative hyperammonemia (72 and 69 µmol/L) secondary to preoperative metabolic decompensation (137 and 92 µmol/L) with the levels progressively dropping and normalizing in the first 24-48 hours, respectively. CONCLUSIONS Procedures under anesthesia on pediatric patients with urea cycle diseases should be performed by experienced multidisciplinary teams at specialized centers. Perioperative management focused on avoiding catabolism (especially during fasting) and monitoring signs associated with metabolic decompensation to allow for its early treatment should be included in routine anesthetic techniques for children with urea cycle disorders.
Collapse
Affiliation(s)
- Cristina Del Río
- Department of Pediatric Anesthesiology, University Hospital 12 de Octubre, Madrid, Spain
| | - Elena Martín-Hernández
- Unit of Mitochondrial and Inherited Metabolic Diseases, Pediatric Department, University Hospital 12 de Octubre, Madrid, Spain.,National Reference Center, European Reference Network for Hereditary Metabolic Disorders (MetabERN), Madrid, Spain
| | - Alicia Ruiz
- Department of Pediatric Anesthesiology, University Hospital 12 de Octubre, Madrid, Spain
| | - Pilar Quijada-Fraile
- Unit of Mitochondrial and Inherited Metabolic Diseases, Pediatric Department, University Hospital 12 de Octubre, Madrid, Spain.,National Reference Center, European Reference Network for Hereditary Metabolic Disorders (MetabERN), Madrid, Spain
| | - Paloma Rubio
- Department of Pediatric Anesthesiology, University Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
17
|
Osawa Y, Wada A, Ohtsu Y, Yamada K, Takizawa T. Late-onset argininosuccinic aciduria associated with hyperammonemia triggered by influenza infection in an adolescent: A case report. Mol Genet Metab Rep 2020; 24:100605. [PMID: 32435591 PMCID: PMC7232106 DOI: 10.1016/j.ymgmr.2020.100605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
Hyperammonemia is a typical symptom of urea cycle disorders. While early-onset argininosuccinic aciduria (ASA) can often be detected by hyperammonemia, patients with late-onset ASA predominantly present with psychomotor retardation and mental disorders. However, in late-onset ASA that develops during early childhood, hyperammonemia can sometimes be caused by acute infections, stress, and reduced dietary intake. Here, we report the case of a 14-year-old boy with late-onset ASA associated with hyperammonemia that was triggered by an influenza A infection. Due to the infection, he presented with a fever and was unable to eat food or take oral medication. He then experienced restlessness, a disturbance in his level of consciousness, and seizures. Hyperammonemia (3286 μg/dL, reference value ≤100 μg/dL) was detected. He was biochemically diagnosed with ASA based on increased serum and urinary argininosuccinic acid levels. Additionally, genetic testing revealed compound heterozygous mutations in the ASL gene: c.91G > A(p.Asp31Asn) and c.1251-1G > C. This case revealed that in late-onset ASA, hyperammonemia can occur not only in early childhood but also during adolescence. Late-onset ASA may have a very broad clinical spectrum that includes hyperammonemia. We suggest that urea cycle disorders such as ASA must be considered when patients present with hyperammonemic decompensation during adolescence.
Collapse
Affiliation(s)
- Yoshimitsu Osawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Japan.,Department of Pediatrics, Shimane University Faculty of Medicine, Japan
| | - Aya Wada
- Department of Pediatrics, Gunma University Graduate School of Medicine, Japan
| | - Yoshiaki Ohtsu
- Department of Pediatrics, Gunma University Graduate School of Medicine, Japan
| | - Kenji Yamada
- Department of Pediatrics, Shimane University Faculty of Medicine, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Japan
| |
Collapse
|
18
|
Burrage LC, Madan S, Li X, Ali S, Mohammad M, Stroup BM, Jiang MM, Cela R, Bertin T, Jin Z, Dai J, Guffey D, Finegold M, Nagamani S, Minard CG, Marini J, Masand P, Schady D, Shneider BL, Leung DH, Bali D, Lee B. Chronic liver disease and impaired hepatic glycogen metabolism in argininosuccinate lyase deficiency. JCI Insight 2020; 5:132342. [PMID: 31990680 PMCID: PMC7101134 DOI: 10.1172/jci.insight.132342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDLiver disease in urea cycle disorders (UCDs) ranges from hepatomegaly and chronic hepatocellular injury to cirrhosis and end-stage liver disease. However, the prevalence and underlying mechanisms are unclear.METHODSWe estimated the prevalence of chronic hepatocellular injury in UCDs using data from a multicenter, longitudinal, natural history study. We also used ultrasound with shear wave elastography and FibroTest to evaluate liver stiffness and markers of fibrosis in individuals with argininosuccinate lyase deficiency (ASLD), a disorder with high prevalence of elevated serum alanine aminotransferase (ALT). To understand the human observations, we evaluated the hepatic phenotype of the AslNeo/Neo mouse model of ASLD.RESULTSWe demonstrate a high prevalence of elevated ALT in ASLD (37%). Hyperammonemia and use of nitrogen-scavenging agents, 2 markers of disease severity, were significantly (P < 0.001 and P = 0.001, respectively) associated with elevated ALT in ASLD. In addition, ultrasound with shear wave elastography and FibroTest revealed increased echogenicity and liver stiffness, even in individuals with ASLD and normal aminotransferases. The AslNeo/Neo mice mimic the human disorder with hepatomegaly, elevated aminotransferases, and excessive hepatic glycogen noted before death (3-5 weeks of age). This excessive hepatic glycogen is associated with impaired hepatic glycogenolysis and decreased glycogen phosphorylase and is rescued with helper-dependent adenovirus expressing Asl using a liver-specific (ApoE) promoter.CONCLUSIONOur results link urea cycle dysfunction and impaired hepatic glucose metabolism and identify a mouse model of liver disease in the setting of urea cycle dysfunction.TRIAL REGISTRATIONThis study has been registered at ClinicalTrials.gov (NCT03721367, NCT00237315).FUNDINGFunding was provided by NIH, Burroughs Wellcome Fund, NUCDF, Genzyme/ACMG Foundation, and CPRIT.
