1
|
Ding HY, Lei W, Xiao SJ, Deng H, Yuan LK, Xu L, Zhou JL, Huang R, Fang YL, Wang QY, Zhang Y, Zhang L, Zhu XC. High incidence of EDNRB gene mutation in seven southern Chinese familial cases with Hirschsprung's disease. Pediatr Surg Int 2024; 40:38. [PMID: 38253735 DOI: 10.1007/s00383-023-05620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
PURPOSE Hirschsprung's disease (HSCR) is the leading cause of neonatal functional intestinal obstruction, which has been identified in many familial cases. HSCR, a multifactorial disorder of enteric nervous system (ENS) development, is associated with at least 24 genes and seven chromosomal loci, with RET and EDNRB as its major genes. We present a genetic investigation of familial HSCR to clarify the genotype-phenotype relationship. METHODS We performed whole exome sequencing (WES) on Illumina HiSeq X Ten platform to investigate genetic backgrounds of core family members, and identified the possibly harmful mutation genes. Mutation carriers and pedigree relatives were validated by Sanger sequencing for evaluating the gene penetrance. RESULTS Four familial cases showed potential disease-relative variants in EDNRB and RET gene, accounting for all detection rate of 57.1%. Three familial cases exhibited strong pathogenic variants as frameshift or missense mutations in EDNRB gene. A novel c.367delinsTT mutation of EDNRB was identified in one family member. The other two EDNRB mutations, c.553G>A in family 2 and c.877delinsTT in family 5, have been reported in previous literatures. The penetrance of EDNRB variants was 33-50% according mutation carries. In family 6, the RET c.1858T>C (C620R) point mutation has previously been reported to cause HSCR, with 28.5% penetrance. CONCLUSION We identified a novel EDNRB (deleted C and inserted TT) mutation in this study using WES. Heterozygote variations in EDNRB gene were significantly enriched in three families and RET mutations were identified in one family. EDNRB variants showed an overall higher incidence and penetrance than RET in southern Chinese families cases.
Collapse
Affiliation(s)
- Hui-Yang Ding
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Wen Lei
- Maternal and Child Health Research Institute, Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Shang-Jie Xiao
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Hua Deng
- Maternal and Child Health Research Institute, Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Li-Ke Yuan
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Lu Xu
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Jia-Liang Zhou
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Rong Huang
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Yuan-Long Fang
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Qing-Yuan Wang
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Ying Zhang
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Liang Zhang
- Maternal and Child Health Research Institute, Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, 511400, China.
| | - Xiao-Chun Zhu
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, 511400, China.
| |
Collapse
|
2
|
Xiao J, Hao LW, Wang J, Yu XS, You JY, Li ZJ, Mao HD, Meng XY, Feng JX. Comprehensive characterization of the genetic landscape of familial Hirschsprung's disease. World J Pediatr 2023; 19:644-651. [PMID: 36857021 PMCID: PMC10258170 DOI: 10.1007/s12519-023-00686-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/09/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is one of the most common congenital digestive tract malformations and can cause stubborn constipation or gastrointestinal obstruction after birth, causing great physical and mental pain to patients and their families. Studies have shown that more than 20 genes are involved in HSCR, and most cases of HSCR are sporadic. However, the overall rate of familial recurrence in 4331 cases of HSCR is about 7.6%. Furthermore, familial HSCR patients show incomplete dominance. We still do not know the penetrance and genetic characteristics of these known risk genes due to the rarity of HSCR families. METHODS To find published references, we used the title/abstract terms "Hirschsprung" and "familial" in the PubMed database and the MeSH terms "Hirschsprung" and "familial" in Web of Science. Finally, we summarized 129 HSCR families over the last 40 years. RESULTS The male-to-female ratio and the percentage of short segment-HSCR in familial HSCR are much lower than in sporadic HSCR. The primary gene factors in the syndromic families are ret proto-oncogene (RET) and endothelin B receptor gene (EDNRB). Most families show incomplete dominance and are relevant to RET, and the RET mutation has 56% penetrance in familial HSCR. When one of the parents is a RET mutation carrier in an HSCR family, the offspring's recurrence risk is 28%, and the incidence of the offspring does not depend on whether the parent suffers from HSCR. CONCLUSION Our findings will help HSCR patients obtain better genetic counseling, calculate the risk of recurrence, and provide new insights for future pedigree studies.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China
| | - Lu-Wen Hao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China
| | - Xiao-Si Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China
| | - Jing-Yi You
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China
| | - Ze-Jian Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China
| | - Han-Dan Mao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China
| | - Xin-Yao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China.
