1
|
Dinesh NEH, Baratang N, Rosseau J, Mohapatra R, Li L, Mahalingam R, Tiedemann K, Campeau PM, Reinhardt DP. Fibronectin isoforms promote postnatal skeletal development. Matrix Biol 2024; 133:86-102. [PMID: 39159790 DOI: 10.1016/j.matbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Fibronectin (FN) is a ubiquitous extracellular matrix glycoprotein essential for the development of various tissues. Mutations in FN cause a unique form of spondylometaphyseal dysplasia, emphasizing its importance in cartilage and bone development. However, the relevance and functional role of FN during skeletal development has remained elusive. To address these aspects, we have generated conditional knockout mouse models targeting the cellular FN isoform in cartilage (cFNKO), the plasma FN isoform in hepatocytes (pFNKO), and both isoforms together in a double knockout (FNdKO). We used these mice to determine the relevance of the two principal FN isoforms in skeletal development from postnatal day one to the adult stage at two months. We identified a distinct topological FN deposition pattern in the mouse limb during different gestational and postnatal skeletal development phases, with prominent levels at the resting and hypertrophic chondrocyte zones and in the trabecular bone. Cartilage-specific cFN emerged as the predominant isoform in the growth plate, whereas circulating pFN remained excluded from the growth plate and confined to the primary and secondary ossification centers. Deleting either isoform independently (cFNKO or pFNKO) yielded only relatively subtle changes in the analyzed skeletal parameters. However, the double knockout of cFN in the growth plate and pFN in the circulation of the FNdKO mice significantly reduced postnatal body weight, body length, and bone length. Micro-CT analysis of the adult bone microarchitecture in FNdKO mice exposed substantial reductions in trabecular bone parameters and bone mineral density. The mice also showed elevated bone marrow adiposity. Analysis of chondrogenesis in FNdKO mice demonstrated changes in the resting, proliferating and hypertrophic growth plate zones, consistent alterations in chondrogenic markers such as collagen type II and X, decreased apoptosis of hypertrophic chondrocytes, and downregulation of bone formation markers. Transforming growth factor-β1 and downstream phospho-AKT levels were significantly lower in the FNdKO than in the control mice, revealing a crucial FN-mediated regulatory pathway in chondrogenesis and bone formation. In conclusion, the data demonstrate that FN is essential for chondrogenesis and bone development. Even though cFN and pFN act in different regions of the bone, both FN isoforms are required for the regulation of chondrogenesis, cartilage maturation, trabecular bone formation, and overall skeletal growth.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | | | - Ronit Mohapatra
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Ling Li
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Ramshaa Mahalingam
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | | | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Tong X, Poramba-Liyanage DW, van Hoolwerff M, Riemers FM, Montilla-Rojo J, Warin J, Salvatori D, Camus A, Meulenbelt I, Ramos YFM, Geijsen N, Tryfonidou MA, Shang P. Isolation and tracing of matrix-producing notochordal and chondrocyte cells using ACAN-2A-mScarlet reporter human iPSC lines. SCIENCE ADVANCES 2024; 10:eadp3170. [PMID: 39441923 PMCID: PMC11498221 DOI: 10.1126/sciadv.adp3170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
The development of human induced pluripotent stem cell (iPSC)-based regenerative therapies is challenged by the lack of specific cell markers to isolate differentiated cell types and improve differentiation protocols. This issue is particularly critical for notochordal-like cells and chondrocytes, which are crucial in treating back pain and osteoarthritis, respectively. Both cell types produce abundant proteoglycan aggrecan (ACAN), crucial for the extracellular matrix. We generated two human iPSC lines containing an ACAN-2A-mScarlet reporter. The reporter cell lines were validated using CRISPR-mediated transactivation and functionally validated during notochord and cartilage differentiation. The ability to isolate differentiated cell populations producing ACAN enables their enrichment even in the absence of specific cell markers and allows for comprehensive studies and protocol refinement. ACAN's prevalence in various tissues (e.g., cardiac and cerebral) underscores the reporter's versatility as a valuable tool for tracking matrix protein production in diverse cell types, benefiting developmental biology, matrix pathophysiology, and regenerative medicine.
Collapse
Affiliation(s)
- Xiaole Tong
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Deepani W. Poramba-Liyanage
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Marcella van Hoolwerff
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank M. Riemers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Joaquin Montilla-Rojo
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Julie Warin
- Université de Nantes, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Daniela Salvatori
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Anne Camus
- Université de Nantes, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Yolande F. M. Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, Leiden, Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, Netherlands
| | - Peng Shang
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, Leiden, Netherlands
| |
Collapse
|
3
|
Amodei L, Ruggieri AG, Potenza F, Viele M, Dufrusine B, Franciotti R, Pietrangelo L, Ardini M, Stuppia L, Federici L, De Laurenzi V, Sallese M. Sil1-deficient fibroblasts generate an aberrant extracellular matrix leading to tendon disorganisation in Marinesco-Sjögren syndrome. J Transl Med 2024; 22:787. [PMID: 39180052 PMCID: PMC11342654 DOI: 10.1186/s12967-024-05582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Marinesco-Sjögren syndrome (MSS) is an autosomal recessive neuromuscular disorder that arises in early childhood and is characterized by congenital cataracts, myopathy associated with muscle weakness, and degeneration of Purkinje neurons leading to ataxia. About 60% of MSS patients have loss-of-function mutations in the SIL1 gene. Sil1 is an endoplasmic reticulum (ER) protein required for the release of ADP from the master chaperone Bip, which in turn will release the folded proteins. The expression of non-functional Sil1 leads to the accumulation of unfolded proteins in the ER and this triggers the unfolded protein response (UPR). A dysfunctional UPR could be a key element in the pathogenesis of MSS, although our knowledge of the molecular pathology of MSS is still incomplete. METHODS RNA-Seq transcriptomics was analysed using the String database and the Ingenuity Pathway Analysis platform. Fluorescence confocal microscopy was used to study the remodelling of the extracellular matrix (ECM). Transmission electron microscopy (TEM) was used to reveal the morphology of the ECM in vitro and in mouse tendon. RESULTS Our transcriptomic analysis, performed on patient-derived fibroblasts, revealed 664 differentially expressed (DE) transcripts. Enrichment analysis of DE genes confirmed that the patient fibroblasts have a membrane trafficking issue. Furthermore, this analysis indicated that the extracellular space/ECM and the cell adhesion machinery, which together account for around 300 transcripts, could be affected in MSS. Functional assays showed that patient fibroblasts have a reduced capacity of ECM remodelling, reduced motility, and slower spreading during adhesion to Petri dishes. TEM micrographs of negative-stained ECM samples from these fibroblasts show differences of filaments in terms of morphology and size. Finally, structural analysis of the myotendinous junction of the soleus muscle and surrounding regions of the Achilles tendon revealed a disorganization of collagen fibres in the mouse model of MSS (woozy). CONCLUSIONS ECM alterations can affect the proper functioning of several organs, including those damaged in MSS such as the central nervous system, skeletal muscle, bone and lens. On this basis, we propose that aberrant ECM is a key pathological feature of MSS and may help explain most of its clinical manifestations.
Collapse
Affiliation(s)
- Laura Amodei
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Anna Giulia Ruggieri
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Francesca Potenza
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Marianna Viele
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Beatrice Dufrusine
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, 64100, Italy
| | | | | | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
- Department of Psychological Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy.
- Center for Advanced Studies and Technology (CAST), Chieti, Italy.
| |
Collapse
|
4
|
Greer SE, Haller SJ, Lee D, Dudley AT. N-cadherin and β1 integrin coordinately regulate growth plate cartilage architecture. Mol Biol Cell 2024; 35:ar49. [PMID: 38294852 PMCID: PMC11064670 DOI: 10.1091/mbc.e23-03-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Spatial and temporal regulation of chondrocyte maturation in the growth plate drives growth of many bones. One essential event to generate the ordered cell array characterizing growth plate cartilage is the formation of chondrocyte columns in the proliferative zone via 90-degree rotation of daughter cells to align with the long axis of the bone. Previous studies have suggested crucial roles for cadherins and integrin β1 in column formation. The purpose of this study was to determine the relative contributions of cadherin- and integrin-mediated cell adhesion in column formation. Here we present new mechanistic insights generated by application of live time-lapse confocal microscopy of cranial base explant cultures, robust genetic mouse models, and new quantitative methods to analyze cell behavior. We show that conditional deletion of either the cell-cell adhesion molecule Cdh2 or the cell-matrix adhesion molecule Itgb1 disrupts column formation. Compound mutants were used to determine a potential reciprocal regulatory interaction between the two adhesion surfaces and identified that defective chondrocyte rotation in a N-cadherin mutant was restored by a heterozygous loss of integrin β1. Our results support a model for which integrin β1, and not N-cadherin, drives chondrocyte rotation and for which N-cadherin is a potential negative regulator of integrin β1 function.
Collapse
Affiliation(s)
- Sydney E. Greer
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Stephen J. Haller
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Donghee Lee
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Andrew T. Dudley
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
5
|
Ahmed HA, Elhossini R, Aglan M, Amr K. Aggrecan-related bone disorders; a novel heterozygous ACAN variant associated with spondyloepimetaphyseal dysplasia expanding the phenotypic spectrum and review of literature. J Genet Eng Biotechnol 2024; 22:100341. [PMID: 38494255 PMCID: PMC10860877 DOI: 10.1016/j.jgeb.2023.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Spondyloepimetaphyseal dysplasias (SEMD) are a large group of skeletal disorders represented by abnormalities of vertebrae in addition to epiphyseal and metaphyseal areas of bones. Several genes have been identified underlying different forms. ACAN gene mutations were found to cause Aggrecan-related bone disorders (spondyloepimetaphyseal dysplasias,spondyloepiphyseal dysplasias, familial osteochondritis dissecans and short stature syndromes). This study aims to find the disease causing variant in Egyptian patient with SEMD using whole exome sequencing. METHODS Whole-exome sequencing was performed for an Egyptian male patient who presented with short stature, clinical and radiological features suggestive of unclassified SEMD. RESULTS The study identified a novel de novo heterozygous ACAN gene variant (c.7378G>A; p.Gly2460Arg) in G3 domain. Mutations in ACAN gene have been more commonly associated with short stature than SEMD. The phenotype of our patient was intermediate in severity between spondyloepiphyseal dysplasia presentation; Kimberley type(SEDK) and Spondyloepimetaphyseal dysplasias Aggrecan (SEMDAG) CONCLUSIONS: Whole exome sequencing revealed a novel de novo ACAN gene variant in patient with SEDK. The clinical and skeletal phenotype of our patient was much severe than those reported originally and showed more metaphyseal involvement. To the best of our knowledge, two previous studies reported a heterozygous variant in ACAN with spondyloepiphyseal dysplasia presentation; Kimberley type.
Collapse
Affiliation(s)
- Hoda A Ahmed
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Egypt.
| | - R Elhossini
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Egypt
| | - M Aglan
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Egypt
| | - Khalda Amr
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Egypt
| |
Collapse
|
6
|
Koung Ngeun S, Shimizu M, Kaneda M. Myogenic Differentiation and Immunomodulatory Properties of Rat Adipose-Derived Mesenchymal Stem/Stromal Cells. BIOLOGY 2024; 13:72. [PMID: 38392291 PMCID: PMC10886144 DOI: 10.3390/biology13020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
The myogenic differentiation potential of MSCs is a key factor in their potential use as a cell source for muscle tissue repair and regeneration. Additionally, evaluating the immunomodulatory properties of MSCs is important to highlight their potential for regulating inflammation and supporting tissue regeneration. Given the limited literature on muscle differentiation potential and immunomodulatory properties, this study aims to characterize rat ADP MSCs for treating muscle disease. We isolated MSCs from adipose tissues around the periscapular region of the rats. We used a monoculture method for the myogenic differentiation and modified the myogenic induction medium by supplementing it with the growth factors FGF, HGF, and IGF. In rat ADP MSCs, expression of the MSC-specific marker, CD90, was 87.7%, while CD44 was 42.8%. For genes involved in immunomodulation, IGF1 and TGFB1 were highly expressed, while IL6 was poorly expressed. In addition to their trilineage differentiation potential, ADP MSCs exhibited the capacity to differentiate into myogenic cell lines, as evidenced by changes in cell morphology, leading to elongated and aligned structures and the expression of the MyoD and MYOG antibodies. The study found that ADP MSCs show great clinical promise for muscle regeneration.