Collapse
Affiliation(s)
- Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Simran Madan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine and
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Saima Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mahmoud Mohammad
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of Food Science and Nutrition, National Research Centre, Dokki, Giza, Egypt
| | - Bridget M. Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Racel Cela
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Terry Bertin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zixue Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jian Dai
- Department of Pediatrics, Duke Health, Durham, North Carolina, USA
| | - Danielle Guffey
- Dan L. Duncan Institute for Clinical and Translational Research and
| | - Milton Finegold
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Sandesh Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | | | - Juan Marini
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Prakash Masand
- Edward B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, USA
| | - Deborah Schady
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Benjamin L. Shneider
- Texas Children’s Hospital, Houston, Texas, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel H. Leung
- Texas Children’s Hospital, Houston, Texas, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas, USA
| | - Deeksha Bali
- Department of Pediatrics, Duke Health, Durham, North Carolina, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
19
|
Andrade F, Vitoria I, Martín Hernández E, Pintos-Morell G, Correcher P, Puig-Piña R, Quijada-Fraile P, Peña-Quintana L, Marquez AM, Villate O, García Silva MT, de Las Heras J, Ceberio L, Rodrigues E, Almeida Campos T, Yahyaoui R, Blasco J, Vives-Piñera I, Gil D, Del Toro M, Ruiz-Pons M, Cañedo E, Barba Romero MA, García-Jiménez MC, Aldámiz-Echevarría L. Quantification of urinary derivatives of Phenylbutyric and Benzoic acids by LC-MS/MS as treatment compliance biomarkers in Urea Cycle disorders. J Pharm Biomed Anal 2019; 176:112798. [PMID: 31394303 DOI: 10.1016/j.jpba.2019.112798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Salts of phenylacetic acid (PAA) and phenylbutyric acid (PBA) have been used for nitrogen elimination as a treatment for hyperammonaemia caused by urea cycle disorders (UCD). A new analytical method for PBA measurement in urine which helps to evaluate the drug adherence has been implemented. METHODS Urine specimens from UCD patients receiving PBA were analysed by tandem mass spectrometry to measure urine phenylacetylglutamine (PAGln). Some clinical and biochemical data for each patient were collected. RESULTS Our study included 87 samples from 40 UCD patients. The PAGln levels did not correlate with height, weight or age. However, the PAGln values showed correlation with PBA dose (r = 0.383, P = 0.015). Plasma glutamine and ammonia levels presented a positive correlation (r = 0.537, P < 0.001). The stability for PAGln in urine was determined at different storage temperatures. CONCLUSIONS We have developed a simple method for the determination of PAGln in urine, which acts as useful biomarker of effective drug delivery. PAGln in urine is stable at room temperature at least for 15 days, and for several months when frozen at -20 °C. This procedure is useful for the optimization and monitorization of the drug dose allowing the use of spot urine samples.
