1
|
Subirà O, Català-Mora J, Del Prado C, Díaz-Cascajosa J, Barraso Rodrigo M, Cobos E, Aguilera C, Esteve-Garcia A, García-Arumí J, Caminal JM. Optical coherence tomography biomarkers in MYO7A-inherited retinal dystrophy: longitudinal study in pediatric patients. Graefes Arch Clin Exp Ophthalmol 2024; 262:3375-3384. [PMID: 38871877 DOI: 10.1007/s00417-024-06545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
PURPOSE This study aims to answer a key question: is MYO7A-inherited retinal dystrophy (MYO7A-IRD) a photoreceptor-first or retinal pigment epithelium-first disease? A second aim was to determine the most useful biomarkers to monitor disease progression in pediatric patients with Usher syndrome type 1B (USH1) secondary to MYO7A mutation. METHODS Fifty-two eyes from 26 patients with genetically-confirmed MYO7A-IRD underwent swept-source optical coherence tomography (SS-OCT). Structural abnormalities were evaluated and correlated with follow-up time and best corrected visual acuity (BCVA). All patients were evaluated at baseline and after ≥ 40 months of follow-up. RESULTS The mean (SD) patient age was 9.92 (± 4.1) years. Mean follow-up time was 43 (± 3.2) months. At the final evaluation, the most common qualitative abnormalities in the subfoveal area were alterations in the photoreceptor outer segments (76.9% of eyes) and in the interdigitation zone (IZ) (80.8%). The presence of cystoid macular edema at baseline was independently associated with worse BCVA at the final assessment (increase in LogMAR estimate = 0.142; t(45.00) = 2.78, p = 0.009). The mean width of the ellipsoid and interdigitation zones decreased significantly (by 668 μm and 278 μm, respectively; both p < 0.001). CONCLUSION This study shows that disruption of the photoreceptor outer segments and the IZ are the first alterations detected by SS-OCT in the early phases of MYO7A-IRD. These data highlight the potential value of measuring the width of the ellipsoid and IZ to evaluate disease progression. These findings also demonstrate the utility of monitoring for the emergence of cystic lesions as biomarkers of worse visual prognosis in patients with MYO7A-IRD.
Collapse
Affiliation(s)
- Olaia Subirà
- Ophthalmology Department, Hospital Universitari de Vall d'Hebron, Passeig de la Vall d'Hebron, 119, 08035, Barcelona, Spain.
| | - Jaume Català-Mora
- Ophthalmology Department, Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Ophthalmology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
- Unitat de Distròfies Hereditàries de Retina, Hospital Sant Joan de Déu-Hospital Bellvitge, Barcelona, Spain
| | - Cristina Del Prado
- Ophthalmology Department, Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Unitat de Distròfies Hereditàries de Retina, Hospital Sant Joan de Déu-Hospital Bellvitge, Barcelona, Spain
| | - Jesús Díaz-Cascajosa
- Ophthalmology Department, Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Unitat de Distròfies Hereditàries de Retina, Hospital Sant Joan de Déu-Hospital Bellvitge, Barcelona, Spain
| | - Marina Barraso Rodrigo
- Ophthalmology Department, Hospital de Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Unitat de Distròfies Hereditàries de Retina, Hospital Sant Joan de Déu-Hospital Bellvitge, Barcelona, Spain
| | - Estefanía Cobos
- Ophthalmology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
- Unitat de Distròfies Hereditàries de Retina, Hospital Sant Joan de Déu-Hospital Bellvitge, Barcelona, Spain
| | - Cinthia Aguilera
- Laboratori Clínic Territorial Metropolitana Sud, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Clinical Genetics Unit, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
| | - Anna Esteve-Garcia
- Laboratori Clínic Territorial Metropolitana Sud, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Clinical Genetics Unit, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
| | - José García-Arumí
- Ophthalmology Department, Hospital Universitari de Vall d'Hebron, Passeig de la Vall d'Hebron, 119, 08035, Barcelona, Spain
- Instituto de Microcirugía Ocular (IMO), Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep M Caminal
- Ophthalmology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
- Unitat de Distròfies Hereditàries de Retina, Hospital Sant Joan de Déu-Hospital Bellvitge, Barcelona, Spain