Collapse
Affiliation(s)
- Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Miki Shimizu
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
7
|
Tüysüz B, Kasap B, Uludağ Alkaya D, Alp Ünkar Z, Köseoğlu P, Geyik F, Özer E, Önal H, Gezdirici A, Ercan O. Investigation of (Epi)genetic causes in syndromic short children born small for gestational age. Eur J Med Genet 2023; 66:104854. [PMID: 37758162 DOI: 10.1016/j.ejmg.2023.104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Intrauterine onset syndromic short stature constitutes a group of diseases that pose challenges in differential diagnosis due to their rarity and clinical as well as molecular heterogeneity. The aim of this study was to investigate the presence of (epi)genetic causes in children born small for gestational age (SGA) and manifesting clinically undiagnosed syndromic short stature. The study group comprised twenty-nine cases selected from the syndromic SGA cohort. Various analyses were performed, including chromosomal microarray (CMA), methylation-specific-multiple ligation probe amplification for chromosomes 6,14 and 20, and whole exome sequencing (WES). Pathogenic copy number variants (CNVs) on chromosomes 2q13, 22q11.3, Xp22.33, 17q21.31, 19p13.13 and 4p16.31 causing syndromic growth disturbance were detected in six patients. Maternal uniparental disomy 14 was identified in a patient. WES was performed in the remaining 22 patients, revealing pathogenic variants in nine cases; six were monoallelic (ACAN, ARID2, NIPBL, PIK3R1, SMAD4, BRIP1), two were biallelic (BRCA2, RFWD3) and one was hemizygous (HUWE1). Seven of these were novel. Craniofacial dysmorphism, which is an important clue for the diagnosis of syndromes, was very mild in all patients. This study unveiled, for the first time, that ARID2 mutatios can cause syndromic SGA. In conclusion, a high (55.2%) diagnosis rate was achieved through the utilization of CMA, epigenetic and WES analyzes; 15 rare syndromes were defined, who were born with SGA and had atypical and/or mild dysmorphic findings. This study not only drew attention to the association of some rare syndromes with SGA, but also introduced novel genes and CNVs as potential contributors to syndromic SGA.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey.
| | - Büşra Kasap
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Zeynep Alp Ünkar
- Department of Neonatology, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Pınar Köseoğlu
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Filiz Geyik
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Emre Özer
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Hasan Önal
- Department of Pediatric Endocrinology, University of Health Sciences Turkey, Başakşehir Çam ve Sakura City Hospital, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetic, University of Health Sciences Turkey, Başakşehir Çam ve Sakura City Hospital, Istanbul, Turkey
| | - Oya Ercan
- Department of Pediatric Endocrinology, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| |
Collapse
|
8
|
Plachy L, Petruzelkova L, Dusatkova P, Maratova K, Zemkova D, Elblova L, Neuman V, Kolouskova S, Obermannova B, Snajderova M, Sumnik Z, Lebl J, Pruhova S. Analysis of children with familial short stature: who should be indicated for genetic testing? Endocr Connect 2023; 12:e230238. [PMID: 37561071 PMCID: PMC10563636 DOI: 10.1530/ec-23-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/10/2023] [Indexed: 08/11/2023]
Abstract
Familial short stature (FSS) describes vertically transmitted growth disorders. Traditionally, polygenic inheritance is presumed, but monogenic inheritance seems to occur more frequently than expected. Clinical predictors of monogenic FSS have not been elucidated. The aim of the study was to identify the monogenic etiology and its clinical predictors in FSS children. Of 747 patients treated with growth hormone (GH) in our center, 95 with FSS met the inclusion criteria (pretreatment height ≤-2 SD in child and his/her shorter parent); secondary short stature and Turner/Prader-Willi syndrome were excluded criteria. Genetic etiology was known in 11/95 children before the study, remaining 84 were examined by next-generation sequencing. The results were evaluated by American College of Medical Genetics and Genomics (ACMG) guidelines. Nonparametric tests evaluated differences between monogenic and non-monogenic FSS, an ROC curve estimated quantitative cutoffs for the predictors. Monogenic FSS was confirmed in 36/95 (38%) children. Of these, 29 (81%) carried a causative genetic variant affecting the growth plate, 4 (11%) a variant affecting GH-insulin-like growth factor 1 (IGF1) axis and 3 (8%) a variant in miscellaneous genes. Lower shorter parent's height (P = 0.015) and less delayed bone age (BA) before GH treatment (P = 0.026) predicted monogenic FSS. In children with BA delayed less than 0.4 years and with shorter parent's heights ≤-2.4 SD, monogenic FSS was revealed in 13/16 (81%) cases. To conclude, in FSS children treated with GH, a monogenic etiology is frequent, and gene variants affecting the growth plate are the most common. Shorter parent's height and BA are clinical predictors of monogenic FSS.
Collapse
Affiliation(s)
- Lukas Plachy
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Lenka Petruzelkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Petra Dusatkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Klara Maratova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Dana Zemkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Lenka Elblova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Vit Neuman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Stanislava Kolouskova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Barbora Obermannova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Marta Snajderova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Zdenek Sumnik
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
9
|
Idiopathic Short Stature: What to Expect from Genomic Investigations. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Short stature is a common concern for physicians caring for children. In traditional investigations, about 70% of children are healthy, without producing clinical and laboratory findings that justify their growth disorder, being classified as having constitutional short stature or idiopathic short stature (ISS). In such scenarios, the genetic approach has emerged as a great potential method to understand ISS. Over the last 30 years, several genes have been identified as being responsible for isolated short stature, with almost all of them being inherited in an autosomal-dominant pattern. Most of these defects are in genes related to the growth plate, followed by genes related to the growth hormone (GH)–insulin-like growth factor 1 (IGF1) axis and RAS-MAPK pathway. These patients usually do not have a specific phenotype, which hinders the use of a candidate gene approach. Through multigene sequencing analyses, it has been possible to provide an answer for short stature in 10–30% of these cases, with great impacts on treatment and follow-up, allowing the application of the concept of precision medicine in patients with ISS. This review highlights the historic aspects and provides an update on the monogenic causes of idiopathic short stature and suggests what to expect from genomic investigations in this field.
Collapse
|
10
|
Au TYK, Yip RKH, Wynn SL, Tan TY, Fu A, Geng YH, Szeto IYY, Niu B, Yip KY, Cheung MCH, Lovell-Badge R, Cheah KSE. Hypomorphic and dominant-negative impact of truncated SOX9 dysregulates Hedgehog-Wnt signaling, causing campomelia. Proc Natl Acad Sci U S A 2023; 120:e2208623119. [PMID: 36584300 PMCID: PMC9910594 DOI: 10.1073/pnas.2208623119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/02/2022] [Indexed: 01/01/2023] Open
Abstract
Haploinsufficiency for SOX9, the master chondrogenesis transcription factor, can underlie campomelic dysplasia (CD), an autosomal dominant skeletal malformation syndrome, because heterozygous Sox9 null mice recapitulate the bent limb (campomelia) and some other phenotypes associated with CD. However, in vitro cell assays suggest haploinsufficiency may not apply for certain mutations, notably those that truncate the protein, but in these cases in vivo evidence is lacking and underlying mechanisms are unknown. Here, using conditional mouse mutants, we compared the impact of a heterozygous Sox9 null mutation (Sox9+/-) with the Sox9+/Y440X CD mutation that truncates the C-terminal transactivation domain but spares the DNA-binding domain. While some Sox9+/Y440X mice survived, all Sox9+/- mice died perinatally. However, the skeletal defects were more severe and IHH signaling in developing limb cartilage was significantly enhanced in Sox9+/Y440X compared with Sox9+/-. Activating Sox9Y440X specifically in the chondrocyte-osteoblast lineage caused milder campomelia, and revealed cell- and noncell autonomous mechanisms acting on chondrocyte differentiation and osteogenesis in the perichondrium. Transcriptome analyses of developing Sox9+/Y440X limbs revealed dysregulated expression of genes for the extracellular matrix, as well as changes consistent with aberrant WNT and HH signaling. SOX9Y440X failed to interact with β-catenin and was unable to suppress transactivation of Ihh in cell-based assays. We propose enhanced HH signaling in the adjacent perichondrium induces asymmetrically localized excessive perichondrial osteogenesis resulting in campomelia. Our study implicates combined haploinsufficiency/hypomorphic and dominant-negative actions of SOX9Y440X, cell-autonomous and noncell autonomous mechanisms, and dysregulated WNT and HH signaling, as the cause of human campomelia.
Collapse
Affiliation(s)
- Tiffany Y. K. Au
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Raymond K. H. Yip
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Sarah L. Wynn
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Tiong Y. Tan
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Alex Fu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong SAR, China
| | - Yu Hong Geng
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Irene Y. Y. Szeto
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Ben Niu
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Kevin Y. Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong SAR, China
| | - Martin C. H. Cheung
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Kathryn S. E. Cheah
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| |
Collapse
|
11
|
Empere M, Wang X, Prein C, Aspberg A, Moser M, Oohashi T, Clausen-Schaumann H, Aszodi A, Alberton P. Aggrecan governs intervertebral discs development by providing critical mechanical cues of the extracellular matrix. Front Bioeng Biotechnol 2023; 11:1128587. [PMID: 36937743 PMCID: PMC10017878 DOI: 10.3389/fbioe.2023.1128587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Aggrecan (ACAN) is localized in the intervertebral disc (IVD) in unique compartment-specific patterns where it contributes to the tissue structure and mechanical function together with collagens. The extracellular matrix (ECM) of the IVD undergoes degenerative changes during aging, misuse or trauma, which inevitably alter the biochemical and biomechanical properties of the tissue. A deeper understanding of these processes can be achieved in genetically engineered mouse models, taking into account the multifaceted aspects of IVD development. In this study, we generated aggrecan insertion mutant mice (Acan iE5/iE5 ) by interrupting exon 5 coding for the G1 domain of ACAN, and analyzed the morphological and mechanical properties of the different IVD compartments during embryonic development. Western blotting using an antibody against the total core protein failed to detect ACAN in cartilage extracts, whereas immunohistochemistry by a G1-specific antibody showed weak signals in vertebral tissues of Acan iE5/iE5 mice. Homozygous mutant mice are perinatally lethal and characterized by short snout, cleft palate and disproportionate dwarfism. Whole-mount skeletal staining and µ-CT analysis of Acan iE5/iE5 mice at embryonic day 18.5 revealed compressed vertebral bodies with accelerated mineralization compared to wild type controls. In Acan iE5/iE5 mice, histochemical staining revealed collapsed extracellular matrix with negligible sulfated glycosaminoglycan content accompanied by a high cellular density. Collagen type II deposition was not impaired in the IVD of Acan iE5/iE5 mice, as shown by immunohistochemistry. Mutant mice developed a severe IVD phenotype with deformed nucleus pulposus and thinned cartilaginous endplates accompanied by a disrupted growth plate structure in the vertebral body. Atomic force microscopy (AFM) imaging demonstrated a denser collagen network with thinner fibrils in the mutant IVD zones compared to wild type. Nanoscale AFM indentation revealed bimodal stiffness distribution attributable to the softer proteoglycan moiety and harder collagenous fibrils of the wild type IVD ECM. In Acan iE5/iE5 mice, loss of aggrecan resulted in a marked shift of the Young's modulus to higher values in all IVD zones. In conclusion, we demonstrated that aggrecan is pivotal for the determination and maintenance of the proper stiffness of IVD and vertebral tissues, which in turn could play an essential role in providing developmental biomechanical cues.
Collapse
Affiliation(s)
- Marta Empere
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Xujia Wang
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Carina Prein
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Anders Aspberg
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Markus Moser
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Max Planck Society, Martinsried, Germany
- Institute of Experimental Hematology, School of Medicine, Technische Universität München, Munich, Germany
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Attila Aszodi
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Paolo Alberton
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
- *Correspondence: Paolo Alberton,
| |
Collapse
|
12
|
Huang H, Jin J, Xiang R, Wang X. Case report: A novel heterozygous frameshift mutation of ACAN in a Chinese family with short stature and advanced bone age. Front Genet 2023; 14:1101695. [PMID: 37025453 PMCID: PMC10070732 DOI: 10.3389/fgene.2023.1101695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Short stature (OMIM: 165800) is a common pediatric disorder. Any abnormality in the cartilage formation of the growth plate can cause short stature. Aggrecan, encoded by ACAN, is an important component of the extracellular matrix. Mutations in ACAN have been reported to cause short stature. In the present study, we enrolled a Chinese family with short stature and advanced bone age across three generations. Whole-exome sequencing (WES) was performed on the proband to detect the candidate genes causing short stature in family. A novel heterozygous frameshift mutation (NM_013227.3:c.7230delT; NP_001356197.1: p. Phe2410Leufs*9) of the ACAN gene was confirmed to be a genetic lesion in this family. This variant, which was located in a functional site globular 3 (G3) domain of ACAN and predicted to be deleterious by informatics programs, was co-segregated with the affected family members by performing Sanger sequencing. Literatures review of growth hormone (GH) treatment outcome of all previously reported ACAN patients suggesting that the G3 domain of ACAN may be critical in the development of short stature and growth hormone treatment. These findings not only contribute to the genetic diagnosis and counseling of the family, but will also expand the mutation spectrum of ACAN.