Collapse
Affiliation(s)
- Fernando Andrade
- Group of Metabolism, Biocruces Bizkaia Health Research Institute, linked clinical group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain
| | - Isidro Vitoria
- Unit of Metabolopathies, La Fe University Hospital, Valencia, Spain
| | - Elena Martín Hernández
- Pediatric Rare Diseases Unit, Metabolic and Mitochondrial Diseases, Pediatric Department, 12 de Octubre University Hospital, Research Institute (i+12), Madrid, Spain
| | - Guillem Pintos-Morell
- Centre for Rare Diseases, University Hospital Vall d´Hebron, Barcelona. Research Institute Germans Trias I Pujol (IGTP), CIBERER-GCV08, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | - Rocío Puig-Piña
- Department of Endocrinology and Nutrition. Adult Metabolic Unit. University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Pilar Quijada-Fraile
- Pediatric Rare Diseases Unit, Metabolic and Mitochondrial Diseases, Pediatric Department, 12 de Octubre University Hospital, Research Institute (i+12), Madrid, Spain
| | - Luis Peña-Quintana
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Mother-Child University Hospital of Canarias, Ciber OBN, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana Mª Marquez
- Pediatric Gastroenterology and Nutrition Unit, Mother-Child Hospital of Badajoz, Spain
| | - Olatz Villate
- Group of Metabolism, Biocruces Bizkaia Health Research Institute, linked clinical group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain
| | - Mª Teresa García Silva
- Pediatric Rare Diseases Unit, Metabolic and Mitochondrial Diseases, Pediatric Department, 12 de Octubre University Hospital, Research Institute (i+12), Madrid, Spain
| | - Javier de Las Heras
- Group of Metabolism, Biocruces Bizkaia Health Research Institute, linked clinical group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain
| | - Leticia Ceberio
- Group of Metabolism, Biocruces Bizkaia Health Research Institute, linked clinical group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain
| | | | | | - Raquel Yahyaoui
- Inherited Metabolic Disease Laboratory, Institute of Biomedical Research in Málaga (IBIMA), Málaga Regional University Hospital, Málaga, Spain
| | - Javier Blasco
- Gastroenterology, Hepatology and Child Nutrition Unit, Carlos Haya University Hospital, Málaga, Spain
| | | | - David Gil
- Gastroenterology Unit, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Mireia Del Toro
- Pediatric Neurology Unit, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mónica Ruiz-Pons
- Pediatric Nutrition Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
| | - Elvira Cañedo
- Gastroenterology and Nutrition Unit, Niño Jesús University Hospital, Madrid, Spain
| | | | | | - Luis Aldámiz-Echevarría
- Group of Metabolism, Biocruces Bizkaia Health Research Institute, linked clinical group of Rare Diseases CIBER (CIBERER), Barakaldo, Spain.
| |
Collapse
|
20
|
Waisbren SE, Stefanatos AK, Kok TMY, Ozturk‐Hismi B. Neuropsychological attributes of urea cycle disorders: A systematic review of the literature. J Inherit Metab Dis 2019; 42:1176-1191. [PMID: 31268178 PMCID: PMC7250134 DOI: 10.1002/jimd.12146] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/30/2022]
Abstract
Urea cycle disorders (UCDs) are rare inherited metabolic conditions that impair the effectiveness of the urea cycle responsible for removing excess ammonia from the body. The estimated incidence of UCDs is 1:35 000 births, or approximately 113 new patients with UCD per year. This review summarizes neuropsychological outcomes among patients with the eight UCDs in reports published since 1980. Rates of intellectual disabilities published before (and including) 2000 and after 2000 were pooled and compared for each UCD. Since diagnoses for UCDs tended to occur earlier and better treatments became more readily available after the turn of the century, this assessment will characterize the extent that current management strategies have improved neuropsychological outcomes. The pooled sample included data on cognitive abilities of 1649 individuals reported in 58 citations. A total of 556 patients (34%) functioned in the range of intellectual disabilities. The decline in the proportion of intellectual disabilities in six disorders, ranged from 7% to 41%. Results from various studies differed and the cohorts varied with respect to age at symptom onset, age at diagnosis and treatment initiation, current age, severity of the metabolic deficiency, management strategies, and ethnic origins. The proportion of cases with intellectual disabilities ranged from 9% to 65% after 2000 in the seven UCDs associated with cognitive deficits. Positive outcomes from some studies suggest that it is possible to prevent or reverse the adverse impact of UCDs on neuropsychological functioning. It is time to "raise the bar" in terms of expectations for treatment effectiveness.
Collapse
Affiliation(s)
- Susan E. Waisbren
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's HospitalBostonMassachusetts
- Department of Medicine, Harvard Medical SchoolBostonMassachusetts
| | - Arianna K. Stefanatos
- Department of Child & Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | | | - Burcu Ozturk‐Hismi
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's HospitalBostonMassachusetts
- Tepecik Education and Research HospitalIzmirTurkey
| |
Collapse
|
21
|
Häberle J, Burlina A, Chakrapani A, Dixon M, Karall D, Lindner M, Mandel H, Martinelli D, Pintos-Morell G, Santer R, Skouma A, Servais A, Tal G, Rubio V, Huemer M, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J Inherit Metab Dis 2019; 42:1192-1230. [PMID: 30982989 DOI: 10.1002/jimd.12100] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
In 2012, we published guidelines summarizing and evaluating late 2011 evidence for diagnosis and therapy of urea cycle disorders (UCDs). With 1:35 000 estimated incidence, UCDs cause hyperammonemia of neonatal (~50%) or late onset that can lead to intellectual disability or death, even while effective therapies do exist. In the 7 years that have elapsed since the first guideline was published, abundant novel information has accumulated, experience on newborn screening for some UCDs has widened, a novel hyperammonemia-causing genetic disorder has been reported, glycerol phenylbutyrate has been introduced as a treatment, and novel promising therapeutic avenues (including gene therapy) have been opened. Several factors including the impact of the first edition of these guidelines (frequently read and quoted) may have increased awareness among health professionals and patient families. However, under-recognition and delayed diagnosis of UCDs still appear widespread. It was therefore necessary to revise the original guidelines to ensure an up-to-date frame of reference for professionals and patients as well as for awareness campaigns. This was accomplished by keeping the original spirit of providing a trans-European consensus based on robust evidence (scored with GRADE methodology), involving professionals on UCDs from nine countries in preparing this consensus. We believe this revised guideline, which has been reviewed by several societies that are involved in the management of UCDs, will have a positive impact on the outcomes of patients by establishing common standards, and spreading and harmonizing good practices. It may also promote the identification of knowledge voids to be filled by future research.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Alberto Burlina