| |
Collapse
|
2
|
Wang J, Li S, Jiang Y, Wang Y, Ouyang J, Yi Z, Sun W, Jia X, Xiao X, Wang P, Zhang Q. Pathogenic Variants in CEP290 or IQCB1 Cause Earlier-Onset Retinopathy in Senior-Loken Syndrome Compared to Those in INVS, NPHP3, or NPHP4. Am J Ophthalmol 2023; 252:188-204. [PMID: 36990420 DOI: 10.1016/j.ajo.2023.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Senior-Loken syndrome (SLSN) is an autosomal recessive disorder characterized by retinopathy and nephronophthisis. This study aimed to evaluate whether different phenotypes are associated with different variants or subsets of 10 SLSN-associated genes based on an in-house data set and a literature review. DESIGN Retrospective case series. METHODS Patients with biallelic variants in SLSN-associated genes, including NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, SDCCAG8, WDR19, CEP164, and TRAF3IP1, were recruited. Ocular phenotypes and nephrology medical records were collected for comprehensive analysis. RESULTS Variants in 5 genes were identified in 74 patients from 70 unrelated families, including CEP290 (61.4%), IQCB1 (28.6%), NPHP1 (4.2%), NPHP4 (2.9%), and WDR19 (2.9%). The median age at the onset of retinopathy was approximately 1 month (since birth). Nystagmus was the most common initial sign in patients with CEP290 (28 of 44, 63.6%) or IQCB1 (19 of 22, 86.4%) variants. Cone and rod responses were extinguished in 53 of 55 patients (96.4%). Characteristic fundus changes were observed in CEP290- and IQCB1-associated patients. During follow-up, 70 of the 74 patients were referred to nephrology, among whom nephronophthisis was not detected in 62 patients (88.6%) at a median age of 6 years but presented in 8 patients (11.4%) aged approximately 9 years. CONCLUSIONS Patients with pathogenic variants in CEP290 or IQCB1 presented early with retinopathy, whereas other patients with INVS, NPHP3, or NPHP4 variants first developed nephropathy. Therefore, awareness of the genetic and clinical features may facilitate the clinical management of SLSN, especially early intervention of kidney problems for patients with eyes affected first.
Collapse
Affiliation(s)
- Junwen Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shiqiang Li
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yi Jiang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yingwei Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiamin Ouyang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhen Yi
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenmin Sun
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoyun Jia
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xueshan Xiao
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Panfeng Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qingjiong Zhang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
3
|
Zufiaurre-Seijo M, García-Arumí J, Duarri A. Clinical and Molecular Aspects of C2orf71/PCARE in Retinal Diseases. Int J Mol Sci 2023; 24:10670. [PMID: 37445847 DOI: 10.3390/ijms241310670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Mutations in the photoreceptor-specific C2orf71 gene (also known as photoreceptor cilium actin regulator protein PCARE) cause autosomal recessive retinitis pigmentosa type 54 and cone-rod dystrophy. No treatments are available for patients with C2orf71 retinal ciliopathies exhibiting a severe clinical phenotype. Our understanding of the disease process and the role of PCARE in the healthy retina significantly limits our capacity to transfer recent technical developments into viable therapy choices. This study summarizes the current understanding of C2orf71-related retinal diseases, including their clinical manifestations and an unclear genotype-phenotype correlation. It discusses molecular and functional studies on the photoreceptor-specific ciliary PCARE, focusing on the photoreceptor cell and its ciliary axoneme. It is proposed that PCARE is an actin-associated protein that interacts with WASF3 to regulate the actin-driven expansion of the ciliary membrane during the development of a new outer segment disk in photoreceptor cells. This review also introduces various cellular and animal models used to model these diseases and provides an overview of potential treatments.