Collapse
Affiliation(s)
- Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jieyuan Jin
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Xiang
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Rong Xiang, ; Xia Wang,
| | - Xia Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Rong Xiang, ; Xia Wang,
| |
Collapse
|
13
|
Saltarelli MA, Quarta A, Chiarelli F. Growth plate extracellular matrix defects and short stature in children. Ann Pediatr Endocrinol Metab 2022; 27:247-255. [PMID: 36567461 PMCID: PMC9816467 DOI: 10.6065/apem.2244120.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022] Open
Abstract
Many etiological factors causing short stature have already been identified in humans. In the last few years, the advent of new techniques for the detection of chromosomal and molecular abnormalities has made it possible to better identify patients with genetic causes of growth failure. Some of these factors directly affect the development and growth of the skeleton, since they damage the epiphyseal growth plate, where linear growth occurs, influencing chondrogenesis. In particular, defects in genes involved in the organization and function of the growth plate are responsible for several well-known conditions with short stature. These genes play a pivotal role in various mechanisms involving the extracellular matrix, intracellular signaling, paracrine signaling, endocrine signaling, and epigenetic regulation. In this review, we will discuss the genes involved in extracellular matrix disorders. The identification of genetic defects in linear growth failure is important for clinicians and researchers in order to improve the care of children affected by growth disorders.
Collapse
Affiliation(s)
| | - Alessia Quarta
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Chieti, Italy,Address for correspondence: Francesco Chiarelli Department of Pediatrics, University of Chieti, Via dei Vestini, 5 Chieti, I-66100, Italy
| |
Collapse
|
14
|
Dinesh NEH, Campeau PM, Reinhardt DP. Fibronectin isoforms in skeletal development and associated disorders. Am J Physiol Cell Physiol 2022; 323:C536-C549. [PMID: 35759430 DOI: 10.1152/ajpcell.00226.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix is an intricate and essential network of proteins and non-proteinaceous components that provide a conducive microenvironment for cells to regulate cell function, differentiation, and survival. Fibronectin is one key component in the extracellular matrix that participates in determining cell fate and function crucial for normal vertebrate development. Fibronectin undergoes time dependent expression patterns during stem cell differentiation, providing a unique stem cell niche. Mutations in fibronectin have been recently identified to cause a rare form of skeletal dysplasia with scoliosis and abnormal growth plates. Even though fibronectin has been extensively analyzed in developmental processes, the functional role and importance of this protein and its various isoforms in skeletal development remains less understood. This review attempts to provide a concise and critical overview of the role of fibronectin isoforms in cartilage and bone physiology and associated pathologies. This will facilitate a better understanding of the possible mechanisms through which fibronectin exerts its regulatory role on cellular differentiation during skeletal development. The review discusses the consequences of mutations in fibronectin leading to corner fracture type spondylometaphyseal dysplasia and presents a new outlook towards matrix-mediated molecular pathways in relation to therapeutic and clinical relevance.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
15
|
Leonard AS, Crysnanto D, Fang ZH, Heaton MP, Vander Ley BL, Herrera C, Bollwein H, Bickhart DM, Kuhn KL, Smith TPL, Rosen BD, Pausch H. Structural variant-based pangenome construction has low sensitivity to variability of haplotype-resolved bovine assemblies. Nat Commun 2022; 13:3012. [PMID: 35641504 PMCID: PMC9156671 DOI: 10.1038/s41467-022-30680-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Advantages of pangenomes over linear reference assemblies for genome research have recently been established. However, potential effects of sequence platform and assembly approach, or of combining assemblies created by different approaches, on pangenome construction have not been investigated. Here we generate haplotype-resolved assemblies from the offspring of three bovine trios representing increasing levels of heterozygosity that each demonstrate a substantial improvement in contiguity, completeness, and accuracy over the current Bos taurus reference genome. Diploid coverage as low as 20x for HiFi or 60x for ONT is sufficient to produce two haplotype-resolved assemblies meeting standards set by the Vertebrate Genomes Project. Structural variant-based pangenomes created from the haplotype-resolved assemblies demonstrate significant consensus regardless of sequence platform, assembler algorithm, or coverage. Inspecting pangenome topologies identifies 90 thousand structural variants including 931 overlapping with coding sequences; this approach reveals variants affecting QRICH2, PRDM9, HSPA1A, TAS2R46, and GC that have potential to affect phenotype.
Collapse
Affiliation(s)
- Alexander S Leonard
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, 8006, Zurich, Switzerland.
| | - Danang Crysnanto
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, 8006, Zurich, Switzerland
| | - Zih-Hua Fang
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, 8006, Zurich, Switzerland
| | - Michael P Heaton
- U.S. Meat Animal Research Center, USDA-ARS, 844 Road 313, Clay Center, NE, 68933, USA
| | - Brian L Vander Ley
- Great Plains Veterinary Educational Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Carolina Herrera
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, 8057, Zurich, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, 8057, Zurich, Switzerland
| | - Derek M Bickhart
- Dairy Forage Research Center, USDA-ARS, 1925 Linden Drive, Madison, WI, 53706, USA
| | - Kristen L Kuhn
- U.S. Meat Animal Research Center, USDA-ARS, 844 Road 313, Clay Center, NE, 68933, USA
| | - Timothy P L Smith
- U.S. Meat Animal Research Center, USDA-ARS, 844 Road 313, Clay Center, NE, 68933, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, USDA-ARS, 10300 Baltimore Ave, Beltsville, MD, 20705, USA.
| | - Hubert Pausch
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, 8006, Zurich, Switzerland.
| |
Collapse
|
16
|
Cao Y, Guan X, Li S, Wu N, Chen X, Yang T, Yang B, Zhao X. Identification of variants in ACAN and PAPSS2 leading to spondyloepi(meta)physeal dysplasias in four Chinese families. Mol Genet Genomic Med 2022; 10:e1916. [PMID: 35261200 PMCID: PMC9034684 DOI: 10.1002/mgg3.1916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background Spondyloepi(meta)physeal dysplasias (SE[M]D) are a group of inherited skeletal disorders that mainly affect bone and cartilage, and next‐generation sequencing has aided the detection of genetic defects of such diseases. In this study, we aimed to identify causative variants in four Chinese families associated with SE(M)D. Methods We recruited four unrelated Chinese families all displaying short stature and growth retardation. Clinical manifestations and X‐ray imaging were recorded for all patients. Candidate variants were identified by whole‐exome sequencing (WES) and verified by Sanger sequencing. Pathogenicity was assessed by conservation analysis, 3D protein modeling and in silico prediction, and was confirmed according to American College of Medical Genetics and Genomics. Results Three novel SE(M)D‐related variants c.1090dupG, c.7168 T > G, and c.2947G > C in ACAN, and one reported variant c.712C > T in PAPSS2 were identified. Among them, c.1090dupG in ACAN and c.712C > T in PAPSS2 caused truncated protein and the other two variants led to amino acid alterations. Conservation analysis revealed sites of the two missense variants were highly conserved, and bioinformatic findings confirmed their pathogenicity. 3D modeling of mutant protein encoded by c.7168 T > G(p.Trp2390Gly) in ACAN proved the structural alteration in protein level. Conclusion Our data suggested ACAN is a common pathogenic gene of SE(M)D. This study enriched the genetic background of skeletal dysplasias, and expanded the mutation spectra of ACAN and PAPSS2.
Collapse
Affiliation(s)
- Yixuan Cao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xin Guan
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shan Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiumin Chen
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Yang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bo Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Schwartz NB, Domowicz MS. Roles of Chondroitin Sulfate Proteoglycans as Regulators of Skeletal Development. Front Cell Dev Biol 2022; 10:745372. [PMID: 35465334 PMCID: PMC9026158 DOI: 10.3389/fcell.2022.745372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
The extracellular matrix (ECM) is critically important for most cellular processes including differentiation, morphogenesis, growth, survival and regeneration. The interplay between cells and the ECM often involves bidirectional signaling between ECM components and small molecules, i.e., growth factors, morphogens, hormones, etc., that regulate critical life processes. The ECM provides biochemical and contextual information by binding, storing, and releasing the bioactive signaling molecules, and/or mechanical information that signals from the cell membrane integrins through the cytoskeleton to the nucleus, thereby influencing cell phenotypes. Using these dynamic, reciprocal processes, cells can also remodel and reshape the ECM by degrading and re-assembling it, thereby sculpting their environments. In this review, we summarize the role of chondroitin sulfate proteoglycans as regulators of cell and tissue development using the skeletal growth plate model, with an emphasis on use of naturally occurring, or created mutants to decipher the role of proteoglycan components in signaling paradigms.
Collapse
Affiliation(s)
- Nancy B. Schwartz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
- *Correspondence: Nancy B. Schwartz,
| | - Miriam S. Domowicz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Yin LP, Zheng HX, Zhu H. Short stature associated with a novel mutation in the aggrecan gene: A case report and literature review. World J Clin Cases 2022; 10:2811-2817. [PMID: 35434101 PMCID: PMC8968812 DOI: 10.12998/wjcc.v10.i9.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/02/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mutations in the aggrecan (ACAN) gene are identified in patients with: spondyloepiphyseal dysplasia, Kimberley type; short stature with advanced bone age (BA); in the presence or absence of heterozygous ACAN mutation-induced early-onset osteoarthritis and/or osteochondritis dissecans; and spondyloepimetaphyseal dysplasia, ACAN type. Heterozygous mutations contribute to spondyloepiphyseal dysplasia, Kimberley type (MIM#608361), which is a milder skeletal dysplasia. In contrast, homozygous mutations cause a critical skeletal dysplasia, which is called spondyloepimetaphyseal dysplasia, ACAN type (MIM#612813). Lately, investigations on exome and genome sequencing have shown that ACAN mutations can also lead to idiopathic short stature with or without an advanced BA, in the presence or absence of early-onset osteoarthritis and/or osteochondritis dissecans (MIM#165800). We herein reported a heterozygous defect of ACAN in a family with autosomal dominant short stature, BA acceleration, and premature growth cessation.
CASE SUMMARY A 2-year-old male patient visited us due to growth retardation. The patient presented symmetrical short stature (height 79 cm, < -2 SD) without facial features and other congenital abnormalities. Whole-exome sequencing revealed a heterozygous pathogenic variant c. 871C>T (p. Gln291*) of ACAN, which was not yet reported in cases of short stature. This mutation was also detected in his father and paternal grandmother. According to the Human Gene Mutation Database, 67 ACAN mutations are registered. Most of these mutations are genetically inheritable, and very few children with short stature are associated with ACAN mutations. To date, heterozygous ACAN mutations have been reported in approximately 40 families worldwide, including a few individuals with a decelerated BA.
CONCLUSION Heterozygous c. 871C>T (p. Gln291*) variation of the ACAN gene was the disease-causing variant in this family. Collectively, our newly discovered mutation expanded the spectrum of ACAN gene mutations.
Collapse
Affiliation(s)
- Li-Ping Yin
- Department of Paediatrics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| | - Hong-Xue Zheng
- Department of Paediatrics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| | - Hong Zhu
- Department of Paediatrics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
19
|
ACAN biallelic variants in a girl with severe idiopathic short stature. J Hum Genet 2022; 67:481-486. [PMID: 35314765 DOI: 10.1038/s10038-022-01030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
Although ACAN heterozygous loss-of-function variants often cause idiopathic short stature (ISS) phenotype, there is no report describing ISS phenotype caused by ACAN biallelic loss-of-function variants. We encountered a 4 1/12-year-old Japanese girl with a height of 80.4 cm (-5.2 SD), a weight of 11.4 kg (-1.9 SD), a head circumference of 48.7 cm (-0.6 SD), and an arm span/height ratio of 1.0 (+1.1 SD). Endocrine studies and bone survey showed no abnormal findings. Whole exome sequencing revealed biallelic rare variants in ACAN, i.e., NM_013227.4:c.4214delC:p.(Pro1405Leufs*3) derived from her father and paternal grandfather with short stature (-2.9 and -2.0 SD, respectively) and NM_013227.4:c.7124 A>G:p.(Gln2375Arg) inherited from her mother and maternal grandmother with short stature (-2.1 and -3.0 SD, respectively). The frameshift variant underwent nonsense mediated mRNA decay, and the missense variant was assessed to have high pathogenicity. The results imply for the first time that ACAN biallelic loss-of-function variants can cause severe ISS phenotype.