- Division of Inborn Metabolic Disease, Department of Pediatrics, University Hospital Padua, Padova, Italy
| | - Anupam Chakrapani
- Department of Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children, NHS Trust, London, UK
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Lindner
- University Children's Hospital, Frankfurt am Main, Germany
| | - Hanna Mandel
- Institute of Human Genetics and metabolic disorders, Western Galilee Medical Center, Nahariya, Israel
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Guillem Pintos-Morell
- Centre for Rare Diseases, University Hospital Vall d'Hebron, Barcelona, Spain
- CIBERER_GCV08, Research Institute IGTP, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Skouma
- Institute of Child Health, Agia Sofia Children's Hospital, Athens, Greece
| | - Aude Servais
- Service de Néphrologie et maladies métaboliques adulte Hôpital Necker 149, Paris, France
| | - Galit Tal
- The Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER), Valencia, Spain
| | - Martina Huemer
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | | |
Collapse
|
22
|
Enns GM, Porter MH, Francis-Sedlak M, Burdett A, Vockley J. Perspectives on urea cycle disorder management: Results of a clinician survey. Mol Genet Metab 2019; 128:102-108. [PMID: 31377149 DOI: 10.1016/j.ymgme.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2019] [Accepted: 07/16/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND/AIMS Urea cycle disorders (UCDs) are rare inborn errors of urea synthesis. US and European consensus statements on the diagnosis and treatment of UCDs were last published in 2001 and 2019, respectively. Recommendations are based primarily on case reports and expert opinion and there is limited agreement or consistency related to long-term management approaches. A clinician survey was conducted to assess current real-world practices and perspectives on challenges and unmet needs. METHODS A 14-item multiple-choice survey was administered to physicians in 2017. Clinicians who reported actively managing at least 1 patient with UCD were eligible to participate. Descriptive statistics were calculated for each survey item (frequencies for categorical variables; means, standard deviations, medians, and ranges for continuous variables). RESULTS Sixty-six US clinicians completed the survey (65 geneticists; 1 pediatric neurologist). Over 90% of responders agreed or strongly agreed that even modest elevations in ammonia could cause physiological and functional brain damage; >80% of respondents agreed that asymptomatic UCD patients are at risk of brain damage over time due to mild/subclinical elevations in ammonia. Eighty-six percent of clinicians agreed or strongly agreed with recommending genetic testing for female relatives when a patient is diagnosed with ornithine transcarbamylase deficiency. Ninety-four percent of respondents agreed that patients have better disease control when they are more adherent to their UCD therapy. Nearly 90% indicated that clinicians and patients would benefit from updated UCD management guidance. More than half (53%) of respondents rated the symptoms of UCDs as extremely or very burdensome to the everyday lives of patients and their families; only 8% rated UCD symptoms as slightly or not at all burdensome. The majority of clinicians agreed (48%) or strongly agreed (32%) that caring for a child or family member with a UCD has a negative impact on the quality of life and/or health of family members/guardians (e.g. stress, relationships, ability to work). CONCLUSIONS This self-reported survey suggests a need for updated and expanded clinical guidance on the long-term treatment and management of UCD patients.
Collapse
Affiliation(s)
- Gregory M Enns
- Stanford University, School of Medicine, Stanford, CA, USA.
| | | | | | | | - Jerry Vockley
- University of Pittsburgh, School of Medicine, Graduate School of Public Health, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Diaz GA, Schulze A, Longo N, Rhead W, Feigenbaum A, Wong D, Merritt JL, Berquist W, Gallagher RC, Bartholomew D, McCandless SE, Smith WE, Harding CO, Zori R, Lichter-Konecki U, Vockley J, Canavan C, Vescio T, Holt RJ, Berry SA. Long-term safety and efficacy of glycerol phenylbutyrate for the management of urea cycle disorder patients. Mol Genet Metab 2019; 127:336-345. [PMID: 31326288 DOI: 10.1016/j.ymgme.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/20/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Glycerol phenylbutyrate (GPB) is currently approved for use in the US and Europe for patients of all ages with urea cycle disorders (UCD) who cannot be managed with protein restriction and/or amino acid supplementation alone. Currently available data on GPB is limited to 12 months exposure. Here, we present long-term experience with GPB. METHODS This was an open-label, long-term safety study of GPB conducted in the US (17 sites) and Canada (1 site) monitoring the use of GPB in UCD patients who had previously completed 12 months of treatment in the previous safety extension studies. Ninety patients completed the previous studies with 88 of these continuing into the long-term evaluation. The duration of therapy was open ended until GPB was commercially available. The primary endpoint was the rate of adverse events (AEs). Secondary endpoints were venous ammonia levels, number and causes of hyperammonemic crises (HACs) and neuropsychological testing. RESULTS A total of 45 pediatric patients between the ages of 1 to 17 years (median 7 years) and 43 adult patients between the ages of 19 and 61 years (median 30 years) were enrolled. The treatment emergent adverse events (TEAE) reported in ≥10% of adult or pediatric patients were consistent with the TEAEs reported in the previous safety extension studies with no increase in the overall incidence of TEAEs and no new TEAEs that indicated a new safety signal. Mean ammonia levels remained stable and below the adult upper limit of normal (<35 µmol/L) through 24 months of treatment in both the pediatric and adult population. Over time, glutamine levels decreased in the overall population. The mean annualized rate of HACs (0.29) established in the previously reported 12-month follow-up study was maintained with continued GPB exposure. CONCLUSION Following the completion of 12-month follow-up studies with GPB treatment, UCD patients were followed for an additional median of 1.85 (range 0 to 5.86) years in the present study with continued maintenance of ammonia control, similar rates of adverse events, and no new adverse events identified.