| | - Jie-Xiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, 430030, China.
| |
Collapse
|
3
|
Chen M, Xue J, Sang Y, Jiang W, He W, Hong S, Lv W, Xiao H, Liu R. Highly sensitive droplet digital PCR for detection of RET fusion in papillary thyroid cancer. BMC Cancer 2023; 23:363. [PMID: 37081420 PMCID: PMC10120194 DOI: 10.1186/s12885-023-10852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Thyroid cancer is the most frequent malignancy of the endocrine system, of which papillary thyroid cancer (PTC) is the predominant form with a rapid increasing incidence worldwide. Rearranged during transfection (RET) fusions are common genetic drivers of PTC and the potent RET inhibitor selpercatinib has been recently approved for treating advanced or metastatic RET fusion-positive thyroid cancer. In this study we aimed to develop a droplet digital PCR (ddPCR) system to accurately detect RET fusion in PTC samples. METHODS The frequency and distribution of RET fusions in PTC were analyzed using genomic data of 402 PTC patients in The Cancer Genome Atlas (TCGA) database. To establish the ddPCR system for detecting CCDC6::RET fusion, a plasmid containing CCDC6::RET infusion fragment was constructed as standard template, the annealing temperature and concentrations of primers and probe were optimized. The analytical performance of ddPCR and quantitative reverse transcription PCR (qRT-PCR) were assessed in standard templates and tissue samples from 112 PTC patients. Sanger sequencing was performed in all the RET fusion-positive samples identified by ddPCR. RESULTS RET fusions were observed in 25 (6.2%) of the 402 TCGA samples, and 15 (60%) of the RET fusion-positive patients had the CCDC6::RET fusion. Compared with qRT-PCR, the ddPCR method showed a lower limit of detection (128.0 and 430.7 copies/reaction for ddPCR and qRT-PCR, respectively). When applying the two methods to 112 tissue samples of PTC, eleven (9.8%) CCDC6::RET fusion-positive samples were detected by qRT-PCR, while ddPCR identified 4 additional positive samples (15/112, 13.4%). All the CCDC6::RET fusion-positive cases identified by ddPCR were confirmed by Sanger sequencing except for one case with 0.14 copies/uL of the fusion. CONCLUSION The accurate and sensitive ddPCR method reported here is powerful to detection CCDC6::RET fusion in PTC samples, application of this method would benefit more RET fusion-positive patients in the clinic.
Collapse
Affiliation(s)
- Mengke Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, 510080, China
| | - Junyu Xue
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, 510080, China
| | - Ye Sang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, 510080, China
| | - Wenting Jiang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, 510080, China
| | - Weiman He
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, 510080, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, 510080, China
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, 510080, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, 510080, China.
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Second Road, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Abstract
Hirschsprung's disease (HSCR) is a classical model of enteric neuropathy, occurring in approximately 2-2.8 in 10,000 newborns. It is the commonest form of congenital bowel obstruction and is characterized by the absence of enteric ganglia in distal colon. Recent advances in genome-wide association analysis (GWAS) and next generation sequencing (NGS) studies have led to the discovery of a number of new HSCR candidate genes, thereby providing new insights into the genetic architecture and molecular mechanisms of the disease. Altogether, these findings indicated that genetic heterogeneity, variable penetrance and expressivity, and genetic interaction are the pervasive characteristics of HSCR genetics. In this review, we will provide an update on the genetic landscape of HSCR and discuss how the common and rare variants may act together to modulate the phenotypic manifestation. Translating the genetic findings to genetic risk prediction and to optimize clinical outcomes are undoubtedly the ultimate goals for genetic studies on HSCR. From this perspective, we will further discuss the major obstacles in the clinical translation of these latest genetic findings. Lastly, new measures to address these clinical challenges are suggested to advance precision medicine and to develop novel alternative therapies.