Collapse
Affiliation(s)
- Maddalen Zufiaurre-Seijo
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - José García-Arumí
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain
| |
Collapse
|
4
|
Toms M, Ward N, Moosajee M. Nuclear Receptor Subfamily 2 Group E Member 3 (NR2E3): Role in Retinal Development and Disease. Genes (Basel) 2023; 14:1325. [PMID: 37510230 PMCID: PMC10379133 DOI: 10.3390/genes14071325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
NR2E3 is a nuclear hormone receptor gene required for the correct development of the retinal rod photoreceptors. Expression of NR2E3 protein in rod cell precursors suppresses cone-specific gene expression and, in concert with other transcription factors including NRL, activates the expression of rod-specific genes. Pathogenic variants involving NR2E3 cause a spectrum of retinopathies, including enhanced S-cone syndrome, Goldmann-Favre syndrome, retinitis pigmentosa, and clumped pigmentary retinal degeneration, with limited evidence of genotype-phenotype correlations. A common feature of NR2E3-related disease is an abnormally high number of cone photoreceptors that are sensitive to short wavelength light, the S-cones. This characteristic has been supported by mouse studies, which have also revealed that loss of Nr2e3 function causes photoreceptors to develop as cells that are intermediate between rods and cones. While there is currently no available cure for NR2E3-related retinopathies, there are a number of emerging therapeutic strategies under investigation, including the use of viral gene therapy and gene editing, that have shown promise for the future treatment of patients with NR2E3 variants and other inherited retinal diseases. This review provides a detailed overview of the current understanding of the role of NR2E3 in normal development and disease, and the associated clinical phenotypes, animal models, and therapeutic studies.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Natasha Ward
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
5
|
Zhu T, Shen Y, Sun Z, Han X, Wei X, Li W, Lu C, Cheng T, Zou X, Li H, Cao Z, Gao H, Ma X, Luo M, Sui R. Clinical and Molecular Features of a Chinese Cohort With Syndromic and Nonsyndromic Retinal Dystrophies Related to the CEP290 Gene. Am J Ophthalmol 2023; 248:96-106. [PMID: 36493848 DOI: 10.1016/j.ajo.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To reveal the clinical and genetic features of 54 Chinese pedigrees with syndromic or nonsyndromic retinal dystrophies related to CEP290 and to explore the genotype-phenotype correlation. DESIGN Retrospective cohort study. METHODS Patients diagnosed with nonsyndromic inherited retinal dystrophy (IRD) or syndromic ciliopathy (SCP) were enrolled. We identified 61 patients from 54 families carrying biallelic pathogenic CEP290 variants using next-generation sequencing, Sanger sequencing, and co-segregation validation. Genotype-phenotype correlation was evaluated. RESULTS This study included 37 IRD patients from 32 families and 24 patients with SCP from 22 pedigrees. Four retinal dystrophy phenotypes were confirmed: Leber congenital amaurosis (LCA, 46/61), early-onset severe retinal dystrophy (EOSRD, 4/61), retinitis pigmentosa (RP, 10/61), and cone-rod dystrophy (CORD, 1/61). The SCP phenotypes included Joubert syndrome (JS) (23/24) and Bardet-Biedl syndrome (BBS) (1/24). We detected 73 different CEP290 variants, of which 33 (45.2%) were not previously reported. Two novel copy number variations (CNVs) and 1 novel pathogenic synonymous change were identified. The most recurrent alterations in the IRD and SCP were p.Q123* (6/64, 9.4%) and p.I556Ffs*17 (10/44, 22.7%), respectively. IRD patients carried more stop-gain alleles (25/64, 39.1%), whereas SCP patients carried more frameshift alleles (23/44, 52.3%). CONCLUSIONS LCA was the most common retinal dystrophy phenotype, and JS was the most prevalent syndrome in CEP290 patients; RP/CORD and BBS may be present in early adulthood. The hot spot variants and distribution of genotypes were distinct between IRD and SCP. Our study expands the CEP290 variant spectrum and enhances the current knowledge of CEP290 heterogeneity.
Collapse
Affiliation(s)
- Tian Zhu
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Yue Shen
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Zixi Sun
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Xiaoxu Han
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Xing Wei
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Wuyi Li
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Chao Lu
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Tingting Cheng
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Xuan Zou
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Hui Li
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Zongfu Cao
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Huafang Gao
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Xu Ma
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Minna Luo
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China.
| | - Ruifang Sui
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.).