Collapse
Affiliation(s)
- George A Diaz
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andreas Schulze
- University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | - Annette Feigenbaum
- University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| | - Derek Wong
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - William Berquist
- Stanford University Medical Center & Lucile Packard Children's Hospital, Stanford, CA, USA
| | | | - Dennis Bartholomew
- Ohio State University and Nationwide Children's Hospital, Columbus, OH, USA
| | - Shawn E McCandless
- Children's Hospital Colorado and University of Colorado Denver, Aurora, CO, USA
| | | | | | | | | | - Jerry Vockley
- Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
24
|
Hasbaoui BE, Boujrad S, Abilkacem R, Agadr A. [Vomiting associated with weight stagnation and convulsions: urea cycle disorder should be suspected]. Pan Afr Med J 2019; 31:103. [PMID: 31037164 PMCID: PMC6462384 DOI: 10.11604/pamj.2018.31.103.11403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/02/2017] [Indexed: 11/11/2022] Open
Abstract
Dans certaines maladies métaboliques héréditaires, les vomissements peuvent apparaître comme un symptôme étant au premier plan, en particulier les anomalies du cycle de l'urée, qui sont habituellement diagnostiqués en période néonatale ou dans l'enfance. Nous en rapportons un cas de révélation tardive par un état de mal convulsif. Nous rapportons le cas d'une patiente âgée de 13 ans, qui a été hospitalisé pour prise en charge d'un état de mal convulsif et un retard staturo-pondéral. L'interrogatoire a révélé la notion de vomissements chroniques avec des troubles du comportement, ralentissement idéomoteur et céphalées. L'examen a trouvé une ataxie. La ponction lombaire et le scanner cérébral sont normaux. Une ammoniémie nettement augmentée est mise en évidence 75 micromoles/l (11-50). La chromatographie des acides aminés dans le sang a montré une augmentation de la glutamine et de l'alanine, La chromatographie des acides aminés dans les urines a montré une augmentation des acides aminés basiques évoquant un déficit du cycle de l'urée par déficit de l'enzyme Argininosuccinate lyase. La patiente a été traité en urgence par une alimentation exclusivement glucidolipidique, et par benzoate de sodium permettant une amélioration de l'état clinique, et une reprise de poids. Les crises convulsives ont été maîtrisées par le phénobarbital. L'enquête familiale a trouvé une sœur âgée de 20 ans suivie depuis l'âge de 3 ans pour crises convulsives traité par le phénobarbital dont le bilan métabolique réalisé dans notre service a objectivé la même anomalie du cycle de l'urée que sa sœur. A tout âge, devant une encéphalopathie avec épilepsie, vomissement, stagnation pondérale et hyperammoniémie, il faut penser à un déficit du cycle de l'urée. Le diagnostic est très souvent posé lors d'un accès neuro-digestif aigue associant vomissements, troubles de conscience et/ou crises convulsives.