Collapse
Affiliation(s)
- Clara Sze-Man Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .,Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institute Collaboration in Regenerative Medicine, Hong Kong SAR, China. .,Division of Paediatric Surgery, Department of Surgery, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China.
| | - Anwarul Karim
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanxin Zhong
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Patrick Ho-Yu Chung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Paul Kwong-Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .,Faculty of Medicine, Macau University of Science and Technology, Macao, China.
| |
Collapse
|
5
|
Zhang F, Wang Z, Meng Q, Song J, Yang S, Tang X, Zhao Y, Men S, Wang L. Disparate phenotypes in two unfavorable pregnancies due to maternal mosaicism of a novel RET gene mutation. Clin Chim Acta 2022; 531:84-90. [PMID: 35341763 DOI: 10.1016/j.cca.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Mutations in RET have been found in multiple diseases including isolated and associated congenital anomalies. Here, we report a case presented with disparate phenotypes in each pregnancy but caused by the same novel mutation. Whole-exome sequencing (WES) was performed on the proband/abortion product-parental trio and a novel missense variant in RET (chr10:43615610C>G; c.2689C>G; p.Arg897Gly) was identified. The mother was a low-level somatic carrier of this new mutation, with 17.3% in blood, 19.1% in oralmucous membrane, and 15.7% in urine by droplet digital polymerase chain reaction (dd PCR). Our finding not only broadens the mutation spectrum of RET but also gives supportive genetic counseling and timely guidance on fertility choices.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Zhiwei Wang
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Qian Meng
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Jiedong Song
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Shuting Yang
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Xinxin Tang
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Yali Zhao
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Shuai Men
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222000, People's Republic of China
| | - Leilei Wang
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222000, People's Republic of China.
| |
Collapse
|
6
|
Iskandar K, Simanjaya S, Indrawan T, Kalim AS, Marcellus, Heriyanto DS, Gunadi. Is There Any Mosaicism in REarranged During Transfection Variant in Hirschsprung Disease's Patients? Front Pediatr 2022; 10:842820. [PMID: 35359901 PMCID: PMC8960445 DOI: 10.3389/fped.2022.842820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/21/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a heterogeneous genetic disease characterized by the absence of ganglion cells in the intestinal tract. The REarranged during Transfection (RET) is the most responsible gene for its pathogenesis. RET's somatic mosaicisms have been reported for HSCR; however, they are still under-recognized. Therefore, we determined the frequency of somatic mutation of RET rs2435357 in HSCR patients at our institution. METHODS We performed RET rs2435357 genotyping from 73 HSCR formalin-fixed and paraffin-embedded (FFPE) rectal and 60 non-HSCR controls using the PCR-RFLP method. Subsequently, we compared those frequencies of genotypes for RET rs2435357 with our previous genotyping data from 93 HSCR blood specimens. RESULTS The frequencies of genotypes for RET rs2435357 in HSCR paraffin-embedded rectal were CC 0, CT 11 (15%), and TT 62 (85%), whereas their frequencies in HSCR blood samples were CC 4 (4.3%), CT 22 (23.7%), and TT 67 (72%). Those frequencies differences almost reached a significant level (p = 0.06). Moreover, the frequency of RET rs2435357 risk allele (T) was significantly higher in HSCR patients (135/146, 92.5%) than controls (46/120, 38.3%) (p = 3.4 × 10-22), with an odds ratio of 19.74 (95% confidence interval = 9.65-40.41). CONCLUSION Our study suggests somatic mosaicism in HSCR patients. These findings further imply the complexity of the pathogenesis of HSCR. Moreover, our study confirms the RET rs2435357 as a significant genetic risk factor for HSCR patients.