| |
Collapse
|
6
|
Poli FE, Yusuf IH, Clouston P, Shanks M, Whitfield J, Charbel Issa P, MacLaren RE. MERTK missense variants in three patients with retinitis pigmentosa. Ophthalmic Genet 2023; 44:74-82. [PMID: 36036427 PMCID: PMC9615558 DOI: 10.1080/13816810.2022.2113541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND MERTK (MER proto-oncogene, tyrosine kinase) is a transmembrane protein essential in regulating photoreceptor outer segment phagocytosis. Biallelic mutations in MERTK cause retinal degeneration. Here we present the retinal phenotype of three patients with missense variants in MERTK. MATERIALS AND METHODS All patients underwent a full clinical examination, fundus photography, short-wavelength fundus autofluorescence and optical coherence tomography imaging. Two patients also underwent Goldmann visual field testing and electroretinography was undertaken for the third patient. Molecular genetic testing was undertaken using next generation or whole-exome sequencing with all variants confirmed by Sanger sequencing. RESULTS The first patient was a 29-year-old female heterozygous for a missense variant (c.1133C>T, p.Thr378 Met) and a nonsense variant (c.1744_1751delinsT, p.Ile582Ter) in MERTK. The second patient was a 26-year-old male homozygous for a c.2163T>A, p.His721Gln variant in MERTK. The third patient was an 11-year-old female heterozygous for a deletion of exons 5-19 and a missense variant (c.1866 G>C, p.Lys622Asn) in MERTK. Reduced night vision was the initial symptom in all patients. Fundoscopy revealed typical signs of retinitis pigmentosa (RP) with early-onset macular atrophy. All three MERTK missense variants affect highly conserved residues within functional domains, have low population frequencies and are predicted to be pathogenic in silico. CONCLUSIONS We report three missense variants in MERTK and present the associated phenotypic data, which are supportive of non-syndromic RP. MERTK is a promising candidate for viral-mediated gene replacement therapy. Moreover, one variant represents a single nucleotide transition, which is theoretically targetable with CRISPR-Cas9 base-editing.
Collapse
Affiliation(s)
- Federica E. Poli
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Imran H. Yusuf
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Penny Clouston
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Morag Shanks
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jennifer Whitfield
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Peter Charbel Issa
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
7
|
Okado S, Koyanagi Y, Inooka T, Kominami T, Terasaki H, Nishiguchi KM, Ueno S. ASSESSMENTS OF MACULAR FUNCTION BY FOCAL MACULAR ELECTRORETINOGRAPHY AND STATIC PERIMETRY IN EYES WITH RETINITIS PIGMENTOSA. Retina 2022; 42:2184-2193. [PMID: 35982511 PMCID: PMC9584050 DOI: 10.1097/iae.0000000000003589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess the macular function by focal macular electroretinography and static perimetry in eyes with retinitis pigmentosa. METHODS Eighty-eight eyes of 88 retinitis pigmentosa patients were analyzed. The relationships between the focal macular electroretinography components and the mean deviations (MDs) of the Humphrey Field Analyzer 10-2 were determined. Spectral-domain optical coherence tomography was used to determine the integrity of the ellipsoid zone (EZ) and the interdigitation zone. RESULTS Forward-backward stepwise regression analyses showed that the amplitudes (r = 0.45, P < 0.01) and implicit times (r = -0.29, P < 0.01) of the b-waves were significantly correlated with the MDs. Some of the eyes had reduced b-wave amplitudes (<1.0 µ V) and disrupted interdigitation zone, despite having a better MD (≥ -10.0 dB) and intact EZ. Subgroup analyses of eyes with better MD (≥ -10.0 dB) showed that the EZ width was correlated with the MDs but not with the b-wave amplitude. The thickness of the EZ-retinal pigment epithelium as an alternative indicator of interdigitation zone was correlated with the b-wave amplitude (r = 0.32, P = 0.04) but not with the MDs (r = -0.10, P = 0.53). CONCLUSION The fact that the focal macular electroretinography amplitudes are reduced before the shortening of the EZ in the early stage of retinitis pigmentosa indicates that the focal macular electroretinography amplitudes are an earlier indicator of macular dysfunction than the Humphrey Field Analyzer 10-2 findings.
Collapse
Affiliation(s)
- Satoshi Okado
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Yoshito Koyanagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taiga Inooka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Koji M. Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| |
Collapse
|
8
|
Unilateral Retinitis Pigmentosa Associated with Possible Ciliopathy and a Novel Mutation. Clin Pract 2022; 12:491-500. [PMID: 35892439 PMCID: PMC9326729 DOI: 10.3390/clinpract12040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Unilateral retinitis pigmentosa (URP) is a rare retinal dystrophy. We describe the clinical course of two patients with (URP) unilateral retinitis pigmentosa confirmed by genetic testing, indicating ciliary dysfunction. Methods: The methods used in this study included a detailed ophthalmic examination, multimodal retinal imaging, Goldmann visual fields, full-field electroretinography (ffERG) and targeted next-generation sequencing. Results: A 32-year-old female (patient 1) and 65-year-old male (patient 2) were found to have URP. ffERG showed a non-recordable response in the affected eye and a response within normal limits in the fellow eye of patient 1, while patient 2 showed non-recordable responses in the apparently unaffected eye and a profound reduction in the photopic and scotopic responses in the affected eye. Next-generation sequencing revealed novel compound heterozygous c.373 C>T (p.Arg125Trp) and c.730-22_730-19dup variants in AGBL5 in patient 1, and a novel hemizygous c.1286 C>T (p.Pro429Leu) in patient 2; both gene mutations were 0%. Segregation analysis was not possible for either of the mutations. Conclusion: This report expands the clinical and molecular genetic spectrum of URP.