Collapse
Affiliation(s)
- Brahim El Hasbaoui
- Service de Pédiatrie, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Saloua Boujrad
- Service de Pédiatrie, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Rachid Abilkacem
- Service de Pédiatrie, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Aomar Agadr
- Service de Pédiatrie, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| |
Collapse
|
25
|
Laróvere LE, Silvera Ruiz SM, Arranz JA, Dodelson de Kremer R. Mutation Spectrum and Genotype–Phenotype Correlation in a Cohort of Argentine Patients with Ornithine Transcarbamylase Deficiency: A Single-Center Experience. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2018. [DOI: 10.1177/2326409818813177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Laura E. Laróvere
- Centro de Estudio de las Metabolopatías Congénitas, Hospital de Niños de la Santísima Trinidad; Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina, Ferroviarios 1250 – 5014 – Córdoba Argentina
| | - Silene M. Silvera Ruiz
- Centro de Estudio de las Metabolopatías Congénitas, Hospital de Niños de la Santísima Trinidad; Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina, Ferroviarios 1250 – 5014 – Córdoba Argentina
| | - José A. Arranz
- Laboratori de Metabolopaties, Hospital Universitari Vall d'Hebron Barcelona, España
| | - Raquel Dodelson de Kremer
- Centro de Estudio de las Metabolopatías Congénitas, Hospital de Niños de la Santísima Trinidad; Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina, Ferroviarios 1250 – 5014 – Córdoba Argentina
| |
Collapse
|
26
|
Chongsrisawat V, Damrongphol P, Ittiwut C, Ittiwut R, Suphapeetiporn K, Shotelersuk V. The phenotypic and mutational spectrum of Thai female patients with ornithine transcarbamylase deficiency. Gene 2018; 679:377-381. [PMID: 30223008 DOI: 10.1016/j.gene.2018.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/26/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
Ornithine transcarbamylase deficiency (OTCD) is an X-linked urea cycle disorder affecting both males and females. Hemizygous males commonly present with severe hyperammonemic encephalopathy during the neonatal period. Heterozygous females have great phenotypic variability. The majority of female patients can manifest later in life or have unrecognized symptoms, making the diagnosis of OTCD in females very challenging. Here we report on three unrelated Thai female cases with OTCD presenting with different manifestations including aggressive behavior, acute liver failure and severe encephalopathy. Whole exome sequencing successfully identified disease-causing mutations in all three cases including two novel ones: the c.209_210delAA (p.Lys70Argfs*17) and the c.850T>A (p.Tyr284Asn). This study affirms variable symptoms in female patients with OTCD and emphasizes the importance of early recognition and prompt management for favorable outcomes. In addition, identification of two novel causative variants expands the genotypic spectrum of OTC.
Collapse
Affiliation(s)
- Voranush Chongsrisawat
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ponghatai Damrongphol
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Chupong Ittiwut
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Rungnapa Ittiwut
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
27
|
Hediger N, Landolt MA, Diez-Fernandez C, Huemer M, Häberle J. The impact of ammonia levels and dialysis on outcome in 202 patients with neonatal onset urea cycle disorders. J Inherit Metab Dis 2018. [PMID: 29520739 DOI: 10.1007/s10545-018-0157-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neonatal onset hyperammonemia in patients with urea cycle disorders (UCDs) is still associated with high morbidity and mortality. Current protocols consistently recommend emergency medical and dietary management. In case of increasing or persistent hyperammonemia, with continuous or progressive neurological signs, dialysis is performed, mostly as ultima ratio. It is presently unknown whether the currently defined ammonia threshold (e.g., at 500 μmol/L) to start dialysis is useful to improve clinical outcome. A systematic review of clinical and biochemical data from published neonatal onset UCD patients was performed to identify factors determining clinical outcome and to investigate in which clinical and biochemical setting dialysis was most effective. A total of 202 patients (118 proximal and 84 distal UCDs) described in 90 case reports or case series were included according to predefined inclusion/exclusion criteria. Median age at onset was three days and mean ammonia that triggered start of dialysis was 1199 μmol/L. Seventy-one percent of all patients received any form of dialysis. Total mortality was 25% and only 20% of all patients had a "normal" outcome. In general, patients with higher ammonia levels were more likely to receive dialysis, but this had for most patients no influence on outcome. In conclusion, in severe neonatal onset hyperammonemia, the current practice of dialysis, which effectively clears ammonia, had no impact on outcome. It may be essential for improving outcome to initiate all available treatment options, including dialysis, as early as possible.
Collapse
Affiliation(s)
- Nina Hediger
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Markus A Landolt
- Department of Psychosomatics and Psychiatry, University Children's Hospital Zurich, 8032, Zurich, Switzerland
- Division of Child and Adolescent Health Psychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Carmen Diez-Fernandez
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland.
| |
Collapse
|
28
|
Bigot A, Tchan MC, Thoreau B, Blasco H, Maillot F. Liver involvement in urea cycle disorders: a review of the literature. J Inherit Metab Dis 2017; 40:757-769. [PMID: 28900784 DOI: 10.1007/s10545-017-0088-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/13/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
Abstract
Urea cycle disorders (UCDs) are inborn errors of metabolism of the nitrogen detoxification pathway and encompass six principal enzymatic deficiencies. The aging of UCD patients leads to a better knowledge of the long-term natural history of the condition and to the reporting of previously unnoticed manifestations. Despite historical evidence of liver involvement in UCDs, little attention has been paid to this organ until recently. Hence, we reviewed the available scientific evidence on acute and chronic liver dysfunction and liver carcinogenesis in UCDs and discuss their pathophysiology. Overall, liver involvement, such as acute liver failure or steatotic-like disease, which may evolve toward cirrhosis, has been reported in all six main UCDs. Excessive glycogen storage is also a prominent histologic feature, and hypoglycemia has been reported in citrin deficiency. Hepatocarcinomas seem frequent in some UCDs, such as in citrin deficiency, and can sometimes occur in non-cirrhotic patients. UCDs may differ in liver involvement according to the enzymatic deficiency. Ornithine transcarbamylase deficiency may be associated more with acute liver failure and argininosuccinic aciduria with chronic liver failure and cirrhosis. Direct toxicity of metabolites, downstream metabolic deficiencies, impaired tricarboxylic acid cycle, oxidative stress, mitochondrial dysfunction, energy deficit, and putative toxicity of therapies combine in various ways to cause the different liver diseases reported.