Collapse
|
20
|
Deng S, Hou L, Xia D, Li X, Peng X, Xiao X, Zhang J, Meng Z, Zhang L, Ouyang N, Liang L. Description of the molecular and phenotypic spectrum in Chinese patients with aggrecan deficiency: Novel ACAN heterozygous variants in eight Chinese children and a review of the literature. Front Endocrinol (Lausanne) 2022; 13:1015954. [PMID: 36387899 PMCID: PMC9649928 DOI: 10.3389/fendo.2022.1015954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study analyzed eight Chinese short stature children with aggrecan deficiency, and aimed to investigate potential genotype-phenotype correlations, differences in clinical characteristics between the Chinese and the Western populations, and effectiveness of recombinant human growth hormone therapy in patients with ACAN variants through a review of the literature. METHODS Pediatric short stature patients with ACAN heterozygous variants were identified using whole-exome sequencing. Subsequently, a literature review was carried out to summarize the clinical features, genetic findings, and efficacy of growth-promoting therapy in patients with ACAN variants. RESULTS We identified seven novel ACAN mutations and one recurrent variant. Patients in our center manifested with short stature (average height SDS: -3.30 ± 0.85) with slight dysmorphic characteristics. The prevalence of dysmorphic features in the Chinese populations is significantly lower than that in the Western populations. Meanwhile, only 24.24% of aggrecan-deficient Chinese children showed significantly advanced bone age (BA). Promising therapeutic benefits were seen in the patients who received growth-promoting treatment, with an increase in growth velocity from 4.52 ± 1.00 cm/year to 8.03 ± 1.16 cm/year. CONCLUSION This study further expanded the variation spectrum of the ACAN gene and demonstrated that Chinese children with short stature who carried ACAN heterozygous variants exhibited early growth cessation, which may remain unnoticed by clinicians as most of these children had very mild dysmorphic characteristics and showed BA that was consistent with the chronological age. Genetic testing may help in the diagnosis.
Collapse
Affiliation(s)
- Shuyun Deng
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lele Hou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Xia
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Li
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofang Peng
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqin Xiao
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieming Zhang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhe Meng
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lina Zhang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nengtai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Nengtai Ouyang, ; Liyang Liang,
| | - Liyang Liang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Nengtai Ouyang, ; Liyang Liang,
| |
Collapse
|
21
|
Denis A, Chergui S, Basalom S, Campeau PM, Janelle C, Pauyo T. Variable expressivity in a family with an aggrecanopathy. Mol Genet Genomic Med 2021; 10:e1773. [PMID: 34894100 PMCID: PMC8801139 DOI: 10.1002/mgg3.1773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/13/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022] Open
Abstract
Background Osteochondritis dissecans is a condition wherein there is a subchondral bone lesion that causes pain, inflammation, and cartilage damage. Dominant Familial Osteochondritis Dissecans is a rare and severe form of osteochondritis dissecans (OCD). It is caused by heterozygous pathogenic variants in the gene encoding Aggrecan; ACAN. Aggrecan, a proteoglycan, is an essential component of the articular and growth plate cartilage. Methods Herein, we report three individuals from one family; the proband who presented with short stature, a lower limb bone exostosis, and bilateral knee and elbow OCD at the age of 13 years old. His twin brother presented with isolated short stature and his father with short stature and lumbar disc herniation. Results Next‐generation sequencing of the ACAN gene in the proband identified a frameshift variant which is also present in the brother and father with short stature. The proband was treated surgically with bilateral elbow microfracture, after the failure of conservative therapy. Conclusion To the best of our knowledge, this is the first patient with an aggrecanopathy who presents with osteochondritis dissecans due to a frameshift variant. This family presents with variable expressivity which might be attributed to modifier genes.
Collapse
Affiliation(s)
- Antoine Denis
- Shriners Hospitals for Children, Montreal, Quebec, Canada
| | - Sami Chergui
- Shriners Hospitals for Children, Montreal, Quebec, Canada
| | - Shuaa Basalom
- Shriners Hospitals for Children, Montreal, Quebec, Canada
| | | | | | - Thierry Pauyo
- Shriners Hospitals for Children, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Ben Hamouda S, Miglino MA, de Sá Schiavo Matias G, Beauchamp G, Lavoie JP. Asthmatic Bronchial Matrices Determine the Gene Expression and Behavior of Smooth Muscle Cells in a 3D Culture Model. FRONTIERS IN ALLERGY 2021; 2:762026. [PMID: 35387054 PMCID: PMC8974673 DOI: 10.3389/falgy.2021.762026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Asthma is associated with increased deposition and altered phenotype of airway smooth muscle (ASM) cells. However, little is known about the processes responsible for these changes. It has been suggested that alterations of the extracellular matrix (ECM) contribute to the remodeling of ASM cells in asthma. Three-dimensional matrices allow the in vitro study of complex cellular responses to different stimuli in a close-to-natural environment. Thus, we investigated the ultrastructural and genic variations of ASM cells cultured on acellular asthmatic and control bronchial matrices. We studied horses, as they spontaneously develop a human asthma-like condition (heaves) with similarities to chronic pulmonary changes observed in human asthma. Primary bronchial ASM cells from asthmatic (n = 3) and control (n = 3) horses were cultured on decellularized bronchi from control (n = 3) and asthmatic (n = 3) horses. Each cell lineage was used to recellularize six different bronchi for 41 days. Histomorphometry on HEPS-stained-recellularized matrices revealed an increased ASM cell number in the control cell/control matrix (p = 0.02) and asthmatic cell/control matrix group (p = 0.04) compared with the asthmatic cell/asthmatic matrix group. Scan electron microscopy revealed a cell invasion of the ECM. While ASM cells showed high adhesion and proliferation processes on the control ECM, the presence of senescent cells and cellular debris in the asthmatic ECM with control or asthmatic ASM cells suggested cell death. When comparing asthmatic with control cell/matrix combinations by targeted next generation sequencing, only AGC1 (p = 0.04), MYO10 (p = 0.009), JAM3 (p = 0.02), and TAGLN (p = 0.001) were differentially expressed out of a 70-gene pool previously associated with smooth muscle remodeling. To our knowledge, this is the first attempt to evaluate the effects of asthmatic ECM on an ASM cell phenotype using a biological bronchial matrix. Our results indicate that bronchial ECM health status contributes to ASM cell gene expression and, possibly, its survival.
Collapse
Affiliation(s)
- Selma Ben Hamouda
- Faculty of Veterinary Medicine, Université de Montréal, Quebec City, QC, Canada
| | - Maria Angélica Miglino
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Guy Beauchamp
- Faculty of Veterinary Medicine, Université de Montréal, Quebec City, QC, Canada
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Medicine, Université de Montréal, Quebec City, QC, Canada
- *Correspondence: Jean-Pierre Lavoie
| |
Collapse
|
23
|
Mancioppi V, Prodam F, Mellone S, Ricotti R, Giglione E, Grasso N, Vurchio D, Petri A, Rabbone I, Giordano M, Bellone S. Retrospective Diagnosis of a Novel ACAN Pathogenic Variant in a Family With Short Stature: A Case Report and Review of the Literature. Front Genet 2021; 12:708864. [PMID: 34456977 PMCID: PMC8397523 DOI: 10.3389/fgene.2021.708864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Short stature is a frequent disorder in the pediatric population and can be caused by multiple factors. In the last few years, the introduction of Next Generation Sequencing (NGS) in the molecular diagnostic workflow led to the discovery of mutations in novel genes causing short stature including heterozygous mutations in ACAN gene. It encodes for aggrecan, a primary proteoglycan component specific for the structure of the cartilage growth plate, articular and intervertebral disc. We report a novel ACAN heterozygous pathogenic variant in a family with idiopathic short stature, early-onset osteoarthritis and osteoarthritis dissecans (SSOAOD). We also performed a literature review summarizing the clinical characteristic of ACAN's patients. The probands are two Caucasian sisters with a family history of short stature and osteoarthritis dissecans. They showed dysmorphic features such as mild midface hypoplasia, brachydactyly and broad thumbs, especially the great toes. The same phenotype was presented in the mother who had had short stature and suffered from intervertebral disc disease. DNA sequencing identified a heterozygous pathogenic variation (c.4390delG p.Val1464Ter) in the sisters, with a maternal inheritance. The nonsense mutation, located on exon 12, results in premature truncation and presumed loss of protein function. In terms of treatment, our patients underwent recombinant human growth hormone replacement therapy, associated with gonadotropin releasing hormone therapy, in order to block early growth cessation and therefore reach a better final height. Our case suggests that SSOAOD ACAN related should be considered in the differential diagnosis of children with autosomal dominant short stature and family history of joints disease.
Collapse
Affiliation(s)
- Valentina Mancioppi
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Flavia Prodam
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Simona Mellone
- Laboratory of Genetics, SCDU Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy
| | - Roberta Ricotti
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Enza Giglione
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Nicolino Grasso
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Denise Vurchio
- Laboratory of Genetics, SCDU Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy
| | - Antonella Petri
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mara Giordano
- Laboratory of Genetics, SCDU Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy.,Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Simonetta Bellone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
24
|
Toscano P, Di Meglio L, Lonardo F, Di Meglio L, Mazzarelli LL, Sica C, Di Meglio A. Prenatal diagnosis of a novel pathogenic variation in the ACAN gene presenting with isolated shortening of fetal long bones in the second trimester of gestation: a case report. BMC Pregnancy Childbirth 2021; 21:459. [PMID: 34187405 PMCID: PMC8243643 DOI: 10.1186/s12884-021-03952-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Heterozygous mutations of the ACAN gene are a major cause of different evolutive growth defects in the pediatric population, but were never described as a cause of fetal skeletal dysplasia. CASE PRESENTATION A G1 at 21w + 3d came to our institution for the second-trimester ultrasound and a skeletal dysplasia with prevalent involvement of limb's rhizomelic tracts was suspected. Amniocentesis followed by CGH-array was performed, with normal results. An examination by NGS of some genes associated with skeletal dysplasias showed a novel pathogenic variant of the ACAN gene: c.2677delG. CONCLUSION Sequence variations of ACAN were never described as a possible cause of fetal skeletal anomalies to date. In this case report, we describe the first prenatal diagnosis of skeletal dysplasia associated with a pathogenic variant of ACAN.
Collapse
Affiliation(s)
- Paolo Toscano
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine and Surgery Federico II of Naples, University of Naples Federico II, Naples, Italy
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| | - Lavinia Di Meglio
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy.
- Department of Obstetrics and Gynecology, H. Buzzi, University of Milan, Milan, Italy.
| | - Fortunato Lonardo
- Department of Medical Genetics, A.O.R.N. "San Pio", Benevento, Italy
| | - Letizia Di Meglio
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| | - Laura Letizia Mazzarelli
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine and Surgery Federico II of Naples, University of Naples Federico II, Naples, Italy
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| | - Carmine Sica
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| | - Aniello Di Meglio
- Diagnostica Ecografica e Prenatale di A. Di Meglio, Via dei Fiorentini n.21, Naples, Italy
| |
Collapse
|
25
|
Plachy L, Dusatkova P, Maratova K, Petruzelkova L, Elblova L, Kolouskova S, Snajderova M, Obermannova B, Zemkova D, Sumnik Z, Lebl J, Pruhova S. Familial Short Stature-A Novel Phenotype of Growth Plate Collagenopathies. J Clin Endocrinol Metab 2021; 106:1742-1749. [PMID: 33570564 DOI: 10.1210/clinem/dgab084] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Collagens are the most abundant proteins in the human body. In a growth plate, collagen types II, IX, X, and XI are present. Defects in collagen genes cause heterogeneous syndromic disorders frequently associated with short stature. Less is known about oligosymptomatic collagenopathies. OBJECTIVE This work aims to evaluate the frequency of collagenopathies in familial short stature (FSS) children and to describe their phenotype, including growth hormone (GH) treatment response. METHODS Eighty-seven FSS children (pretreatment height ≤ -2 SD both in the patient and his or her shorter parent) treated with GH were included in the study. Next-generation sequencing was performed to search for variants in the COL2A1, COL9A1, COL9A2, COL9A3, COL10A1, COL11A1, and COL11A2 genes. The results were evaluated using American College of Medical Genetics and Genomics guidelines. The GH treatment response of affected children was retrospectively evaluated. RESULTS A likely pathogenic variant in the collagen gene was found in 10 of 87 (11.5%) children. Detailed examination described mild asymmetry with shorter limbs and mild bone dysplasia signs in 2 of 10 and 4 of 10 affected children, respectively. Their growth velocity improved from a median of 5.3 cm/year to 8.7 cm/year after 1 year of treatment. Their height improved from a median of -3.1 SD to -2.6 SD and to -2.2 SD after 1 and 3 years of therapy, respectively. The final height reached by 4 of 10 children differed by -0.67 to +1.0 SD and -0.45 to +0.5 SD compared to their pretreatment height and their affected untreated parent's height, respectively. CONCLUSION Oligosymptomatic collagenopathies are a frequent cause of FSS. The short-term response to GH treatment is promising.