Collapse
|
9
|
Chiu N, Lee W, Liu PK, Levi SR, Wang HH, Chen N, Kang EYC, Seo GH, Lee H, Liu L, Wu WC, Tsai SH, Wang NK. A homozygous in-frame duplication within the LRRCT consensus sequence of CFAP410 causes cone-rod dystrophy, macular staphyloma and short stature. Ophthalmic Genet 2021; 43:378-384. [PMID: 34915818 DOI: 10.1080/13816810.2021.2010773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ciliopathies are a group of genetic dystrophies causing syndromic and non-syndromic retinal degeneration. We identified CFAP410 as the causative gene in a patient with childhood-onset retinal dystrophy without other systemic symptoms at the age of 20. This 20-year-old man presented with cone-rod dystrophy and CFAP410 homozygous in-frame duplication variants (c.340_351dup). His clinical features included early subnormal vision, posterior pole staphyloma, and short stature. Unlike the previously reported features of retinal ciliopathy, our patient showed no obvious retinal pigmentation and only a slight hyper-autofluorescent parafoveal ring at the 16-year follow up. This case report aims to characterize the clinical features in a patient with novel, homozygous and likely pathogenic in-frame duplication variants in the CFAP410 gene. Ultimately, this report will help contribute to the understanding of CFAP410-associated ciliopathies.
Collapse
Affiliation(s)
- Ning Chiu
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Winston Lee
- Department of Genetics and Development, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Pei-Kang Liu
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Sarah R Levi
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Hung-Hsi Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Nelson Chen
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Eugene Yu-Chuan Kang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Go Hun Seo
- Division of Medical Genetics, 3billion Inc., Seoul, South Korea
| | - Hane Lee
- Division of Medical Genetics, 3billion Inc., Seoul, South Korea
| | - Laura Liu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Wei-Chi Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Shawn H Tsai
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Optometry, Chung Shan Medical University, Taichung, Taiwan.,Department of Optometry, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Nan-Kai Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
10
|
Koyanagi Y, Ueno S, Ito Y, Kominami T, Komori S, Akiyama M, Murakami Y, Ikeda Y, Sonoda KH, Terasaki H. Relationship Between Macular Curvature and Common Causative Genes of Retinitis Pigmentosa in Japanese Patients. Invest Ophthalmol Vis Sci 2021; 61:6. [PMID: 32749464 PMCID: PMC7441377 DOI: 10.1167/iovs.61.10.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine the relationship between the macular curvature and the causative genes of retinitis pigmentosa (RP). Methods We examined the medical records of the right eyes of 65 cases with RP (31 men and 34 women; average age, 47.6 years). There were 31 cases with the EYS variants, 11 cases with the USH2A variants, six cases with the RPGR variants, 13 cases with the RP1 variants, and four cases with the RP1L1 variants. The mean curvature of Bruch's membrane was calculated within 6 mm of the fovea as the mean macular curvature index (MMCI, 1/µm). We used multiple linear regression analysis to determine the independence of the causative genes contributing to the MMCIs after adjustments for age, sex, axial length, and width of the ellipsoid zone. Results The median MMCI was −31.2 × 10−5/µm for the RPGR eyes, −16.5 × 10−5/µm for the RP1L1 eyes, −13.0 × 10−5/µm for the RP1 eyes, −9.8 × 10−5/µm for the EYS eyes, and −9.0 × 10−5/µm for the USH2A eyes. Compared with the EYS gene as the reference gene, the RPGR gene was significantly related to the MMCI values after adjusting for the other parameters (P = 5.30 × 10−6). In contrast, the effects of the other genes, USH2A, RP1, and RP1L1, were not significantly different from that of the EYS gene (P = 0.26, P = 0.49, and P = 0.92, respectively). Conclusions The RPGR gene had a stronger effect on the steep macular curvature than the other ciliopathy-related genes.