Collapse
Affiliation(s)
- Kristy Iskandar
- Department of Child Health/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/UGM Academic Hospital, Yogyakarta, Indonesia
| | - Susan Simanjaya
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Taufik Indrawan
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Alvin Santoso Kalim
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Marcellus
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Gunadi
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| |
Collapse
|
7
|
Arteche-López A, Álvarez-Mora MI, Sánchez Calvin MT, Lezana Rosales JM, Palma Milla C, Gómez Rodríguez MJ, Gomez Manjón I, Blázquez A, Juarez Rufián A, Ramos Gómez P, Sierra Tomillo O, Hidalgo Mayoral I, Pérez de la Fuente R, Posada Rodríguez IJ, González Granado LI, Martin MA, Quesada-Espinosa JF, Moreno-García M. Biallelic variants in genes previously associated with dominant inheritance: CACNA1A, RET and SLC20A2. Eur J Hum Genet 2021; 29:1520-1526. [PMID: 34267336 PMCID: PMC8484357 DOI: 10.1038/s41431-021-00919-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
A subset of families with co-dominant or recessive inheritance has been described in several genes previously associated with dominant inheritance. Those recessive families displayed similar, more severe, or even completely different phenotypes to their dominant counterparts. We report the first patients harboring homozygous disease-related variants in three genes that were previously associated with dominant inheritance: a loss-of-function variant in the CACNA1A gene and two missense variants in the RET and SLC20A2 genes, respectively. All patients presented with a more severe clinical phenotype than the corresponding typical dominant form. We suggest that co-dominant or recessive inheritance for these three genes could explain the phenotypic differences from those documented in their cognate dominant phenotypes. Our results reinforce that geneticists should be aware of the possible different forms of inheritance in genes when WES variant interpretation is performed. We also evidence the need to refine phenotypes and inheritance patterns associated with genes in order to avoid failures during WES analysis and thus, raising the WES diagnostic capacity in the benefit of patients.
Collapse
Affiliation(s)
- A. Arteche-López
- grid.144756.50000 0001 1945 5329Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
| | - MI. Álvarez-Mora
- grid.144756.50000 0001 1945 5329Genetics Department, University Hospital 12 de Octubre, Madrid, Spain ,grid.428756.a0000 0004 0412 0974Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
| | - MT. Sánchez Calvin
- grid.144756.50000 0001 1945 5329Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
| | - JM. Lezana Rosales
- grid.144756.50000 0001 1945 5329Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
| | - C. Palma Milla
- grid.144756.50000 0001 1945 5329Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
| | - M. J. Gómez Rodríguez
- grid.144756.50000 0001 1945 5329Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
| | - I. Gomez Manjón
- grid.144756.50000 0001 1945 5329Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
| | - A. Blázquez
- Mitochondrial and Neurometabolic Diseases Lab. Biochemistry Department, ‘12 de Octubre’ Research Institute (imas12), Madrid, Spain ,grid.413448.e0000 0000 9314 1427Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - A. Juarez Rufián
- grid.144756.50000 0001 1945 5329Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
| | - P. Ramos Gómez
- grid.144756.50000 0001 1945 5329Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
| | - O. Sierra Tomillo
- grid.144756.50000 0001 1945 5329Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
| | - I. Hidalgo Mayoral
- grid.144756.50000 0001 1945 5329Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
| | - R. Pérez de la Fuente
- grid.144756.50000 0001 1945 5329Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
| | - IJ. Posada Rodríguez
- grid.144756.50000 0001 1945 5329Neurology Department, University Hospital 12 de Octubre, Madrid, Spain
| | - LI. González Granado
- grid.144756.50000 0001 1945 5329Pediatrics Department, Immunodeficiency Unit, University Hospital 12 de Octubre, Madrid, Spain ,grid.4795.f0000 0001 2157 7667Complutense University School of Medicine. Madrid, Spain and ‘12 de Octubre’ Research Institute (imas12), Madrid, Spain
| | - Miguel A. Martin
- Mitochondrial and Neurometabolic Diseases Lab. Biochemistry Department, ‘12 de Octubre’ Research Institute (imas12), Madrid, Spain ,grid.413448.e0000 0000 9314 1427Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - JF. Quesada-Espinosa
- grid.144756.50000 0001 1945 5329Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
| | - M. Moreno-García