Collapse
Affiliation(s)
- Lukas Plachy
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Petra Dusatkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Klara Maratova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Lenka Petruzelkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Lenka Elblova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Stanislava Kolouskova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Marta Snajderova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Barbora Obermannova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Dana Zemkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Zdenek Sumnik
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06 Prague 5, Czech Republic
| |
Collapse
|
26
|
Abstract
Osteochondritis dissecans (OCD) is a chronic disease of the articular cartilage characterized by focal lesions of subchondral bone and overlaying cartilage. Through the growing number of reports describing the high prevalence of OCD in some families, the subcategory termed familial OCD (FOCD) was established. With the development of genetic approaches such as genome-wide association studies and sequencing, aggrecan (ACAN) has been identified as one of the genes of interest associated with FOCD. Aggrecan is a crucial protein for the preservation and function of cartilage. However, due to FOCD being characterized relatively recently, there is a paucity of literature on the subject. The purpose of this review is to explore the relationship between ACAN mutations and familial OCD as well as to explore current treatment options and avenues for future research. In vitro and animal studies have shown the importance of ACAN in the preservation of cartilage. However, the only human ACAN mutation related to OCD ever identified is a V2303M mutation in the G3 domain. Multiple treatments have been superficially explored, and some options such as growth hormone (GH) and gonadotrophin-releasing hormone agonists (GnRHa) show potential. Thus, further research on FOCD in needed to identify other ACAN mutations and determine optimal treatment modalities for this patient population.
Collapse
|
27
|
Kang S, Zhou L, Wang Y, Li H, Zhang H. Identification of Differential Expression Cytokines in Hemolysis, Elevated Liver Enzymes, and Low Platelet Syndrome by Proteome Microarray Analysis and Further Verification. Cell Transplant 2021; 30:963689720975398. [PMID: 33757334 PMCID: PMC7995311 DOI: 10.1177/0963689720975398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To screen the differential expression cytokines (DECs) in hemolysis, elevated liver enzymes, and low platelet (HELLP) syndrome, establish its differential cytokines spectra, and provide the clues for its diagnosis and pathogenic mechanism researches. Sera from four HELLP syndrome patients and four healthy controls were detected by proteome microarray. Then the analysis of Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein–protein interaction (PPI) network were performed and possible hub proteins were selected out, further verified by Enzyme Linked Immunosorbent Assay (ELISA) in sera from 21 HELLP syndrome patients and 21 healthy controls. Thirty DECs were defined according to P-value and fold change between HELLP group and control group. GO enrichment analysis showed that DECs were mainly involved in the regulation of inflammatory response and have relationship to growth factor binding, transmembrane receptor protein kinase, and cytokine receptor activity. Seven possible hub proteins were defined by PPI analysis, including IGFBP-3/Follistatin-like 1/FLRG/Fetuin A and MMP-13/Thrombospondin-5/Aggrecan. ELISA showed higher serum levels of Fetuin A/IGFBP-3/FLGR/MMP-13/Thrombospondin-5 in HELLP group than those in controls, while the levels of Follistatin-like 1 and Aggrecan were lower in HELLP patients (all P < 0.05 or <0.01).The serological DECs spectra of HELLP syndrome was established and seven possible hub proteins that may be more closely related to the disease have been verified, providing new clues for its pathogenesis, diagnosis, and clinical treatment.
Collapse
Affiliation(s)
- Suya Kang
- Department of Gynecology and Obstetrics, 105860The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liping Zhou
- Department of Obstetrics, 12461Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou, China
| | - Yun Wang
- Department of Obstetrics, 12461Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou, China
| | - Hui Li
- Central Laboratory, 12461Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou, China
| | - Hong Zhang
- Department of Gynecology and Obstetrics, 105860The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Abstract
Growth is the task of children. We review the normal process of linear growth from the fetus through adolescence and note that growth is the result of age- and gender-dependent interactions among key genetic, environmental, dietary, socioeconomic, developmental, behavioral, nutritional, metabolic, biochemical, and hormonal factors. We then define the wide range of normative data at each stage of growth and note that a pattern within this range is generally indicative of good general health and that growth significantly slower than this range may lead to growth faltering and subsequent short stature. Although not often emphasized, we detail how to properly measure infants and children because height velocity is usually determined from two height measurements (both relatively large values) to calculate the actual height velocity (a relatively much smaller number in comparison). Traditionally the physiology of growth has been taught from an endocrine-centric point-of-view. Here we review the hypothalamic-pituitary-end organ axes for the GH/IGF-1 and gonadal steroid hormones (hypothalamic-pituitary-gonadal axis), both during "mini"-puberty as well as at puberty. However, over the past few decades much more emphasis has been placed on the growth plate and its many interactions with the endocrine system but also with its own intrinsic physiology and gene mutations. These latter, whether individually (large effect size) or in combination with many others including endocrine system-based, may account in toto for meaningful differences in adult height. The clinical assessment of children with short stature includes medical, social and family history, physical exam and importantly proper interpretation of the growth curve. This analysis should lead to judicious use of screening laboratory and imaging tests depending on the pre-test probability (Bayesian inference) of a particular diagnosis in that child. In particular for those with no pathological features in the history and physical exam and a low, but normal height velocity, may lead only to a bone age exam and reevaluation (re-measurement), perhaps 6 months later. he next step depends on the comfort level of the primary care physician, the patient, and the parent; that is, whether to continue with the evaluation with more directed, more sophisticated testing, again based on Bayesian inference or to seek consultation with a subspecialist pediatrician based on the data obtained. This is not necessarily an endocrinologist. The newest area and the one most in flux is the role for genetic testing, given that growth is a complex process with large effect size for single genes but smaller effect sizes for multiple other genes which in the aggregate may be relevant to attained adult height. Genetics is a discipline that is rapidly changing, especially as the cost of exome or whole gene sequencing diminishes sharply. Within a decade it is quite likely that a genetic approach to the evaluation of children with short stature will become the standard, truncating the diagnostic odyssey and be cost effective as fewer biochemical and imaging studies are required to make a proper diagnosis.
Collapse
Affiliation(s)
- Roberto Bogarín
- Department of Pediatric Endocrinology, National Children's Hospital, San José, Costa Rica
| | - Erick Richmond
- Department of Pediatric Endocrinology, National Children's Hospital, San José, Costa Rica
| | - Alan D Rogol
- Department of Pediatric Endocrinology, University of Virginia, Charlottesville, VA, USA -
| |
Collapse
|
29
|
Hayes AJ, Melrose J. Aggrecan, the Primary Weight-Bearing Cartilage Proteoglycan, Has Context-Dependent, Cell-Directive Properties in Embryonic Development and Neurogenesis: Aggrecan Glycan Side Chain Modifications Convey Interactive Biodiversity. Biomolecules 2020; 10:E1244. [PMID: 32867198 PMCID: PMC7564073 DOI: 10.3390/biom10091244] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
This review examines aggrecan's roles in developmental embryonic tissues, in tissues undergoing morphogenetic transition and in mature weight-bearing tissues. Aggrecan is a remarkably versatile and capable proteoglycan (PG) with diverse tissue context-dependent functional attributes beyond its established role as a weight-bearing PG. The aggrecan core protein provides a template which can be variably decorated with a number of glycosaminoglycan (GAG) side chains including keratan sulphate (KS), human natural killer trisaccharide (HNK-1) and chondroitin sulphate (CS). These convey unique tissue-specific functional properties in water imbibition, space-filling, matrix stabilisation or embryonic cellular regulation. Aggrecan also interacts with morphogens and growth factors directing tissue morphogenesis, remodelling and metaplasia. HNK-1 aggrecan glycoforms direct neural crest cell migration in embryonic development and is neuroprotective in perineuronal nets in the brain. The ability of the aggrecan core protein to assemble CS and KS chains at high density equips cartilage aggrecan with its well-known water-imbibing and weight-bearing properties. The importance of specific arrangements of GAG chains on aggrecan in all its forms is also a primary morphogenetic functional determinant providing aggrecan with unique tissue context dependent regulatory properties. The versatility displayed by aggrecan in biodiverse contexts is a function of its GAG side chains.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
| |
Collapse
|
30
|
Abstract
INTRODUCTION The present study is carried out to review the clinical data and gene detection results of a pediatric patient with short stature, and to summarize the relationship between clinical phenotype and genotype of the child with Aggrecan (ACAN) gene mutation. PATIENT CONCERNS Our study was started with the observation and follow-up of a 5-year-4-month-old full-term child with short stature accompanied by central precocious puberty (CPP). DIAGNOSIS Gene sequencing showed that there was a new heterozygous mutation C.2164C >G(p.P722A) in exon 11 of ACAN gene, which was inherited from her father. INTERVENTIONS The child was treated by growth hormone for 6 months with mild growth, and accelerated bone age (BA) after the presence of precocious puberty. The child was diagnosed with CPP, and was provided with combined gonadotropinreleasing hormone (GnRH) therapy. OUTCOMES The height of the pediatric patient was 99.4 cm (-3.13SDS) on admission, which was 111.9 cm (-2.08SDS) at the age of 6 years and 10 months, with a growth rate of 8.1 cm/year. There was no significant increase in BA of the pediatric patient after 1 year of follow-up. CONCLUSION Literature review indicated that the clinical manifestations of ACAN gene mutation are the most common in idiopathic short stature, most of which are familial inheritance and can also be sporadic. Some children may also have osteoarthritis, disc herniation or degeneration. In most cases, children may have advanced BA, and retardation of BA is also found in some cases. To sum up, growth hormone combined with GnRH analogue treatment can effectively improve body height of children by postponing their adolescence. Meanwhile, ACAN gene mutation shall be considered for small-for-gestational-age children without significant growth catch-up and with family history.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Qingdao Women and Children's Hospital, Cheeloo College of Medicine, Shandong University
- Department of Pediatrics, Weifang. Maternal and Children Health Hospital, Weifang
| | - Juan Ge
- Department of Pediatric endocrinology and metabolism, Qingdao Women and Children's Hospital
| | | | - Lingyan Qiao
- Department of Pediatric endocrinology and metabolism, Qingdao Women and Children's Hospital
| | - Tang Li
- Qingdao Women and Children's Hospital, Cheeloo College of Medicine, Shandong University
- Department of Pediatric endocrinology and metabolism, Qingdao Women and Children's Hospital
| |
Collapse
|
31
|
Abstract
CONTEXT Recent advances in genetics and genomics present unique opportunities for enhancing knowledge of human physiology and disease susceptibility. An outstanding example of these new insights may be seen in the study of human height, of which it has been estimated that approximately 80% is genetically determined. Over the past decade, large-scale population analyses have led to the identification of novel variation in genes and loci individually associated with changes in adult height of as much as 2 cm. OBJECTIVE To assess these same variants in the genomes of 213 158 individuals compiled by the Genome Aggregation Database (GnomAD) consortium, representing different population groups from around the world. RESULTS The majority of these height-changing alleles are substantially less prevalent in GnomAD than found previously in other cohorts, with 4 of 5 amino acid substitution variants with the largest impact on adult height being more frequent in the European population than in other groups. CONCLUSIONS A larger-scale analysis of individuals from diverse backgrounds will be necessary to ensure a full and accurate understanding of the genetic underpinnings of human height throughout the world, and additional studies will be needed to discern the biochemical and molecular mechanisms governing the physiological processes that explain how these variant proteins might selectively impact the biology of the growth plate. Broader understanding of the genetics of height also should set the stage for more comprehensive investigation into the causes of prevalent polygenic human diseases.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas
| |
Collapse
|
32
|
Stavber L, Hovnik T, Kotnik P, Lovrečić L, Kovač J, Tesovnik T, Bertok S, Dovč K, Debeljak M, Battelino T, Avbelj Stefanija M. High frequency of pathogenic ACAN variants including an intragenic deletion in selected individuals with short stature. Eur J Endocrinol 2020; 182:243-253. [PMID: 31841439 PMCID: PMC7087498 DOI: 10.1530/eje-19-0771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022]
Abstract
CONTEXT Defining the underlying etiology of idiopathic short stature (ISS) improves the overall management of an individual. OBJECTIVE To assess the frequency of pathogenic ACAN variants in selected individuals. DESIGN The single-center cohort study was conducted at a tertiary university children's hospital. From 51 unrelated patients with ISS, the 16 probands aged between 3 and 18 years (12 females) with advanced bone age and/or autosomal dominant inheritance pattern of short stature were selected for the study. Fifteen family members of ACAN-positive probands were included. Exome sequencing was performed in all probands, and additional copy number variation (CNV) detection was applied in selected probands with a distinct ACAN-associated phenotype. RESULTS Systematic phenotyping of the study cohort yielded 37.5% (6/16) ACAN-positive probands, with all novel pathogenic variants, including a 6.082 kb large intragenic deletion, detected by array comparative genomic hybridization (array CGH) and exome data analysis. All variants were co-segregated with short stature phenotype, except in one family member with the intragenic deletion who had an unexpected growth pattern within the normal range (-0.5 SDS). One patient presented with otosclerosis, a sign not previously associated with aggrecanopathy. CONCLUSIONS ACAN pathogenic variants presented a common cause of familial ISS. The selection criteria used in our study were suggested for a personalized approach to genetic testing of the ACAN gene in clinical practice. Our results expanded the number of pathogenic ACAN variants, including the first intragenic deletion, and suggested CNV evaluation in patients with typical clinical features of aggrecanopathy as reasonable. Intra-familial phenotypic variability in growth patterns should be considered.