Collapse
|
11
|
Oh JK, Levi SR, Kim J, Lima de Carvalho JR, Ryu J, Sparrow JR, Tsang SH. Differences in Intraretinal Pigment Migration Across Inherited Retinal Dystrophies. Am J Ophthalmol 2020; 217:252-260. [PMID: 32442431 DOI: 10.1016/j.ajo.2020.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/15/2020] [Accepted: 05/08/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE To determine whether there are differences in the prevalence of intraretinal pigment migration (IPM) across ages and genetic causes of inherited retinal dystrophies (IRDs). DESIGN Retrospective cohort study. METHODS Patients were evaluated at a single tertiary referral center. All patients with a clinical diagnosis of IRD and confirmatory genetic testing were included in these analyses. A total of 392 patients fit inclusion criteria, and 151 patients were excluded based on inconclusive genetic testing. Patients were placed into 3 groups, ciliary and ciliary-related photoreceptor, nonciliary photoreceptor, and retinal pigment epithelium (RPE), based on the cellular expression of the gene and the primary affected cell type. The presence of IPM was evaluated by using slit lamp biomicroscopy, indirect ophthalmoscopy, and wide-field color fundus photography. RESULTS IPM was seen in 257 of 339 patients (75.8%) with mutations in photoreceptor-specific genes and in 18 of 53 patients (34.0%) with mutations in RPE-specific genes (P < .0001). Pairwise analysis following stratification by age and gene category suggested significant differences at all age groups between patients with mutations in photoreceptor-specific genes and patients with mutations in RPE-specific genes (P < .05). A fitted multivariate logistic regression model was produced and demonstrated that the incidence of IPM increases as a function of both age and gene category. CONCLUSIONS IPM is a finding more commonly observed in IRDs caused by mutations in photoreceptor-specific genes than RPE-specific genes. The absence of IPM does not always rule out IRD and should raise suspicion for disease mutations in RPE-specific genes.
Collapse
Affiliation(s)
- Jin Kyun Oh
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA; College of Medicine, State University of New York at Downstate Medical Center, Brooklyn, New York, USA
| | - Sarah R Levi
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Joonpyo Kim
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Jose Ronaldo Lima de Carvalho
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA; Department of Ophthalmology, Empresa Brasileira de Servicos Hospitalares, Hospital das Clinicas de Pernambuco, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Department of Ophthalmology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Joseph Ryu
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA; Department of Pathology and Cell Biology, and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York, USA; Department of Pathology & Cell Biology, and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA; Department of Pathology and Cell Biology, and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York, USA; Department of Pathology & Cell Biology, and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton's jelly-derived mesenchymal stem cells: prospective analysis of 1-year results. Stem Cell Res Ther 2020; 11:353. [PMID: 32787913 PMCID: PMC7425139 DOI: 10.1186/s13287-020-01870-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The aim of the study was to investigate annual structural and functional results, and their correlation with inheritance pattern of retinitis pigmentosa (RP) patients who were treated with Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs). MATERIAL AND METHODS This prospective, sequential, open-label phase-3 clinical study was conducted at Ankara University Faculty of Medicine, Department of Ophthalmology, between April 2019 and May 2020. The study included 34 eyes from 32 retinitis pigmentosa patients of various genotypes who were enrolled in the stem cells clinical trial. The patients were followed for 12 months after the WJ-MSCs transplantation into subtenon space and evaluated with consecutive examinations. Genetic mutations were investigated using a retinitis pigmentosa panel sequencing method consisting of 90 genes. All patients underwent a complete routine ophthalmic examination with best corrected visual acuity, optical coherence tomography angiography, visual field, and full-field electroretinography. Quantitative data obtained from baseline (T0), 6th month (T1), and 12th month (T2) examinations were compared. RESULTS According to timepoints at T0, T1, and T2: The mean outer retinal thickness was 100.3 μm, 119.1 μm, and 118.0 μm, respectively (p = 0.01; T0 < T1, T2). The mean horizontal ellipsoid zone width were 2.65 mm, 2.70 mm, and 2.69 mm respectively (p = 0.01; T0 < T1, T2). The mean best corrected visual acuity (BCVA) were 70.5 letters, 80.6 letters, and 79.9 letters, respectively (p = 0.01; T0 < T1, T2). The mean fundus perimetry deviation index (FPDI) was 8.0%, 11.4%, and 11.6%, respectively (p = 0.01; T0 < T1, T2). The mean full-field flicker ERG parameters at T0, T1, and T2: amplitudes were 2.4 mV, 5.0 mV, and 4.6 mV, respectively (p = 0.01; T0 < T1, T2). Implicit time were 43.3 ms, 37.9 ms, and 38.6 ms, respectively (p = 0.01; T0 > T1, T2). According to inheritance pattern, BCVA, FPDI, ERG amplitude, and implicit time data improved significantly in autosomal dominant (AD) and in autosomal recessive (AR) RP at 1 year follow-up (pAD = 0.01, pAR = 0.01; pAD = pAR > pX-linked). No ocular or systemic adverse events related to the surgical methods and/or WJ-MSCs were observed during the 1 year follow-up period. CONCLUSION Subtenon transplantation of WJ-MSCs was found to be effective and safe in the treatment of RP during the first year, similar to the sixth month's results. In autosomal dominant and autosomal recessive inheritance of RP, regardless of the genetic mutations, subtenon administration of WJ-MSCs can be considered an effective and safe option without any adverse effect for slowing or stopping the disease progression. TRIAL REGISTRATION ClinicalTrials.gov, NCT04224207 . Registered 8 January 2020.