Collapse
Affiliation(s)
- Adrien Bigot
- CHRU de Tours, service médecine interne, Tours, France.
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France.
- Department of Genetic Medicine, Westmead Hospital, Sydney, Australia.
- Service de Médecine Interne, Hôpital Bretonneau, 2, boulevard Tonnelle, 37044, Tours, France.
| | - Michel C Tchan
- Department of Genetic Medicine, Westmead Hospital, Sydney, Australia
| | - Benjamin Thoreau
- CHRU de Tours, service médecine interne, Tours, France
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- UMR INSERM U 1069, Tours, France
| | - Hélène Blasco
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- CHRU de Tours, service de biochimie-biologie moléculaire, Tours, France
- UMR INSERM U930, 37000, Tours, France
| | - François Maillot
- CHRU de Tours, service médecine interne, Tours, France
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- UMR INSERM U 1069, Tours, France
| |
Collapse
|
29
|
Peña-Quintana L, Llarena M, Reyes-Suárez D, Aldámiz-Echevarria L. Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives. Patient Prefer Adherence 2017; 11:1489-1496. [PMID: 28919721 PMCID: PMC5593420 DOI: 10.2147/ppa.s136754] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Urea-cycle disorders are a group of rare hereditary metabolic diseases characterized by deficiencies of one of the enzymes and transporters involved in the urea cycle, which is necessary for the removal of nitrogen produced from protein breakdown. These hereditary metabolic diseases are characterized by hyperammonemia and life-threatening hyperammonemic crises. Pharmacological treatment of urea-cycle disorders involves alternative nitrogen-scavenging pathways. Sodium benzoate combines with glycine and phenylacetate/phenylbutyrate with glutamine, forming, respectively, hippuric acid and phenylacetylglutamine, which are eliminated in the urine. Among the ammonia-scavenging drugs, sodium phenylbutyrate is a well-known long-term treatment of urea-cycle disorders. It has been used since 1987 as an investigational new drug, and was approved for marketing in the US in 1996 and the EU in 1999. However, sodium phenylbutyrate has an aversive odor and taste, which may compromise patients' compliance, and many patients have reported difficulty in taking this drug. Sodium phenylbutyrate granules are a new tasteless and odor-free formulation of sodium phenylbutyrate, which is indicated in the treatment of urea-cycle disorders. This recently developed taste-masked formulation of sodium phenylbutyrate granules was designed to overcome the considerable issues that taste has on adherence to therapy. Several studies have reported the clinical experience of patients with urea-cycle disorders treated with this new tasteless formulation of sodium phenylbutyrate. Analysis of the data indicated that this taste-masked formulation of sodium phenylbutyrate granules improved quality of life for urea-cycle disorder patients. Furthermore, a postmarketing report on the use of the product has confirmed the previous observations of improved compliance, efficacy, and safety with this taste-masked formulation of sodium phenylbutyrate.
Collapse
Affiliation(s)
- Luis Peña-Quintana
- Pediatric Gastroenterology, Hepatology, and Nutrition Unit, Universitario Materno-Infantil Hospital de Canarias, University of Las Palmas de Gran Canaria
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas
- CIBEROBN, Madrid
| | - Marta Llarena
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas
| | - Desiderio Reyes-Suárez
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas
| | - Luis Aldámiz-Echevarria
- Unit of Metabolism, Cruces University Hospital, BioCruces Health Research Institute, GCV-CIBER de Enfremedades Raras (CIBERER), Barakaldo, Spain
| |
Collapse
|
30
|
Kose E, Kuyum P, Aksoy B, Häberle J, Arslan N, Ozturk Y. First report of carglumic acid in a patient with citrullinemia type 1 (argininosuccinate synthetase deficiency). J Clin Pharm Ther 2017; 43:124-128. [PMID: 28741715 DOI: 10.1111/jcpt.12593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Carglumic acid is a structural analogue of human N-acetylglutamate, which has become an alternative therapeutic option for hyperammonaemia in organic acidaemias such as isovaleric acidaemia, methylmalonic acidaemia and propionic acidaemia, and it has been suggested in other urea cycle disorders such as ornithine transcarbamylase deficiency and carbamoyl phosphate synthetase 1 deficiency. CASE DESCRIPTION A male newborn was diagnosed with citrullinemia after serum amino acid analyses revealed markedly elevated citrulline concentration together with homozygous p.Gly390Arg mutation in ASS1 gene. The ammonia concentration decreased and blood gas analysis normalized after peritoneal dialysis was performed for three days. Also, sodium benzoate, L-arginine and parenteral nutrition with glucose and lipid therapy were initiated. Until 1 year of age, low adherence to sodium benzoate therapy due to unpleasant taste caused hyperammonaemic episodes and obligated us to initiate carglumic acid (100 mg/kg/day) therapy. During treatment with carglumic acid, the median ammonia level was 45.6 µmol/L. The patient's treatment was switched from carglumic acid to sodium phenylbutyrate when he was 4.5 years old. Currently, the patient is 6.5 years old and remains under follow-up with sodium phenylbutyrate, L-arginine and protein-restricted diet. Plasma ornithine level was found to be significantly lower during the carglumic acid treatment compared to other treatments (P=.039). Also, glutamic acid was found to be higher during the sodium benzoate treatment period compared to other treatment periods (P=.024). WHAT IS NEW AND CONCLUSION To the best of our knowledge, this is the first report describing the long-term use of carglumic acid in a patient with argininosuccinate synthetase deficiency.