Collapse
Affiliation(s)
- L Stavber
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - T Hovnik
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - P Kotnik
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - L Lovrečić
- Clinical Institute of Medical Genetics, University Medical Centre, Ljubljana, Slovenia
| | - J Kovač
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - T Tesovnik
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - S Bertok
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - K Dovč
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - M Debeljak
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - T Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - M Avbelj Stefanija
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
- Correspondence should be addressed to M Avbelj Stefanija;
| |
Collapse
|
33
|
Abstract
Heterozygous mutations of the ACAN gene have been associated with a broad spectrum of non-lethal skeletal dysplasias, called Aggrecanopathies. We report a case of a child with severe inflammatory elbow involvement mimicking septic arthritis who carried the new ACAN missense variant c.6970 T > C, p.Trp2324Arg. The comprehensive clinical evaluation of the patient and his family, focused on the associated clinical features (facial dysmorphisms, short stature, brachydactily), led us to suspect a hereditary condition. Our findings suggest that Aggrecanopathies should be considered in children with familial short stature, poor growth spurt and joint involvement.
Collapse
|
34
|
Hodax JK, Quintos JB, Gruppuso PA, Chen Q, Desai S, Jayasuriya CT. Aggrecan is required for chondrocyte differentiation in ATDC5 chondroprogenitor cells. PLoS One 2019; 14:e0218399. [PMID: 31206541 PMCID: PMC6576788 DOI: 10.1371/journal.pone.0218399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/31/2019] [Indexed: 11/30/2022] Open
Abstract
Aggrecan is an integral component of the extracellular matrix in cartilaginous tissues, including the growth plate. Heterozygous defects in the aggrecan gene have been identified as a cause of autosomal dominant short stature, bone age acceleration, and premature growth cessation. The mechanisms accounting for this phenotype remain unknown. We used ATDC5 cells, an established model of chondrogenesis, to evaluate the effects of aggrecan deficiency. ATDC5 aggrecan knockdown cell lines (AggKD) were generated using lentiviral shRNA transduction particles. Cells were stimulated with insulin/transferrin/selenium for up to 21 days to induce chondrogenesis. Control ATDC5 cells showed induction of Col2a1 starting at day 8 and induction of Col10a1 starting at day 12. AggKD cells had significantly reduced expression of Col2a1 and Col10a1 (p<0.0001) with only minimal increases in expression over time, indicating that chondrogenesis was markedly impaired. The induction of Col2a1 and Col10a1 was not rescued by culturing of AggKD cells in wells pre-conditioned with ATDC5 extracellular matrix or in co-culture with wild-type ATDC5 cells. We interpret our studies as indicating that aggrecan has an integral role in chondrogenesis that may be mediated through intracellular mechanisms.
Collapse
Affiliation(s)
- Juanita K. Hodax
- Department of Pediatrics, Division of Pediatric Endocrinology, The Warren Alpert Medical School of Brown University and Hasbro Children’s Hospital, Providence, RI, United States of America
| | - Jose Bernardo Quintos
- Department of Pediatrics, Division of Pediatric Endocrinology, The Warren Alpert Medical School of Brown University and Hasbro Children’s Hospital, Providence, RI, United States of America
| | - Philip A. Gruppuso
- Department of Pediatrics, Division of Pediatric Endocrinology, The Warren Alpert Medical School of Brown University and Hasbro Children’s Hospital, Providence, RI, United States of America
| | - Qian Chen
- Department of Orthopedics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Salomi Desai
- Department of Orthopedics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Chathuraka T. Jayasuriya
- Department of Orthopedics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- * E-mail:
| |
Collapse
|
35
|
Vasques GA, Andrade NLM, Jorge AAL. Genetic causes of isolated short stature. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:70-78. [PMID: 30864634 PMCID: PMC10118839 DOI: 10.20945/2359-3997000000105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/22/2019] [Indexed: 11/23/2022]
Abstract
Short stature is a common feature, and frequently remains without a specific diagnosis after conventional clinical and laboratorial evaluation. Longitudinal growth is mainly determined by genetic factors, and hundreds of common variants have been associated to height variability among healthy individuals. Although isolated short stature may be caused by the combination of variants, with a deleterious impact on the growth of individuals with polygenic inheritance, recent studies have pointed out some monogenic defects as the cause of the growth disorder observed in nonsyndromic children. The majority of these defects are in genes related to the growth plate cartilage and in the growth hormone (GH) - insulin-like growth factor 1 (IGF-1) axis. Affected patients usually present the mildest spectrum of some forms of skeletal dysplasia, or subtle abnormalities of laboratory tests, suggesting hormonal resistance or insensibility. The lack of specific characteristics, however, does not allow formulation of a definitive diagnosis without the use of broad genetic studies. Thus, molecular genetic studies including panels of genes or exome analysis will become essential in investigating and identifying the causes of isolated short stature in children, with a crucial impact on treatment and follow-up.
Collapse
Affiliation(s)
- Gabriela A Vasques
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil.,Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil
| | - Nathalia L M Andrade
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil.,Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética (LIM25), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil.,Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil
| |
Collapse
|
36
|
Genetic Predisposition to Symptomatic Lumbar Disk Herniation in Pediatric and Young Adult Patients. Spine (Phila Pa 1976) 2019; 44:E640-E649. [PMID: 30475332 DOI: 10.1097/brs.0000000000002949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Case-control whole-genome sequencing analysis of a highly select, young cohort with symptomatic lumbar disk herniation (LDH) compared with the standard variation in a large reference population. OBJECTIVE To assess genetic influences predisposing pediatric and young adult patients to symptomatic LDH. SUMMARY OF BACKGROUND DATA LDH has traditionally been attributed to natural weakening or mechanical insult, but recent literature supports a potential genetic influence. METHODS Young patients with symptomatic, clinically confirmed LDH who underwent surgical treatment were included. Patients were younger than the average age of presentation, limiting the influence of environmental risks. DNA collected from these patients was compared with a reference genome (1000 Genomes Project). A genome-wide association study using whole-genome sequencing was used to characterize genetic mutations potentially associated with LDH. RESULTS Among the 61 candidate genes flagged, 20 had missense mutations in 2 or more LDH cases. Missense mutations in collagen-encoding genes were observed in 12 of 15 patients (80%). A potential association with clinical presentation was indicated by odds ratios of key single-nucleotide polymorphism (SNP) variants in genes that encode collagen. Relative to the reference population, the LDH cohort demonstrated two statistically significant SNP variants in the gene encoding for aggrecan, a protein that facilitates load-bearing properties in the cartilaginous end plate. Aggrecan genes SNPs rs3817428 and rs11638262 were significantly associated with decreased odds of symptomatic LDH: odds ratio 0.05 (0.02-0.11) and 0.04 (0-0.26), respectively (P < 1 × 10 for both). CONCLUSION These results suggest that collagen-encoding variants may be a genetic risk factor for LDH. They also shed new light on the role of variants that impact aggrecan, which sustains the cartilaginous end plate. Genetic predisposition to LDH may therefore be related to a multimodal combination of mutations that affect the nucleus pulposus, annulus fibrosus, and the cartilaginous end plates. LEVEL OF EVIDENCE 4.
Collapse
|
37
|
Lamandé SR, Bateman JF. Genetic Disorders of the Extracellular Matrix. Anat Rec (Hoboken) 2019; 303:1527-1542. [PMID: 30768852 PMCID: PMC7318566 DOI: 10.1002/ar.24086] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Mutations in the genes for extracellular matrix (ECM) components cause a wide range of genetic connective tissues disorders throughout the body. The elucidation of mutations and their correlation with pathology has been instrumental in understanding the roles of many ECM components. The pathological consequences of ECM protein mutations depend on its tissue distribution, tissue function, and on the nature of the mutation. The prevalent paradigm for the molecular pathology has been that there are two global mechanisms. First, mutations that reduce the production of ECM proteins impair matrix integrity largely due to quantitative ECM defects. Second, mutations altering protein structure may reduce protein secretion but also introduce dominant negative effects in ECM formation, structure and/or stability. Recent studies show that endoplasmic reticulum (ER) stress, caused by mutant misfolded ECM proteins, makes a significant contribution to the pathophysiology. This suggests that targeting ER‐stress may offer a new therapeutic strategy in a range of ECM disorders caused by protein misfolding mutations. Anat Rec, 2019. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Shireen R Lamandé
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville Victoria, Australia
| | - John F Bateman
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville Victoria, Australia
| |
Collapse
|
38
|
Alberton P, Dugonitsch HC, Hartmann B, Li P, Farkas Z, Saller MM, Clausen-Schaumann H, Aszodi A. Aggrecan Hypomorphism Compromises Articular Cartilage Biomechanical Properties and Is Associated with Increased Incidence of Spontaneous Osteoarthritis. Int J Mol Sci 2019; 20:ijms20051008. [PMID: 30813547 PMCID: PMC6429589 DOI: 10.3390/ijms20051008] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 01/02/2023] Open
Abstract
The gene encoding the proteoglycan aggrecan (Agc1) is abundantly expressed in cartilage during development and adulthood, and the loss or diminished deposition of the protein results in a wide range of skeletal malformations. Furthermore, aggrecan degradation is a hallmark of cartilage degeneration occurring in osteoarthritis. In the present study, we investigated the consequences of a partial loss of aggrecan in the postnatal skeleton and in the articular cartilage of adult mice. We took advantage of the previously described Agc1tm(IRES-CreERT2) mouse line, which allows for conditional and timely-regulated deletion of floxed, cartilage-expressed genes. As previously reported, the introduction of the CreERT2 cassette in the 3’UTR causes a disruption of the normal expression of Agc1 resulting in a hypomorphic deposition of the protein. In homozygous mice, we observed a dwarf phenotype, which persisted throughout adulthood supporting the evidence that reduced aggrecan amount impairs skeletal growth. Homozygous mice exhibited reduced proteoglycan staining of the articular cartilage at 6 and 12 months of age, increased stiffening of the extracellular matrix at six months, and developed severe cartilage erosion by 12 months. The osteoarthritis in the hypomorph mice was not accompanied by increased expression of catabolic enzymes and matrix degradation neoepitopes. These findings suggest that the degeneration found in homozygous mice is likely due to the compromised mechanical properties of the cartilage tissue upon aggrecan reduction.
Collapse
Affiliation(s)
- Paolo Alberton
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany.
| | - Hans Christian Dugonitsch
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Bastian Hartmann
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany.
- Center for NanoScience, Ludwig-Maximilians University Munich, 80799 Munich, Germany.
| | - Ping Li
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Zsuzsanna Farkas
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Maximilian Michael Saller
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany.