- grid.144756.50000 0001 1945 5329Genetics Department, University Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
8
|
Karim A, Tang CSM, Tam PKH. The Emerging Genetic Landscape of Hirschsprung Disease and Its Potential Clinical Applications. Front Pediatr 2021; 9:638093. [PMID: 34422713 PMCID: PMC8374333 DOI: 10.3389/fped.2021.638093] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/02/2021] [Indexed: 12/25/2022] Open
Abstract
Hirschsprung disease (HSCR) is the leading cause of neonatal functional intestinal obstruction. It is a rare congenital disease with an incidence of one in 3,500-5,000 live births. HSCR is characterized by the absence of enteric ganglia in the distal colon, plausibly due to genetic defects perturbing the normal migration, proliferation, differentiation, and/or survival of the enteric neural crest cells as well as impaired interaction with the enteric progenitor cell niche. Early linkage analyses in Mendelian and syndromic forms of HSCR uncovered variants with large effects in major HSCR genes including RET, EDNRB, and their interacting partners in the same biological pathways. With the advances in genome-wide genotyping and next-generation sequencing technologies, there has been a remarkable progress in understanding of the genetic basis of HSCR in the past few years, with common and rare variants with small to moderate effects being uncovered. The discovery of new HSCR genes such as neuregulin and BACE2 as well as the deeper understanding of the roles and mechanisms of known HSCR genes provided solid evidence that many HSCR cases are in the form of complex polygenic/oligogenic disorder where rare variants act in the sensitized background of HSCR-associated common variants. This review summarizes the roadmap of genetic discoveries of HSCR from the earlier family-based linkage analyses to the recent population-based genome-wide analyses coupled with functional genomics, and how these discoveries facilitated our understanding of the genetic architecture of this complex disease and provide the foundation of clinical translation for precision and stratified medicine.
Collapse
Affiliation(s)
- Anwarul Karim
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Clara Sze-Man Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Center, The University of Hong Kong—Karolinska Institute Collaboration in Regenerative Medicine, Hong Kong, China
| | - Paul Kwong-Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Center, The University of Hong Kong—Karolinska Institute Collaboration in Regenerative Medicine, Hong Kong, China
| |
Collapse
|
9
|
Jiang Q, Wang Y, Gao Y, Wang H, Zhang Z, Li Q, Xu S, Cai W, Li L. RET compound inheritance in Chinese patients with Hirschsprung disease: lack of penetrance from insufficient gene dysfunction. Hum Genet 2021; 140:813-825. [PMID: 33433679 DOI: 10.1007/s00439-020-02247-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022]
Abstract
Hirschsprung disease (HSCR) is a neurocristopathy characterized by the absence of enteric ganglia along variable lengths of the intestine. Genetic defects play a major role in HSCR pathogenesis with nearly 50% of patients having a structural or regulatory deficiency in the major susceptibility gene RET. However, complete molecular defects remain poorly characterized in most patients. Here, we performed detailed genetic, molecular, and populational investigations of rare null mutations and modifiers at the RET locus. We first verified the pathogenicity of three RET splice site mutants (c.1879 + 1G > A, c.2607 + 5G > A and c.2608-3C > G) at the RNA level. We also identified significantly higher risk allele (genotype) frequencies, and their over-transmission, from unaffected parents to affected offspring of three functionally independent enhancer variants (rs2506030, rs7069590 and rs2435357, with odd ratios (OR) of 2.09, 2.71 and 7.59, respectively, P < 0.001). These three common variants are in significant (P < 4.64 × 10-186) linkage disequilibrium in the Han Chinese population with ~ 60% of them carrying at least one copy and > 10% with two copies. We show that RET compound inheritance of rare and common variants prevails in 64% (seven out of 11) of Chinese HSCR families. This study supports the idea that common RET variants can modify the penetrance of rare null RET mutations in HSCR, and the combined high susceptibility allele dosage may constitute the unique raised "risk baseline" among the Chinese population.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yang Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Yang Gao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hui Wang
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China
| | - Shuhua Xu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, 200092, China.
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China.
| |
Collapse
|