Collapse
Affiliation(s)
- E Kose
- Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University, Izmir, Turkey
| | - P Kuyum
- Division of Pediatric Gastroenterology, Dokuz Eylul University, Izmir, Turkey
| | - B Aksoy
- Division of Pediatric Gastroenterology, Dokuz Eylul University, Izmir, Turkey
| | - J Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - N Arslan
- Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University, Izmir, Turkey
| | - Y Ozturk
- Division of Pediatric Gastroenterology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
31
|
Algahtani H, Alameer S, Marzouk Y, Shirah B. Urea cycle disorder misdiagnosed as multiple sclerosis: a case report and review of the literature. Neuroradiol J 2017. [PMID: 28635494 DOI: 10.1177/1971400917715880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Urea cycle disorders are a group of inborn errors of metabolism caused by dysfunction of any of the six enzymes or two transport proteins involved in urea biosynthesis. In this paper, we report a patient who presented with neurological dysfunction and coma in the immediate postpartum period. She was misdiagnosed for many years as a case of multiple sclerosis. The importance of reporting this case is to illustrate that the wrong diagnosis of patients as being affected with multiple sclerosis for many years due to magnetic resonance imaging abnormalities rather than the classic relapsing-remitting nature of the disease may lead to catastrophic consequences. The patient was treated with intravenous steroids several times, which is contraindicated in patients with urea cycle disorders as it may precipitate acute hyperammonemic attacks. In addition, the management of urea cycle disorder could have started earlier and avoided multiple admissions to the intensive care unit. We believe that the presence of symmetric hyperintense insular cortical changes are seen in multiple hyperammonemic processes, and in the context of the clinical presentation and high ammonia levels can be suggestive of a urea cycle disorder. For any patient presenting with atypical clinical features, images should be reviewed and discussed in detail with an experienced neuroradiologist. In addition, the ammonia levels should be checked if a urea cycle disorder is suspected.
Collapse
Affiliation(s)
- Hussein Algahtani
- 1 King Abdulaziz Medical City/King Saud bin Abdulaziz University for Health Sciences, Saudi Arabia
| | - Seham Alameer
- 1 King Abdulaziz Medical City/King Saud bin Abdulaziz University for Health Sciences, Saudi Arabia
| | - Yousef Marzouk
- 2 King Saud bin Abdulaziz University for Health Sciences, Saudi Arabia
| | - Bader Shirah
- 3 King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, Saudi Arabia
| |
Collapse
|
32
|
Maillot F, Blasco H, Lioger B, Bigot A, Douillard C. [Diagnosis and treatment of urea cycle disorders in adult patients]. Rev Med Interne 2016; 37:680-684. [PMID: 27032484 DOI: 10.1016/j.revmed.2016.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 11/19/2015] [Accepted: 02/26/2016] [Indexed: 12/30/2022]
Abstract
Urea cycle disorders (UCDs) are inborn errors of metabolism in which the clinical picture is mostly due to ammonia intoxication. UCD onset may be observed at any age. Acute decompensations of UCDs include neuro-psychiatric symptoms such as headache, confusion, convulsions, ataxia, agitation or delirium, as well as digestive symptoms, namely nausea and vomiting along with abdominal pain. Acute decompensations may lead to an irreversible coma in the absence of specific therapy. The first step is to measure promptly ammonemia in such patients, and start appropriate therapy on an emergency basis.
Collapse
Affiliation(s)
- F Maillot
- Service de médecine interne, centre de compétences des maladies héréditaires du métabolisme, hôpital Bretonneau, CHRU de Tours, 2, boulevard Tonnellé, 37044 Tours cedex 9, France; Université François-Rabelais, Tours, France; Inserm U1069, Tours, France.
| | - H Blasco
- Université François-Rabelais, Tours, France; Service de biochimie, CHRU de Tours, Tours, France; Inserm U930, Tours, France
| | - B Lioger
- Service de médecine interne, centre de compétences des maladies héréditaires du métabolisme, hôpital Bretonneau, CHRU de Tours, 2, boulevard Tonnellé, 37044 Tours cedex 9, France; Université François-Rabelais, Tours, France
| | - A Bigot
- Service de médecine interne, centre de compétences des maladies héréditaires du métabolisme, hôpital Bretonneau, CHRU de Tours, 2, boulevard Tonnellé, 37044 Tours cedex 9, France; Université François-Rabelais, Tours, France
| | - C Douillard
- Centre de référence des maladies héréditaires du métabolisme, CHRU de Lille, Lille, France
| |
Collapse
|