- Center for NanoScience, Ludwig-Maximilians University Munich, 80799 Munich, Germany.
| | - Attila Aszodi
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany.
| |
Collapse
|
39
|
Brommage R, Ohlsson C. High Fidelity of Mouse Models Mimicking Human Genetic Skeletal Disorders. Front Endocrinol (Lausanne) 2019; 10:934. [PMID: 32117046 PMCID: PMC7010808 DOI: 10.3389/fendo.2019.00934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The 2019 International Skeletal Dysplasia Society nosology update lists 441 genes for which mutations result in rare human skeletal disorders. These genes code for enzymes (33%), scaffolding proteins (18%), signal transduction proteins (16%), transcription factors (14%), cilia proteins (8%), extracellular matrix proteins (5%), and membrane transporters (4%). Skeletal disorders include aggrecanopathies, channelopathies, ciliopathies, cohesinopathies, laminopathies, linkeropathies, lysosomal storage diseases, protein-folding and RNA splicing defects, and ribosomopathies. With the goal of evaluating the ability of mouse models to mimic these human genetic skeletal disorders, a PubMed literature search identified 260 genes for which mutant mice were examined for skeletal phenotypes. These mouse models included spontaneous and ENU-induced mutants, global and conditional gene knockouts, and transgenic mice with gene over-expression or specific base-pair substitutions. The human X-linked gene ARSE and small nuclear RNA U4ATAC, a component of the minor spliceosome, do not have mouse homologs. Mouse skeletal phenotypes mimicking human skeletal disorders were observed in 249 of the 260 genes (96%) for which comparisons are possible. A supplemental table in spreadsheet format provides PubMed weblinks to representative publications of mutant mouse skeletal phenotypes. Mutations in 11 mouse genes (Ccn6, Cyp2r1, Flna, Galns, Gna13, Lemd3, Manba, Mnx1, Nsd1, Plod1, Smarcal1) do not result in similar skeletal phenotypes observed with mutations of the homologous human genes. These discrepancies can result from failure of mouse models to mimic the exact human gene mutations. There are no obvious commonalities among these 11 genes. Body BMD and/or radiologic dysmorphology phenotypes were successfully identified for 28 genes by the International Mouse Phenotyping Consortium (IMPC). Forward genetics using ENU mouse mutagenesis successfully identified 37 nosology gene phenotypes. Since many human genetic disorders involve hypomorphic, gain-of-function, dominant-negative and intronic mutations, future studies will undoubtedly utilize CRISPR/Cas9 technology to examine transgenic mice having genes modified to exactly mimic variant human sequences. Mutant mice will increasingly be employed for drug development studies designed to treat human genetic skeletal disorders. SIGNIFICANCE Great progress is being made identifying mutant genes responsible for human rare genetic skeletal disorders and mouse models for genes affecting bone mass, architecture, mineralization and strength. This review organizes data for 441 human genetic bone disorders with regard to heredity, gene function, molecular pathways, and fidelity of relevant mouse models to mimic the human skeletal disorders. PubMed weblinks to citations of 249 successful mouse models are provided.
Collapse
Affiliation(s)
- Robert Brommage
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Robert Brommage
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
40
|
Ibáñez L, Barouti K, Markantes GK, Armeni AK, Georgopoulos NA. Pediatric endocrinology: an overview of the last decade. Hormones (Athens) 2018; 17:439-449. [PMID: 30293227 DOI: 10.1007/s42000-018-0067-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023]
Abstract
Over the past decade, considerable progress has been made in the field of pediatric endocrinology. However, there is still a long way to go regarding the exploration of novel avenues, such as epigenetics, the changing views on the pathophysiology and derived therapy of specific disorders, and the prevention of prevalent diseases. The next decade will hopefully bring the consolidation of most of those achievements and the development of new pathways for further progress.
Collapse
Affiliation(s)
- Lourdes Ibáñez
- Pediatric Research Institute Sant Joan de Deu, University of Barcelona, Esplugues, Barcelona, Spain & CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain.
- Hospital Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona, Spain.
| | - Konstantina Barouti
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Patras Medical School, Patras, Greece
| | - Georgios K Markantes
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Patras Medical School, Patras, Greece
| | - Anastasia K Armeni
- Pediatric Research Institute Sant Joan de Deu, University of Barcelona, Esplugues, Barcelona, Spain & CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Patras Medical School, Patras, Greece
| | - Neoklis A Georgopoulos
- Pediatric Research Institute Sant Joan de Deu, University of Barcelona, Esplugues, Barcelona, Spain & CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Patras Medical School, Patras, Greece
| |
Collapse
|
41
|
Togni L, de Abreu MC, Augustin AH, da Silva RBM, Campos MM. Characterization of a rat model with temporomandibular joint osteoarthritis following a surgical anterior disc displacement. Am J Transl Res 2018; 10:3806-3817. [PMID: 30662631 PMCID: PMC6291709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
This study has characterized a rat model with temporomandibular osteoarthritis (TMJ-OA) following a surgical anterior displacement of their articular disc (ADD). The well-established model of OA, induced by an intra-articular injection of complete Freund's adjuvant (CFA) into the TMJ, was used for comparison purposes. Male Wistar rats were assigned into two surgical groups, namely, ADD (anterior disc displacement) and sham-operated (surgical access, without ADD). Additional groups received an intra-articular infiltration of CFA (50 μl/site; 1:1 oil/saline emulsion), or the vehicle (0.9% NaCl). The separate experimental subgroups were euthanized at 15, 30 or 60 days and their left TMJs were collected for histological, immunohistochemistry and micro-CT analyses. The serum levels of IL-1β, IL-6 and TNF were analyzed. The fibrocartilage thicknesses were increased in the ADD groups at all of the analyzed time-points. In the CFA group, fibrocartilage thickenings were seen only in the posterior thirds at 15 days. The ADD group displayed an increase of the proteoglycan contents and ADAMTS5 immunopositivity in the fibrocartilage at 30 and 60 days, without any variations of the collagen contents or the osteoclast activation. Upon the micro-CT evaluation, the ADD group presented increments of their trabecular separations and bone surfaces, with reduced trabecular thicknesses and bone volumes, plus osteophyte formations and condyle flattenings, from 30 to 60 days. The IL-1β, TNF or IL-6 serum levels were undetectable. The surgical ADD in the rats led to long-term OA-like alterations, with typical structural and morphological derangements of the TMJ, representing a reliable experimental model to investigate the TMJ-OA-related mechanisms.
Collapse
Affiliation(s)
- Lênio Togni
- PUCRS, Programa de Pós-graduação em Odontologia, Escola de Ciências da SaúdePorto Alegre/RS, Brasil
| | - Maira Cavallet de Abreu
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da SaúdePorto Alegre/RS, Brasil
| | | | | | - Maria Martha Campos
- PUCRS, Programa de Pós-graduação em Odontologia, Escola de Ciências da SaúdePorto Alegre/RS, Brasil
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da SaúdePorto Alegre/RS, Brasil
- PUCRS, Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de MedicinaPorto Alegre/RS, Brasil
| |
Collapse
|
42
|
Shapovalova DA, Tyurin AV, Litvinov SS, Khusnutdinova EK, Khusainova RI. The role of VNTR aggrecan gene polymorphism in the development of osteoarthritis in women. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Osteoarthritis (OA) is a common multifactorial joint disease. Undifferentiated connective tissue dysplasia (uCTD) is a genetically determined lesion of the connective tissue structures, including joints, and it can be one of the factors predisposing to development of OA. Solving the problem of comorbidity of OA and uCTD signs will contribute to the early diagnosis and prophylactics of OA. Aggrecan is one of the major structural components of cartilage and it provides the ability to resist compressive loads throughout life. We examined 316 women (mean age 50.5 ± 4.77) for signs of uCTD and OA. A study of the aggrecan gene (ACAN) VNTR polymorphism, which is represented by a variable number of 57 nucleotide repeats, was performed. We searched for associations between the VNTR locus and OA in general and with an account of the localization of the pathological process, as well as with the presence of uCTD signs. Twelve allelic variants and 24 genotypes of the VNTR polymorphism of the aggrecan gene (ACAN) were identified, the most frequent variants were alleles with 27, 28 and 26 repeats. A significance of allele *27 (х2= 6.297, p = 0.012, odds ratio (OR) = 1.50; 95 % confidence interval (CI) 1.09-2.05) in the development of OA in general, knee OA (х2= 4.613, p = 0.031, OR = 1.52; 95 % CI 1.04-2.23), and multiple OA (х2= 4.181, p = 0.04, OR = 1.68; 95 % CI 1.02-2.78) was revealed. Homozygous genotype *27*27 was associated with OA (х2= 3.921, р = 0.047, OR = 1.72; 95 % CI 1-2.96), and OA with uCTD signs in women (х2= 5.415, p = 0.019, OR = 2.34; 95 % CI 1.13-4.83).
Collapse
Affiliation(s)
- D. A. Shapovalova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre, RASU
| | - A. V. Tyurin
- Bashkir State Medical University of the Ministry of Health of the Russian Federation
| | - S. S. Litvinov
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre, RASU
| | - E. K. Khusnutdinova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre, RASU
| | - R. I. Khusainova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre, RASU
| |
Collapse
|
43
|
Struck AK, Dierks C, Braun M, Hellige M, Wagner A, Oelmaier B, Beineke A, Metzger J, Distl O. A recessive lethal chondrodysplasia in a miniature zebu family results from an insertion affecting the chondroitin sulfat domain of aggrecan. BMC Genet 2018; 19:91. [PMID: 30305023 PMCID: PMC6180608 DOI: 10.1186/s12863-018-0678-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/23/2018] [Indexed: 12/27/2022] Open
Abstract
Background Congenital skeletal malformations represent a heterogeneous group of disorders affecting bone and cartilage development. In cattle, particular chondrodysplastic forms have been identified in several miniature breeds. In this study, a phenotypic characterization was performed of an affected Miniature Zebu calf using computed tomography, necropsy and histopathological examinations, whole genome sequencing of the case and its parents on an Illumina NextSeq 500 in 2 × 150 bp paired-end mode and validation using Sanger sequencing and a Kompetitive Allele Specific PCR assay. Samples from the family of an affected Miniature Zebu with bulldog syndrome including parents and siblings, 42 healthy Miniature Zebu not related with members of the herd and 88 individuals from eight different taurine cattle breeds were available for validation. Results A bulldog-like Miniature Zebu calf showing a large bulging head, a short and compressed body and extremely short and stocky limbs was delivered after a fetotomy. Computed tomography and necropsy revealed severe craniofacial abnormalities including a shortening of the ventral nasal conchae, a cleft hard palate, rotated limbs as well as malformed and fused vertebrae and ribs. Histopathologic examination showed a disorganization of the physeal cartilage with disorderly arranged chondrocytes in columns and a multifocal closed epiphyseal plate. Whole-genome sequencing of this malformed Miniature Zebu calf, its dam and sire and subsequent comparative sequence analysis revealed a one base pair insertion (ACAN:c.5686insC) located within the cartilage development gene aggrecan (ACAN) exclusively homozygous in the affected calf and heterozygous in its parents. This variant was predicted to cause a frameshift (p.Val1898fsTer9) and thus a truncation of the chondroitin sulfate domain as well as a loss of the C-terminal globular domain of ACAN. It perfectly co-segregated with the lethal bulldog syndrome in Miniature Zebus. Conclusions We found a novel mutation in ACAN causing a recessive lethal chondrodysplasia in Miniature Zebu cattle. A diagnostic test for this mutation is now available for Miniature Zebu breeders preventing further cases of bulldog syndrome by targeted matings. To the authors’ best knowledge, this is the first case of a Miniature Zebu associated with an ACAN mutation. Electronic supplementary material The online version of this article (10.1186/s12863-018-0678-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ann-Kathrin Struck
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Claudia Dierks
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Marina Braun
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Maren Hellige
- Clinic for Horses, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Anna Wagner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | | | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Julia Metzger
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559, Hannover, Germany.
| |
Collapse
|
44
|
Krishnan Y, Grodzinsky AJ. Cartilage diseases. Matrix Biol 2018; 71-72:51-69. [PMID: 29803938 PMCID: PMC6146013 DOI: 10.1016/j.matbio.2018.05.005] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023]
Abstract
Hyaline cartilages, fibrocartilages and elastic cartilages play multiple roles in the human body including bearing loads in articular joints and intervertebral discs, providing joint lubrication, forming the external ears and nose, supporting the trachea, and forming the long bones during development and growth. The structure and organization of cartilage's extracellular matrix (ECM) are the primary determinants of normal function. Most diseases involving cartilage lead to dramatic changes in the ECM which can govern disease progression (e.g., in osteoarthritis), cause the main symptoms of the disease (e.g., dwarfism caused by genetically inherited mutations) or occur as collateral damage in pathological processes occurring in other nearby tissues (e.g., osteochondritis dissecans and inflammatory arthropathies). Challenges associated with cartilage diseases include poor understanding of the etiology and pathogenesis, delayed diagnoses due to the aneural nature of the tissue and drug delivery challenges due to the avascular nature of adult cartilages. This narrative review provides an overview of the clinical and pathological features as well as current treatment options available for various cartilage diseases. Late breaking advances are also described in the quest for development and delivery of effective disease modifying drugs for cartilage diseases including osteoarthritis, the most common form of arthritis that affects hundreds of millions of people worldwide.