Collapse
Affiliation(s)
- Emin Özmert
- Faculty of Medicine Department of Ophthalmology, Ankara University, Ankara, Turkey
| | - Umut Arslan
- Bioretina Eye Clinic, Ankara University Technopolis, Neorama Ofis 55-56 Yaşam Cad. No 13/A Beştepe, Yenimahalle, Ankara, Turkey
| |
Collapse
|
13
|
Oh JK, Nuzbrokh Y, Lima de Carvalho JR, Ryu J, Tsang SH. Optical coherence tomography in the evaluation of retinitis pigmentosa. Ophthalmic Genet 2020; 41:413-419. [PMID: 32552399 DOI: 10.1080/13816810.2020.1780619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Optical coherence tomography (OCT) is a non-invasive imaging test that provides easily obtainable and highly reproducible cross-sectional images of the retina. Improved modalities of the OCT that are capable of providing high quality images of not only the retina, but also the deeper structures and vasculature have been developed, including swept-source OCTs and OCT angiography. MATERIALS AND METHODS Review. RESULTS The use of OCT in the monitoring of retinitis pigmentosa has been well described and numerous signs of disease progression have been studied. Notably among them are the detection of changes to retinal thickness, the ellipsoid zone, the vasculature on OCT angiography, and cystoid macular edema. CONCLUSION In this review, we discuss the multiple applications of OCT as a tool in the monitoring of retinitis pigmentosa and its potential use as an outcome measurement in current and future therapeutic endeavors.
Collapse
Affiliation(s)
- Jin Kyun Oh
- Department of Ophthalmology, Columbia University Irving Medical Center , New York, NY, USA.,College of Medicine at the State University of New York at Downstate Medical Center , Brooklyn, NY, USA
| | - Yan Nuzbrokh
- Department of Ophthalmology, Columbia University Irving Medical Center , New York, NY, USA.,Renaissance School of Medicine at Stony Brook University , Stony Brook, NY, USA
| | - Jose Ronaldo Lima de Carvalho
- Department of Ophthalmology, Columbia University Irving Medical Center , New York, NY, USA.,Department of Ophthalmology, Empresa Brasileira de Servicos Hospitalares (EBSERH) - Hospital das Clinicas de Pernambuco (HCPE), Federal University of Pernambuco (UFPE) , Recife, Brazil.,Department of Ophthalmology, Federal University of São Paulo (UNIFESP) , São Paulo, Brazil
| | - Joseph Ryu
- Department of Ophthalmology, Columbia University Irving Medical Center , New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University Irving Medical Center , New York, NY, USA.,Department of Pathology & Cell Biology, Columbia University Irving Medical Center , New York, NY, USA
| |
Collapse
|
14
|
Management of Retinitis Pigmentosa via Platelet-Rich Plasma or Combination with Electromagnetic Stimulation: Retrospective Analysis of 1-Year Results. Adv Ther 2020; 37:2390-2412. [PMID: 32303913 DOI: 10.1007/s12325-020-01308-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate whether the natural progression rate of retinitis pigmentosa can be decreased by subtenon autologous platelet-rich plasma application alone or combination with retinal electromagnetic stimulation. METHODS The study includes retrospective analysis of 60 patients with retinitis pigmentosa. Patients constitute three groups with similar demographic characteristics: the combined management group (group 1) consists of 20 patients with retinitis pigmentosa (40 eyes) who received combined retinal electromagnetic stimulation and subtenon platelet-rich plasma; the subtenon platelet-rich plasma-only group (group 2) consisted of 20 patients with retinitis pigmentosa (40 eyes); the natural course (control) group (group 3) consists of 20 patients with retinitis pigmentosa (40 eyes) who did not receive any treatment. Horizontal and vertical ellipsoid zone width, fundus perimetry deviation index, and best corrected visual acuity changes were compared within and between groups after a 1-year follow-up period. RESULTS Detected horizontal ellipsoid zone percentage changes were + 1% in group 1, - 2.85% in group 2, and - 9.36% in group 3 (Δp 1 > 2 > 3). Detected vertical ellipsoid zone percentage changes were + 0.34% in group 1, - 3.05% in group 2, and - 9.09% in group 3 (Δp 1 > 2 > 3). Detected fundus perimetry deviation index percentage changes were + 0.05% in group 1, - 2.68% in group 2, and - 8.78% in group 3 (Δp 1 > 2 > 3). CONCLUSION Platelet-rich plasma is a good source of growth factors, but its half-life is 4-6 months. Subtenon autologous platelet-rich plasma might more effectively slow down photoreceptor loss when repeated as booster injections and combined with retinal electromagnetic stimulation. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT04252534.
Collapse
|
15
|
Lin Y, Xu CL, Breazzano MP, Tanaka AJ, Ryu J, Levi SR, Yao K, Sparrow JR, Tsang SH. Progressive RPE atrophy and photoreceptor death in KIZ-associated autosomal recessive retinitis pigmentosa. Ophthalmic Genet 2020; 41:26-30. [PMID: 32052671 PMCID: PMC9070555 DOI: 10.1080/13816810.2020.1723116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 10/25/2022]
Abstract
Background: To evaluate the long-term progression of autosomal recessive retinitis pigmentosa (RP) due to mutations in KIZ using multimodal imaging and a quantitative analytical approach.Methods: Whole exome sequencing (WES) and targeted capture sequencing were used to identify mutation. Fundus photography, short-wavelength autofluorescence (SW-AF), spectral-domain optical coherence tomography (SD-OCT) imaging, and electroretinography (ERG) were analyzed. Serial measurements of peripheral retinal pigment epithelium (RPE) atrophy area with SW-AF, as well as the ellipsoid zone (EZ) width using SD-OCT were performed.Results: Two homozygous variants in KIZ-a c.226C>T mutation as well as a previously unreported c.119_122delAACT mutation-were identified in four unrelated patients. Fundus examination and ERG revealed classic rod-cone dysfunction, and SD-OCT demonstrated outer retinal atrophy with centrally preserved EZ line. SW-AF imaging revealed hyperautofluorescent rings with surrounding parafoveal, mid-peripheral and widespread loss of autofluorescence. The RPE atrophy area increased annually by 4.9%. Mean annual exponential rates of decline for KIZ patients were 8.5% for visual acuity and 15.9% for 30 Hz Flicker amplitude. The average annual reduction distance of the EZ distance was 66.5 μm per year.Conclusions: RPE atrophy progresses along with a loss of photoreceptors, and parafoveal RPE hypoautofluorescence is commonly seen in KIZ-associated RP patients. KIZ-associated RP is an early-onset severe rod-cone dystrophy.
Collapse
Affiliation(s)
- Yuchen Lin
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Christine L. Xu
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
- Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York, USA
| | - Mark P. Breazzano
- Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York, USA
- Department of Ophthalmology, New York University School of Medicine, New York, New York, USA
| | - Akemi J. Tanaka
- Department of Pathology & Cell Biology, Institute of Human Nutrition, and Columbia Stem Cell Initiative, Columbia University, New York, New York, USA
| | - Joseph Ryu
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
- Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York, USA
| | - Sarah R. Levi
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
- Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York, USA
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Janet R. Sparrow
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
- Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York, USA
- Department of Pathology & Cell Biology, Institute of Human Nutrition, and Columbia Stem Cell Initiative, Columbia University, New York, New York, USA
| | - Stephen H. Tsang
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
- Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York, USA
- Department of Pathology & Cell Biology, Institute of Human Nutrition, and Columbia Stem Cell Initiative, Columbia University, New York, New York, USA
| |
Collapse
|