Collapse
Affiliation(s)
- Yamini Krishnan
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
45
|
Sentchordi-Montané L, Aza-Carmona M, Benito-Sanz S, Barreda-Bonis AC, Sánchez-Garre C, Prieto-Matos P, Ruiz-Ocaña P, Lechuga-Sancho A, Carcavilla-Urquí A, Mulero-Collantes I, Martos-Moreno GA, Del Pozo A, Vallespín E, Offiah A, Parrón-Pajares M, Dinis I, Sousa SB, Ros-Pérez P, González-Casado I, Heath KE. Heterozygous aggrecan variants are associated with short stature and brachydactyly: Description of 16 probands and a review of the literature. Clin Endocrinol (Oxf) 2018; 88:820-829. [PMID: 29464738 DOI: 10.1111/cen.13581] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Mutations in the aggrecan gene (ACAN) have been identified in two autosomal dominant skeletal dysplasias, spondyloepiphyseal dysplasia, Kimberley type (SEDK), and osteochondritis dissecans, as well as in a severe recessive dysplasia, spondyloepimetaphyseal dysplasia, aggrecan type. Next-generation sequencing (NGS) has aided the identification of heterozygous ACAN mutations in individuals with short stature, minor skeletal defects and mild facial dysmorphisms, some of whom have advanced bone age (BA), poor pubertal spurt and early growth cessation as well as precocious osteoarthritis. DESIGN AND METHODS This study involves clinical and genetic characterization of 16 probands with heterozygous ACAN variants, 14 with short stature and mild skeletal defects (group 1) and two with SEDK (group 2). Subsequently, we reviewed the literature to determine the frequency of the different clinical characteristics in ACAN-positive individuals. RESULTS A total of 16 ACAN variants were located throughout the gene, six pathogenic mutations and 10 variants of unknown significance (VUS). Interestingly, brachydactyly was observed in all probands. Probands from group 1 with a pathogenic mutation tended to be shorter, and 60% had an advanced BA compared to 0% in those with a VUS. A higher incidence of coxa valga was observed in individuals with a VUS (37% vs 0%). Nevertheless, other features were present at similar frequencies. CONCLUSIONS ACAN should be considered as a candidate gene in patients with short stature and minor skeletal defects, particularly those with brachydactyly, and in patients with spondyloepiphyseal dysplasia. It is also important to note that advanced BA and osteoarticular complications are not obligatory conditions for aggrecanopathies/aggrecan-associated dysplasias.
Collapse
Affiliation(s)
- Lucía Sentchordi-Montané
- Department of Pediatrics, Hospital Universitario Infanta Leonor, Madrid, Spain
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autonóma de Madrid, IdiPAZ, Madrid, Spain
- Skeletal dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
| | - Miriam Aza-Carmona
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autonóma de Madrid, IdiPAZ, Madrid, Spain
- Skeletal dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Sara Benito-Sanz
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autonóma de Madrid, IdiPAZ, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Ana C Barreda-Bonis
- Skeletal dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- Department of Pediatric Endocrinology, Hospital Universitario La Paz, Madrid, Spain
| | | | - Pablo Prieto-Matos
- Department of Pediatrics, Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario Salamanca, Salamanca, Spain
| | - Pablo Ruiz-Ocaña
- Department of Pediatrics, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | | | | | | | - Gabriel A Martos-Moreno
- Department of Endocrinology, Instituto de Investigación Sanitaria La Princesa, Hospital Infantil Universitario Niño Jesús, Universidad Autonóma de Madrid, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid and CIBEROBN, ISCIII, Madrid, Spain
| | - Angela Del Pozo
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autonóma de Madrid, IdiPAZ, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Elena Vallespín
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autonóma de Madrid, IdiPAZ, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Amaka Offiah
- Department of Oncology and Metabolism, Academic Unit of Child Health, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Manuel Parrón-Pajares
- Skeletal dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- Department of Pediatric Radiology, Hospital Universitario La Paz, Madrid, Spain
| | - Isabel Dinis
- Department of Pediatric Endocrinology, Diabetes and Growth Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sergio B Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar de Coimbra, Coimbra, Portugal
| | - Purificación Ros-Pérez
- Department of Pediatrics, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Isabel González-Casado
- Skeletal dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- Department of Pediatric Endocrinology, Hospital Universitario La Paz, Madrid, Spain
| | - Karen E Heath
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autonóma de Madrid, IdiPAZ, Madrid, Spain
- Skeletal dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
46
|
Xiang W, Zhang J, Wang R, Wang L, Wang S, Wu Y, Dong Y, Guo F, Xu T. Role of IFT88 in icariin‑regulated maintenance of the chondrocyte phenotype. Mol Med Rep 2018; 17:4999-5006. [PMID: 29393439 PMCID: PMC5865960 DOI: 10.3892/mmr.2018.8486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022] Open
Abstract
Maintenance of the chondrocyte phenotype is crucial for cartilage repair during tissue engineering. Intraflagellar transport protein 88 (IFT88) is an essential component of primary cilia, shuttling signals along the axoneme. The hypothesis of the present study was that IFT88 could exert an important role in icariin‑regulated maintenance of the chondrocyte phenotype. To this end, the effects of icariin on proliferation and differentiation of the chondrogenic cell line, ATDC5, were explored. Icariin‑treated ATDC5 cells and primary chondrocytes expressed IFT88. Icariin has been demonstrated to aid in the maintenance of the articular cartilage phenotype in a rat model of post‑traumatic osteoarthritis (PTOA). Icariin promoted chondrocyte proliferation and expression of the chondrogenesis marker genes, COL II and SOX9, increased ciliary assembly, and upregulated IFT88 expression in a concentration‑ and time‑dependent manner. Icariin‑treated PTOA rats secreted more cartilage matrix compared with the controls. Knockdown of IFT88 expression with siRNA reduced extracellular signal‑regulated kinase (ERK) phosphorylation, and icariin upregulated IFT88 expression by promoting ERK phosphorylation. Thus, IFT88 serves a major role in icariin‑mediated maintenance of the chondrocyte phenotype, promoting ciliogenesis and IFT88 expression by increasing ERK phosphorylation. Icariin may therefore be useful for maintenance of the cartilage phenotype during tissue engineering.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Limei Wang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Shengjie Wang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yingxing Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yonghui Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
47
|
FGF4 retrogene on CFA12 is responsible for chondrodystrophy and intervertebral disc disease in dogs. Proc Natl Acad Sci U S A 2017; 114:11476-11481. [PMID: 29073074 PMCID: PMC5664524 DOI: 10.1073/pnas.1709082114] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Chondrodystrophy, characterized by short limbs and intervertebral disc disease (IVDD), is a common phenotype in many of the most popular dog breeds, including the dachshund, beagle, and French bulldog. Here, we report the identification of a FGF4 retrogene insertion on chromosome 12, the second FGF4 retrogene reported in the dog, as responsible for chondrodystrophy and IVDD. Identification of the causative mutation for IVDD will impact an incredibly large proportion of the dog population and provides a model for IVDD in humans, as FGF-associated mutations are responsible for IVDD and short stature in human achondroplasia. This is a report of a second retrogene copy of the same parental gene, each causing complementary disease phenotypes in a mammalian species. Chondrodystrophy in dogs is defined by dysplastic, shortened long bones and premature degeneration and calcification of intervertebral discs. Independent genome-wide association analyses for skeletal dysplasia (short limbs) within a single breed (PBonferroni = 0.01) and intervertebral disc disease (IVDD) across breeds (PBonferroni = 4.0 × 10−10) both identified a significant association to the same region on CFA12. Whole genome sequencing identified a highly expressed FGF4 retrogene within this shared region. The FGF4 retrogene segregated with limb length and had an odds ratio of 51.23 (95% CI = 46.69, 56.20) for IVDD. Long bone length in dogs is a unique example of multiple disease-causing retrocopies of the same parental gene in a mammalian species. FGF signaling abnormalities have been associated with skeletal dysplasia in humans, and our findings present opportunities for both selective elimination of a medically and financially devastating disease in dogs and further understanding of the ever-growing complexity of retrogene biology.
Collapse
|
48
|
Rashid H, Chen H, Hassan Q, Javed A. Dwarfism in homozygous Agc1 CreERT mice is associated with decreased expression of aggrecan. Genesis 2017; 55. [PMID: 28921880 DOI: 10.1002/dvg.23070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Abstract
Aggrecan (Acan), a large proteoglycan is abundantly expressed in cartilage tissue. Disruption of Acan gene causes dwarfism and perinatal lethality of homozygous mice. Because of sustained expression of Acan in the growth plate and articular cartilage, AgcCre model has been developed for the regulated ablation of target gene in chondrocytes. In this model, the IRES-CreERT-Neo-pgk transgene is knocked-in the 3'UTR of the Acan gene. We consistently noticed variable weight and size among the AgcCre littermates, prompting us to examine the cause of this phenotype. Wild-type, Cre-heterozygous (Agc+/Cre ), and Cre-homozygous (AgcCre/Cre ) littermates were indistinguishable at birth. However, by 1-month, AgcCre/Cre mice showed a significant reduction in body weight (18-27%) and body length (19-22%). Low body weight and dwarfism was sustained through adulthood and occurred in both genders. Compared with wild-type and Agc+/Cre littermates, long bones and vertebrae were shorter in AgcCre/Cre mice. Histological analysis of AgcCre/Cre mice revealed a significant reduction in the length of the growth plate and the thickness of articular cartilage. The amount of proteoglycan deposited in the cartilage of AgcCre/Cre mice was nearly half of the WT littermates. Analysis of gene expression indicates impaired differentiation of chondrocyte in hyaline cartilage of AgcCre/Cre mice. Notably, both Acan mRNA and protein was reduced by 50% in AgcCre/Cre mice. A strong correlation was noted between the level of Acan mRNA and the body length. Importantly, Agc+/Cre mice showed no overt skeletal phenotype. Thus to avoid misinterpretation of data, only the Agc+/Cre mice should be used for conditional deletion of a target gene in the cartilage tissue.
Collapse
Affiliation(s)
- Harunur Rashid
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Haiyan Chen
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Quamarul Hassan
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amjad Javed
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
49
|
Hauer NN, Sticht H, Boppudi S, Büttner C, Kraus C, Trautmann U, Zenker M, Zweier C, Wiesener A, Jamra RA, Wieczorek D, Kelkel J, Jung AM, Uebe S, Ekici AB, Rohrer T, Reis A, Dörr HG, Thiel CT. Genetic screening confirms heterozygous mutations in ACAN as a major cause of idiopathic short stature. Sci Rep 2017; 7:12225. [PMID: 28939912 PMCID: PMC5610314 DOI: 10.1038/s41598-017-12465-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Short stature is a common pediatric disorder affecting 3% of the population. However, the clinical variability and genetic heterogeneity prevents the identification of the underlying cause in about 80% of the patients. Recently, heterozygous mutations in the ACAN gene coding for the proteoglycan aggrecan, a main component of the cartilage matrix, were associated with idiopathic short stature. To ascertain the prevalence of ACAN mutations and broaden the phenotypic spectrum in patients with idiopathic short stature we performed sequence analyses in 428 families. We identified heterozygous nonsense mutations in four and potentially disease-causing missense variants in two families (1.4%). These patients presented with a mean of −3.2 SDS and some suggestive clinical characteristics. The results suggest heterozygous mutations in ACAN as a common cause of isolated as well as inherited idiopathic short stature.
Collapse
Affiliation(s)
- Nadine N Hauer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sangamitra Boppudi
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo Trautmann
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany.,Institute of Human-Genetics, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Jaqueline Kelkel
- Division of Pediatric Endocrinology, Department of Pediatrics and Neonatology, Saarland University Hospital, Homburg/Saar, Germany
| | - Anna-Maria Jung
- Division of Pediatric Endocrinology, Department of Pediatrics and Neonatology, Saarland University Hospital, Homburg/Saar, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tilman Rohrer
- Division of Pediatric Endocrinology, Department of Pediatrics and Neonatology, Saarland University Hospital, Homburg/Saar, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Helmuth-Günther Dörr
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian T Thiel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
50
|
Ayerst BI, Merry CLR, Day AJ. The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals (Basel) 2017; 10:E54. [PMID: 28608822 PMCID: PMC5490411 DOI: 10.3390/ph10020054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
High sulfation, low cost, and the status of heparin as an already FDA- and EMA- approved product, mean that its inclusion in tissue engineering (TE) strategies is becoming increasingly popular. However, the use of heparin may represent a naïve approach. This is because tissue formation is a highly orchestrated process, involving the temporal expression of numerous growth factors and complex signaling networks. While heparin may enhance the retention and activity of certain growth factors under particular conditions, its binding 'promiscuity' means that it may also inhibit other factors that, for example, play an important role in tissue maintenance and repair. Within this review we focus on articular cartilage, highlighting the complexities and highly regulated processes that are involved in its formation, and the challenges that exist in trying to effectively engineer this tissue. Here we discuss the opportunities that glycosaminoglycans (GAGs) may provide in advancing this important area of regenerative medicine, placing emphasis on the need to move away from the common use of heparin, and instead focus research towards the utility of specific GAG preparations that are able to modulate the activity of growth factors in a more controlled and defined manner, with less off-target effects.
Collapse
Affiliation(s)
- Bethanie I Ayerst
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|